
Naive Infinite Enumeration of Context-free Languages in

Incremental Polynomial Time

Christophe Costa Florêncio

(KU Leuven, Belgium

chris.costaflorencio@cs.kuleuven.be)

Jonny Daenen

(Hasselt University and Transnational University of Limburg, Belgium

jonny.daenen@uhasselt.be)

Jan Ramon

(KU Leuven, Belgium

jan.ramon@cs.kuleuven.be)

Jan Van den Bussche

(Hasselt University and Transnational University of Limburg, Belgium

jan.vandenbussche@uhasselt.be)

Dries Van Dyck

(Belgian Nuclear Research Centre (SCK-CEN)

Boeretang 200, BE-2400 Mol, Belgium

vandyck.dries@gmail.com)

Abstract: We consider the naive bottom-up concatenation scheme for a con-

text-free language and show that this scheme has the incremental polynomial

time property. This means that all members of the language can be enumerated

without duplicates so that the time between two consecutive outputs is bounded

by a polynomial in the number of strings already generated.

Key Words: context-free grammar, systematic generation, incremental poly-

nomial time, polynomial delay

Category: F.4.2, F.2

1 Introduction

Let G be a context-free grammar that is arbitrary but fixed, i.e., G is not con-

sidered as part of the input. Hence, we may suppose G is in a convenient normal

form, in particular Chomsky Normal Form. We can define two basic enumeration

problems concerning the language L(G) generated by G:

Journal of Universal Computer Science, vol. 21, no. 7 (2015), 891-911
submitted: 24/2/14, accepted: 19/5/15, appeared: 1/7/15 © J.UCS

Given-length enumeration with polynomial delay: Given a natural num-

ber n, output all strings of length n belonging to L(G), without duplicates,

with polynomial delay. By “polynomial delay” we mean that the first output,

and every next output, is produced within p(n) time, for some fixed polyno-

mial p. Technically, the output is ended by an “end of output” (EOO) mes-

sage, and the time spent between the last output string and EOO should

also be bounded by p(n). Moreover, if there are no strings of length n in

L(G), then the algorithm should output an EOO right away, again in time

bounded by p(n).

Infinite enumeration in incremental polynomial time: Output all of the

strings in L(G), without duplicates, in incremental polynomial time (IPT),

meaning that the time spent between the mth and the (m+ 1)th output is

bounded by p(m) for some fixed polynomial p. Here, m is not directly related

to string length, but is simply a count of the number of strings that have been

output so far. Since all but the most trivial context-free languages are infinite,

we refer to this problem as infinite enumeration. In principle, an algorithm

for infinite enumeration runs forever, but the incremental polynomial-time

bound guarantees that the time for every next output grows only polynomi-

ally.

The notions of polynomial delay and incremental polynomial time were originally

introduced (in a setting unrelated to context-free languages) by [Johnson et al.

1988]. The set of strings of some length n belonging to a language is also known

as a “cross-section” of that language [see Ackerman and Mäkinen 2009].

Basic as the above two problems are, the literature on them is relatively

scarce. Given-length enumeration was first discussed by [Mäkinen 1997], but not

solved completely; then [Dömösi 2000] presented a polynomial-delay solution to

the same problem by a modification of the well-known CYK parsing algorithm.

Notably, for the special case of regular languages, very efficient algorithms are

available [see Ackerman and Mäkinen 2009]. Their solution has the additional

benefit of enumerating the strings in lexicographic order. Later, [Dong 2009]

reported linear-time improvements to Dömösi’s algorithm. A related problem

which has received quite some attention in the literature is the efficient gener-

ation of a true random sample of a context-free language [see Gore et al. 1997,

Flajolet et al. 1994, Arnold and Sleep 1980].

So, efficient algorithms for given-length enumeration are already available.

In the present paper, we consider infinite enumeration. We will show, perhaps

unsurprisingly, that any algorithm for given-length enumeration with polynomial

delay can be adapted to do infinite enumeration in incremental polynomial time.

The main topic of this paper, however, is the naive, bottom-up concatenation

scheme that enumerates strings not by length, but by depth of their parse tree.

892 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

While this scheme is not as efficient as the above algorithms, it is still important

because it is so basic and natural. Indeed it is a natural question to ask: does

the naive bottom-up concatenation scheme already have the IPT property? In

this paper we answer this question affirmatively. We believe this result is in-

teresting mainly from a theoretical perspective as it adds to our fundamental

understanding of enumerating context-free languages. The proof of our main re-

sult is elementary and is based on detailed pumping-lemma-like arguments. An

important property is that the gap in lengths between two consecutive strings in

a context-free language is bounded by a constant (which depends on the gram-

mar). Our proofs bound important parameters that govern the amount of work

done in one iteration of the concatenation scheme in terms of the number of

unique strings generated up to the previous iteration. In particular, ambiguous

grammars do not pose a problem.

Infinite enumeration may have practical applications in software testing [see

Somerville 1998], where a language of test-inputs is described by a context-free

grammar [see Arnold and Sleep 1980, Duncan and Hutchinson 1981, Maurer

1990]. In this situation, exhaustive testing of the software on all inputs of the

language (e.g., up to a certain length, or until the time budget for testing is

exhausted) can be driven by infinite enumeration of a tailor-made context-free

language.

Conversely, infinite enumeration may also have applications in verification

of context-free languages. While this task is decidable for some properties [see

Baeten et al. 1993], it is undecidable for many other properties, e.g., containment

of one context-free language in another is undecidable [see Hopcroft and Ullman

1979]. In such cases, infinite enumeration may be useful to detect counterex-

amples to conjectured properties, or, when no counterexample is found after a

sufficiently long time, it may provide confidence in the conjecture, after which

the verifier may start an attempt to find a proof by other methods.

Also, there has been interest in tools for testing and debugging the grammars

themselves [see Lämmel 2001, Purdom 1972, Xu et al. 2011], where again infinite

enumeration may be helpful.

The paper is outlined as follows: in [Section 2] we first give the necessary

definitions and in [Section 3] we give a formal specification of the naive algorithm.

In [Section 4], four important results are obtained, which are used in [Section 5]

to show the IPT property of the naive algorithm. In [Section 6] a general method

is given for transforming a given-length enumeration algorithm with polynomial

delay to an algorithm for infinite enumeration in incremental polynomial time.

We conclude in [Section 7].

2 Preliminaries

A context-free grammar G is a tuple (N , Σ,P , S), where

893Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

– N is a finite set of non-terminals ;

– Σ is a finite set of terminals, disjoint from N ;

– P is a set of productions of the form X → α with X ∈ N and α ∈ (Σ ∪N)∗;

– S ∈ N is the start symbol.

For the rest of the paper, we assume that all grammars are in Chomsky

Normal Form (CNF) [see Hopcroft and Ullman 1979] without ε-productions,

i.e., all productions are of the following form:

– A→ BC, a non-terminal production or

– A→ a, with a ∈ Σ, a terminal production

where A,B and C are non-terminals. As we mentioned, the empty string ε cannot

be used. Importantly, this implies that we will only deal with nonempty strings.

We say a non-terminal A derives a string s, written as A⇒∗ s, if one of the

following holds:

– s ∈ Σ and A→ s ∈ P (one-step derivation); or

– ∃B,C ∈ N : ∃u, v ∈ Σ∗ : A→ BC ∈ P ∧B ⇒∗ u ∧ C ⇒∗ v ∧ s = uv.

The language of a non-terminal A is defined by L(GA) = {s | A⇒∗ s}. The
language of the start symbol S is also called the language of G and is defined by

L(G) = L(GS).

We will also use the dependency graph of a context-free grammar (in CNF).

This is a directed graph having N as set of nodes. There is an edge from A

to B if there exists a production of the form A → BC or A → CB, for some

non-terminal C. Note that it is possible for the dependency graph to contain

self-loops. When we speak of reachability in a directed graph, we always mean

reachability by a directed path. The length of a path π is equal to the number

of edges it contains and is denoted by l(π).

We classify the nodes in the dependency graph as follows: a node is recursive

when it belongs to a directed cycle. It is leeching when it can reach a recursive

node, but is not recursive itself. Finally, it is restricted when it is neither recursive

nor leeching. The start symbol must be either recursive or leeching, in order to

obtain an infinite language (see [Example 1] for the intuition). We denote the set

of recursive non-terminals by Nrec, the set of leeching non-terminals by Nleech

and the set of restricted non-terminals by Nres .

Furthermore, without loss of generality, we consider proper grammars only,

i.e., we assume that all nodes in the dependency graph are reachable from S,

and that all non-terminals are productive [Hopcroft and Ullman 1979].

894 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

A

BC

E

F

S

D

G

Figure 1: The dependency graph of context-free grammar G1.

For each string s ∈ L(GA), there exists at least one parse tree that yields

s and in which the root of the parse tree is labelled with A. The depth of a

parse tree τ is the length of a longest path (number of edges) from the root

to a leaf and is denoted by d(τ). Note that we do not restrict the grammar in

terms of ambiguity: ambiguous grammars are allowed, hence each string may

have multiple parse trees. This leads to the notion of a minimal parse tree of

a string: a parse tree of minimum depth. Note that a string may have more

than one minimal parse tree rooted at a non-terminal A. A parse tree is called

non-recursive if no path contains two nodes labeled with the same non-terminal.

Example 1. Consider the following context-free grammar G1:

S → AG C → c

A→ BD D → d

B → CE E → e

C → AF F → f

G→ g.

The corresponding dependency graph is shown in [Fig. 1]. We observe the fol-

lowing classification of the non-terminals:

– Nrec = {A,B,C};

– Nleech = {S};

– Nres = {D,E, F,G}.

895Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

A0 = {a ∈ Σ | A→ a ∈ P};
Ai+1 = Ai ∪ {u · v | ∃B,C ∈ N : A→ BC ∈ P ∧ u ∈ Bi ∧ v ∈ Ci};
ΔA0 = A0;

ΔAi+1 = Ai+1 \Ai.

Figure 2: The naive concatenation scheme for context-free grammars.

3 Algorithm

We now present an iterative algorithm that generates the language described by

a given, fixed grammar G.

During the execution of the algorithm, every non-terminal is associated with a

set of terminal strings. ByΔAi we denote the set of all terminal strings generated

in iteration i for non-terminal A. By Ai we denote the set of all terminal strings

generated in iterations 0 to i for non-terminal A.

The iterations are computed according to the standard inductive concatena-

tion scheme shown in [Fig. 2]. It is easy to see that Ai ⊆ Ai+1 for each A ∈ N
and all i ∈ N.

Remark. In the second rule of the scheme, the use of A0 instead of Ai would

yield equivalent definitions. 	

The strings in Si are called output strings, these are the strings in L(G). Note

that the terminal productions are only used in iteration 0 and the non-terminal

productions are only used in the subsequent iterations.

The setΔAi contains all strings that can be obtained by combining previously

generated strings, according to the associated production(s) of A, except for

those that have already been generated. Note that we are working with sets:

duplicates are removed, but it is still possible that in the same iteration, or in

two different iterations, two identical strings are generated for a non-terminal A

(see [Example 2]).

We denote the length of a string s by |s| and the maximal length of a string

in Ai by ωi
A. Note that it is possible for Ai to be empty when i < |N | − 1 (this

will be shown in [Section 4.2]), in which case ωi
A is undefined. Clearly, ωi+1

A ≥ ωi
A

holds for i ≥ |N | − 1.

We define

T i =
⋃

A∈N
Ai,

ΔT i =
⋃

A∈N
ΔAi.

In addition to the output strings, these sets also contain the strings that are

only used as building blocks for the output strings, and are not output strings

896 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

Non-terminal N ΔN0 ΔN1 ΔN2 ΔN3 . . .

S {} {ab} {abb} {abbb} . . .

A {a} {ab} {abb} {abbb} . . .

B {b} {} {} {} . . .

C {a} {} {} {} . . .

Table 1: Generated output and intermediate strings in the first iterations of ap-

plying the naive concatenation scheme to the context-free grammar G2.

themselves. These are called the intermediate strings. The maximal length of a

string in T i is denoted by ωi
T . Note that the same string might be generated for

multiple non-terminals, i.e., the union ∪A∈NAi that defines T i is generally not

a disjoint union.

Example 2. Consider the following grammar G2:

S → AB A→ a

S → CB B → b

A→ AB C → a.

[Table 1] shows the results of the concatenation scheme applied on G2 for

the first few iterations. Observe that the string ab is generated both by both

S → CB and S → AB in two different iterations. In iteration 2 the string

is already present in S1, hence it is not in ΔS2, even though it is in S2. The

output strings shown in the table (S3) are ab, abb and abbb. The intermediate

strings shown in the table are a, b, ab, abb and abbb (this set equals T 3).

Remark. An equivalent but more efficient inductive concatenation scheme, which

avoids duplicate concatenations is the well-known “semi-naive” scheme [see Ceri

et al. 1990], which is shown in [Fig. 3]. Although this semi-naive scheme can

give practical improvements in performance, e.g., in applications to dabatases

[see Bancilhon and Ramakrishnan 1986], the theoretical worst-case complexity

is of the same order as that of the standard scheme. In this paper we will prove

that the standard scheme runs in polynomial incremental time. 	

A0 = {a ∈ Σ | A→ a ∈ P};
Ai+1 = Ai ∪ {u · v | ∃B,C ∈ N : (A→ BC) ∈ P

∧
(
(u ∈ Bi ∧ v ∈ ΔCi) ∨ (u ∈ ΔBi ∧ v ∈ Ci−1)

)
};

ΔAi+1 = Ai+1 \Ai.

Figure 3: The semi-naive concatenation for context-free grammars.

897Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

4 Upper and Lower Bounds on the Number and Length of
Generated Strings

Our main result is that the naive algorithm satisfies the IPT property.In order

to prove this, four important results are obtained in this section:

– A formalization of the start-up phase in [Section 4.2].

– A relation between the iteration number and the number of intermediate

strings in [Section 4.3].

– A relation between the maximum string length and the number of strings in

[Section 4.4].

– A relation between the number of intermediate strings and the number of

output strings in [Section 4.5].

4.1 String properties

Lemma1. For any non-terminal A, the set ΔAi consists precisely of the strings

that can be derived from A and have a minimal parse tree depth of i+ 1.

Proof. We prove the lemma by induction on i.

Base For i = 0, ΔA0 contains all strings that can be derived from A in one

step.

Induction For i > 0, suppose the lemma holds for all values smaller than i.

Consider a string s = u ·v ∈ ΔAi with u ∈ Bi−1, v ∈ Ci−1 and A→ BC ∈ P
for some B,C ∈ N . By induction u and v have minimal parse trees τu and

τv of depth at most i.

It remains to show that all strings with a minimal parse tree of depth i+ 1,

that can be derived from A, belong to ΔAi. Thereto, consider such a string

s ∈ L(GA) that has a minimal parse tree τ of depth i+ 1.

We first show that s ∈ Ai. Since i > 0, τ has the form of an A-root with two

children τB and τC and A → BC ∈ P for some B,C ∈ N . Let u and v be

the strings yielded by τB and τC respectively, so s = u · v. Since τ has depth

i + 1, the trees τB and τC both have a depth ≤ i. By induction, u ∈ ΔBj

and v ∈ ΔCk, for some j, k < i. In particular, u ∈ Bi−1 and v ∈ Ci−1. It is

now obvious from the definition of Ai that s = u · v ∈ Ai.

Finally, we show that s ∈ ΔAi = Ai\Ai−1 by proving that s /∈ Ai−1. Suppose

that s ∈ Ai−1. By induction, s has a minimal parse tree of depth ≤ i, which

contradicts our assumption. 	

898 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

Knowledge about the iteration in which a string is generated gives us infor-

mation about the length of the string. Because the yield of a parse tree of depth

i + 1 has length at least i + 1 and at most 2i, the lemma above implies the

following:

Lemma2. ∀i ∈ N : ∀s ∈ ΔAi : i+ 1 ≤ |s| ≤ 2i.

4.2 Start-up Phase

We look at the first |N | iterations of the algorithm: the start-up phase. After this

initial start-up, all non-terminals will have generated at least one (intermediate)

string:

Lemma3 (Start-up phase ending). ∀A ∈ N : A|N |−1 �= ∅.

Proof. Consider the following definitions:

N 0 = {A ∈ N | ∃a : (A→ a) ∈ P};
N i+1 = N i ∪ {A ∈ N | ∃B,C ∈ N i : (A→ BC) ∈ P};
ΔN 0 = N 0;

ΔN i+1 = N i+1 \ N i.

Note that N i ⊆ N i+1 for all i. Intuitively, a non-terminal A is in ΔN i iff it

generates its first string in iteration i. By induction, we readily verify that

∀A ∈ N : A ∈ N i ⇔ Ai �= ∅.

Since for each non-terminal N there exists a non-recursive parse tree rooted at

N , the above implies that N |N |−1 = N . Hence, ∀A ∈ N : A|N |−1 �= ∅. 	

Remark. After iteration |N | − 1, restricted non-terminals do not generate any

new strings:

A ∈ Nres , j ≥ |N | : ΔAj = ∅.

	

4.3 Generation pace

In this section we discuss the “speed” at which strings are generated: the gen-

eration pace.

899Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

non-recursive subtree

A

A
distinguished node

distinguished path

right context yieldleft context yield

Figure 4: A filled context for a recursive non-terminal A.

4.3.1 Recursive Non-terminals

The following definition is illustrated in [Fig. 4].

Definition 4 (Filled context). Let A ∈ Nrec. A filled context τ for A is a

parse tree rooted at A with the following properties:

1. A occurs at least twice (note that the root node is already labelled with A);

2. some non-root A-node is called the distinguished node. The path from the

root to the distinguished node is called the distinguished path. No non-

terminal occurs more than once on the distinguished path, except for A,

which appears exactly twice on the distinguished path;

3. for any non-terminal node x not lying on the distinguished path, the subtree

rooted at x is non-recursive; and

4. the subtree rooted at the distinguished node is non-recursive.

The context yield of τ is the yield of τ without the yield of the distinguished

node. The left context yield (resp. right context yield) is the yield of τ before

(resp. after) the yield of the distinguished node. The context length is the length

of the context yield.

By a standard pumping lemma argument [see Hopcroft and Ullman 1979],

we can construct the following.

Lemma5. For each A ∈ Nrec there exists a filled context. Moreover, let τ be

a filled context for A of depth δ and distinguished path length ζ. For all i ≥ 0,

there exists a parse tree τi for A, such that

d(τi) = δ + i · ζ.

Furthermore,

|si| = γ + i · ρ,

900 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

leeching non-terminal

(recursive non-terminal)

A

R
distinguished node

distinguished path

Figure 5: An R-filled context for a leeching non-terminal A.

where si is the yield of τi, γ is the length of the yield of τ and ρ is the context

length of τ .

We conclude with the following lower bound on the number of strings gener-

ated by recursive non-terminals.

Lemma6. There exists a constant c, such that:

∀A ∈ Nrec, ∀i ≥ 0 : |Ac+|N |·i| > i.

Proof. Let τ be a filled context for A of depth δ with a distinguished path length

of ζ. By [Lemma 5], for each i ≥ 0, we have a different string si with a parse

tree τi of depth δ + i · ζ, where δ ≤ 2|N | and ζ ≤ |N |. Hence, each τi yields a

new string lastly in iteration 2|N |+ i · |N |. Therefore, |A2|N |+i·|N || − 1 ≥ i, or

|A2|N |+i·|N || > i, for i ≥ 0. 	

4.3.2 Leeching Non-terminals

In [Definition 4], we defined the notion of filled context for a recursive non-

terminal. We now define the analogous notion for a leeching non-terminal; this

is illustrated in [Fig. 5].

Definition 7 (Filled context). Let A ∈ Nleech . A filled context for A is a parse

tree for A with the following properties:

1. it contains at least one recursive non-terminal;

2. it is non-recursive; and

3. some recursive node is called the distinguished node. The path from the root

to the distinguished node is called the distinguished path.

When the distinguished node is labeled with a recursive non-terminal R, we call

the tree a R-filled context for A. The notions of (left and right) context yield,

and of context length are defined in the same way as in [Definition 4].

In analogy to [Lemma 5] and [Lemma 6], we have the following.

901Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

Lemma8. For each A ∈ Nleech there exists a filled context. Moreover, let τ be

a B-filled context for A having depth δ and distinguished path length ζ. Let τB
be a filled context for B having depth δB and distinguished path length ζB. For

all i ≥ η there exists a parse tree τi for A, such that

d(τi) = ζ + δB + i · ζB.

Furthermore

|si| = ρ+ γB + i · ρB,

where si is the yield of τi, ρ is the context length of τ , γB is the length of the

yield of τB and ρB is the context length of τB .

The next lemmas show a relationship between the iteration number and the

number of generated strings up to that iteration.

Lemma9. There exists a constant c, such that:

∀A ∈ Nleech , ∀i ≥ 0 : |Ac+|N |·i| > i.

Proof. Consider a recursive non-terminal R, reachable by A, having a context

of depth δR with a distinguished path length of ζR. By [Lemma 8], for each

i ≥ |N |, we have a different string with a parse tree of depth ζ + δR + i · ζR,
where ζ ≤ |N | − 1, δR ≤ 2|N | and ζR ≤ |N |. Hence, each τi yields a new

string lastly in iteration |N | − 1 + 2|N |+ i · |N | = 3|N |+ i · |N | − 1. Therefore,

|A3|N |+i·|N |−1| − 1 ≥ i − |N |, or |A3|N |+i·|N |−1| > i − |N |, for i ≥ |N |. By
substituting i′ for i − |N | we obtain that, for i′ ≥ 0, |A3|N |+(i′+|N |)·|N |−1| > i′,

or |A3|N |+i′·|N |+|N |2−1| > i′. 	

Corollary 10 (Non-terminal lower bound). There exists a constant c, such

that:

∀A ∈ Nrec ∪ Nleech , ∀i ≥ 0 : |N | · |Ai+c| > i.

Proof. Consider the constants c1 and c2 from [Lemma 6] and [Lemma 9], respec-

tively. We can choose c3 as the maximum of c1 and c2 and get:

∀A ∈ Nrec ∪ Nleech , ∀k ≥ 0 : |Ac3+|N |·k| > k.

Now let A ∈ Nrec ∪Nleech and i be an arbitrary natural number. We distinguish

the following two cases to show that the corollary holds:

(a) i is a multiple of |N |.
Hence, i = |N | · k. We can now argue as follows:

|Ac3+|N |·k| > k ⇔ |Ac3+|N |· i
|N| | > i

|N |
⇔ |N | · |Ac3+i| > i.

902 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

(b) i is not a multiple of |N |.
Let i′ be the next multiple of |N | larger than i. We have i < i′ < i + |N |
and by (a) we know that i′ < |N | · |Ac3+i′ |. Also |Aj | ≤ |Aj′ | when j ≤ j′,

since Aj ⊆ Aj′ . Combining these observations we get:

i < i′ < |N | · |Ac3+i′ | < |N | · |Ac3+i+|N ||.

When we choose c = c3 + |N |, we have |N | · |Ai+c| > i, for i ≥ 0. 	

This readily implies the following.

Corollary 11 (Intermediate lower bound). There exists a constant c such

that

∀i ≥ 0 : |N | · |T i+c| ≥ i.

4.4 Length bound

In this section, we establish a relation between the length of the longest string

and the total number of generated strings up to an iteration. We begin by stating

the following lemma, which can be proven by a pumping argument.

Lemma12. Let s ∈ Ai with |s| ≥ 2|N |. Then Ai also contains a shorter string

s′ with

|s| − 2|N | < |s′| < |s|.

Lemma13. ∀A ∈ N , ∀i ≥ |N | − 1 : ωi
A < 2|N | · |Ai|.

Proof. Since i ≥ |N | − 1, we know by [Lemma 3] that there exists some s ∈ Ai.

If ωi
A < 2|N | then the lemma is trivial. Else, let j =

⌊
ωi
A/2

|N |⌋. [Lemma 12]

can be repeatedly applied at least j times, starting from s0 = s, yielding j

additional distinct strings s1, s2, . . . , sj ∈ Ai. Hence, |Ai| ≥ j + 1, and therefore

|Ai| > ωi
A/2

|N |. 	

[Lemma 13] readily implies the relation announced at the beginning of this

subsection.

Corollary 14 (Length bound). ∀i ≥ |N | − 1 : ωi
T < 2|N | · |T i|.

903Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

4.5 Intermediate string bound

In this section we bound the number of intermediate strings by the number of

output strings.

Lemma15 (Past bound). ∀i ≥ 0 : ∀0 ≤ k ≤ i : |T i| ≤ 22
k−1 · |T i−k|2k .

Proof. We prove the lemma by induction on i.

Basis For i = 0, the only possible value for k is 0 and the inequality |T 0| ≤
22

0−1 · |T 0|20 becomes trivial.

Induction For i > 0, assume the lemma holds for i− 1:

|T i−1| ≤ 22
k−1 · |T i−1−k|2

k

(0 ≤ k ≤ i− 1).

By the remark made after introducing the concatenation scheme in Section 3,

we have for all j ≥ 0 : T j+1 ⊆ (T j · T j) ∪ T 0. We get:

|T i| ≤ |(T i−1 · T i−1) ∪ T 0|
≤ |T i−1| · |T i−1|+ |T 0|
= |T i−1|2 + |T 0|
≤ 2 · |T i−1|2 (T 0 ⊆ T i−1)

≤ 2 ·
(
22

k−1 · |T i−1−k|2
k
)2

(by induction hypothesis, 0 ≤ k ≤ i− 1)

= 22
k+1−1 · |T i−(k+1)|2k+1

(0 ≤ k ≤ i− 1)

= 22
k−1 · |T i−k|2k (1 ≤ k ≤ i)

= 22
k−1 · |T i−k|2k (0 ≤ k ≤ i, k = 0 is immediate).

	

The following lemma is obvious from [Lemma 3].

Lemma16 (String Growth). For each edge A→ B in the dependency graph

the following holds:

∀i ≥ |N | − 1 : ∀s ∈ Bi : ∃s′ ∈ Ai+1 : s is a strict substring of s′.

We are now in a position to formulate the Future and Present bounds, which

will be important in the proof of our main theorem.

Lemma17 (Future bound). ∀i ≥ |N | − 1 : |T i| ≤ (ω
i+|N |
S)2 · |Si+|N ||.

904 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

Proof. We first prove that every intermediate string will appear as a substring

of an output string, several iterations later. Next, we bound the number of

substrings of these output strings to obtain the desired bound.

Any string s ∈ T i appears in Ai for some A. Consider a simple path π from S

to A in the dependency graph; π has length at most |N |. By repeatedly applying

[Lemma 16] we know that Si+l(π) contains a string s′ that is a superstring of s.

Because l(π) ≤ |N | it holds that s′ ∈ Si+l(π) ⊆ Si+|N |. Hence, each string in T i

has a superstring in Si+|N |.

The number of substrings of a string s′ is bounded by |s′|2. Consequently,
the number of substrings we can create using strings in Si+|N | is bounded

by (ω
i+|N |
S)2 · |Si+|N ||. Together with the first observation, this gives |T i| ≤

(ω
i+|N |
S)2 · |Si+|N ||, as desired. 	

Corollary 18 (Present bound). ∃c ∈ N : ∀i ≥ |N | − 1 : |T i| ≤ c · |Si|2|N|+2

.

Proof. We combine the Future and Past bounds to bound |T i|:

|T i| ≤ 22
|N|−1 · |T i−|N||2|N|

(Past bound)

≤ 22
|N|−1 ·

(
(ωi

S)
2 · |Si|

)2|N|
(Future bound)

= 22
|N|−1 · (ωi

S)
2|N|+1 · |Si|2|N|

≤ 22
|N|−1 · (2|N | · |Si|)2

|N|+1

· |Si|2
|N|

(Lemma 13)

≤ c · |Si|2|N|+2

.

	

5 The Naive Algorithm Runs in Incremental Polynomial
Time

In order to prove that our naive generation algorithm yields an enumeration in

incremental polynomial time in the sense of [Johnson et al. 1988], we only require

the following proposition.

Proposition19. There exists a fixed polynomial p such that after each itera-

tion i, the total time spent by the naive algorithm [Fig. 2] so far is bounded by

p(|Si−1|).

Proof. We will first look at the time necessary to generate one string, then at

the time necessary to generate one iteration and finally at the time needed to

generate strings up to an iteration i.

Consider an intermediate string s ∈ Ai. When i = 0, the only thing that

needs to happen is to store s, given that there are no duplicate productions.

When i > 0, the following steps need to be performed:

905Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

1. concatenate two strings to form s;

2. check if the string has already been generated for A (duplicate check);

3. save the string in order to check for duplicates later.

The concatenation of two strings, resulting in s, can be done in time O (|s|).
A lookup and insertion, to keep track of the set of generated strings, can both

be done in time O
(
|Ai| · |s|

)
.

Next, we construct a bound for the total number of intermediate strings

calculated in iteration i > 0. In the worst case, all strings in T i−1 will be

pairwise combined, for each production. Hence, the total number of candidates

in iteration i is bounded by |P| · |T i−1|2, where |P| is equal to the number of

productions in the grammar.

Combining the two observations above gives us an upper bound on the total

work in iteration i: O
(
ωi
T · |T i| · |T i−1|2

)
. From the Past bound we know that

|T i| = O
(
|T i−1|2

)
. The total work done up to and including iteration i is

therefore bounded by

O

⎛
⎝

i∑
j=1

ωj
T · |T j−1|4

⎞
⎠ .

Note that the work in iteration 0 is constant, since it requires storing just one

string for each terminal production. The work in the first |N | iterations is also
bounded by a constant:

|N |−1∑
j=1

ωj
T · |T j−1|4 ≤ |N | · ω|

TN| · |T |N |−1|4 = O (1) .

Hence, the total time spent up to and including iteration |N | − 1 is considered

constant.

In the remainder of the proof, we bound O
(∑i

j=|N | ω
j
T · |T j−1|4

)
by a poly-

nomial in |Si−1|. First, observe the following:

i∑
j=|N |

ωj
T · |T j−1|4 ≤ i · ωi

T · |T i−1|4

< c1 · i · |T i| · |T i−1|4 (Corollary 14)

≤ c2 · |T i+c3 | · |T i| · |T i−1|4 (Corollary 11)

≤ c4 · |T i−1|c5 (Past bound)

≤ c6 · |Si−1|c7 (Present bound)

for constants c1, . . . , c7.

906 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

Note that the applied lemmas only hold from iteration |N | − 1 on. This is

not a problem as they are only applied for j ≥ |N |. From the above we can

conclude:
i∑

j=1

ωj
T · |T j−1|4 = O

(
|Si−1|c

)
,

for some constant c.

The time needed by the algorithm to calculate all intermediate strings up to

and including interation i is bounded by O
(
|Si−1|c

)
, which is clearly polynomial

in the size of Si−1, as desired. 	

Theorem 20. There is a fixed polynomial p such that the entire language L(G)

can be enumerated without duplicates in such a way that the time needed to

output the (m+ 1)th output string is bounded by p(m).

Proof. Consider the (m + 1)th output string s. We know that s ∈ ΔSi for

some i and we also know, by [Proposition 19] that the time needed to calculate

all strings up to and including iteration i is bounded by O
(
|Si−1|c

)
, for some

constant c. Since |Si−1| ≤ m, we obtain a polynomial in m as desired. 	

6 From Given-Length to Infinite Enumeration

The purpose of this section is to show that we can always use an algorithm for

given-length enumeration with polynomial delay (GLEPD) to obtain an algo-

rithm for infinite enumeration in incremental polynomial time (IEIPT).

For a fixed context-free grammar G, consider a GLEPD-algorithm that, given

a natural number n, enumerates all strings w ∈ L(G) with |w| = n. We treat

the algorithm as a black box and denote it by EnumerateG(n). The polynomial

delay property holds for the algorithm: there exists a fixed polynomial pD such

that, on input n, the time before the first output, the time between two outputs

and the time after the last output until the algorithm terminates, is bounded by

pD(n).

From this algorithm, we can derive the algorithm EnumerateG,∞ [Fig. 6]. We

now prove that EnumerateG,∞ enumerates the entire language L(G) in IPT.

The following lemma readily follows from [Lemma 5] and [Lemma 8].

Lemma21. For each infinite context-free language L, there exist two constants

c ∈ N \ {0} and d ∈ N such that for each l ∈ N the language L contains at least

one string of length c · l + d.

Theorem 22 (EnumerateG,∞ runs in IPT). Let G be a context-free grammar.

There exists a fixed polynomial p such that in the algorithm EnumerateG,∞ the

time spent between the mth output and the (m+1)th output is bounded by p(m),

where m > 0.

907Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

Input: None

Output: all strings in L(G)

1 for i← 1 to ∞ do

2 EnumerateG(i)

3 end

Figure 6: The algorithm EnumerateG,∞.

Proof. Consider the mth and the (m + 1)th output strings that are generated

consecutively by the algorithm and denote them by sm and sm+1, respectively.

For algorithm EnumerateG(n) we have the polynomial pD(n), guaranteed by the

polynomial delay property. We may assume pD is monotonically increasing over

the natural numbers. This can be achieved by converting all negative coefficients

to positive.

There are two cases to consider:

– |sm| = |sm+1|.
This means that the strings are generated in the same iteration i. Let c and

d be the constants given by [Lemma 21]. We consider two further cases:

(a) i ≤ d.

Let c0 be the total time performed by algorithm EnumerateG,∞ in the

iterations up to and including iteration d. Then clearly the time between

the outputs sm and sm+1 is bounded by c0.

(b) i > d.

Let l = � i−1−d
c �. By [Lemma 21], at least l+1 strings have already been

generated before iteration i. Hence l + 1 < m. As l = � i−1−d
c � < m, we

obtain i ≤ m · c + d. As the time between sm and sm+1 is bounded by

pD(i), it is also bounded by pD(m · c+ d), because pD is monotonically

increasing. This is clearly a polynomial in m.

– |sm| < |sm+1|.
This means that the strings are generated in different iterations. Let i be the

iteration in which sm was generated and j be the iteration in which sm+1

was generated. Clearly, 1 ≤ i < j. The total time spent between outputs sm
and sm+1 consists of three parts:

• the time spent in iteration i after the generation of sm;

• the time spent in iteration j before the generation of sm+1;

• the time spent in iterations i+ 1, . . . , j − 1.

908 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

The first two parts are bounded by pD(i) and pD(j) respectively. In every

iteration k between i and j, the time needed to verify that there is no string

of length k in L(G) is bounded by pD(k). Hence, the total time spent between

sm and sm+1 is bounded by

pD(i) + pD(j) +

j−1∑
k=i+1

pD(k) ≤ pD(j) + pD(j) + (j − 2) · pD(j) = j · pD(j).

We know from [Lemma 21] that the maximal number of consecutive lengths

for which no string exists is bounded by a constant. Hence, for some constant

cwait we have j − i ≤ cwait. The total time spent between sm and sm+1 is

therefore bounded by

p′(i) := (i+ cwait) · pD(i+ cwait),

which is clearly a polynomial in i. As in the previous case, i ≤ c ·m+ d, so

we obtain p′(c ·m+ d) as a polynomial in m.

The proof is completed by taking for p(m) the larger of the two polynomials

from the two cases, increased by the constant c0. 	

7 Conclusion

The fact that the simple algorithm, based on the naive bottom-up concatenation

scheme and described in [Section 3], already achieves the Incremental Polyno-

mial Time criterion, is, we hope, an interesting theoretical (if not didactical)

contribution of this paper, as we have not seen this mentioned elsewhere. An

important caveat is that the context-free grammar G is considered fixed and not

part of the input. An interesting question to investigate is what happens when

G ı́s part of the input.

An elementary approach as presented here has the best chances of being gen-

eralizable. Indeed, we are currently investigating how the insights developed here

can be extended to apply to the more general setting of context-free sets of arbi-

trary combinatorial objects as introduced by [Courcelle and Engelfriet 2012] and

[Flajolet and Sedgewick 2009, Flajolet et al. 1991]. A major additional problem

in this context is to keep the duplicate check (step 2 in the proof of [Proposi-

tion 19]) polynomial. Fortunately, in the HR approach to graph rewriting, every

context-free graph language has bounded treewidth. In combination with im-

posing connectedness and a degree bound [see Matoušek and Thomas 1992] this

may produce a polynomial duplicate check.

We also note that for unambiguous grammars, the methods of [Flajolet and

Sedgewick 2009] can be used to count exactly the number of strings (or derivation

trees, which coincides for unambiguous grammars) of a given size.

909Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

Acknowledgement

We thank Hendrik Blockeel and Frank Neven for their contributions in the initial

phase of the project.

References

[Ackerman and Mäkinen 2009] Ackerman, M., Mäkinen, E.: “Three New Algo-

rithms for Regular Language Enumeration”; Computing and Combinatorics,

15th Annual International Conference, COCOON 2009, Niagara Falls, NY,

USA, July 13-15, 2009, Proceedings; (2009); 178–191.

[Arnold and Sleep 1980] Arnold, D. B., Sleep, M. R.: “Uniform Random Gener-

ation of Balanced Parenthesis Strings”; ACM Trans. Program. Lang. Syst.; 2,

1 (1980), 122–128.

[Baeten et al. 1993] Baeten, J. C. M., Bergstra, J. A., Klop, J. W.: “Decidabil-

ity of Bisimulation Equivalence for Processes Generating Context-Free Lan-

guages”; J. ACM; 40, 3 (1993), 653–682.

[Bancilhon and Ramakrishnan 1986] Bancilhon, F., Ramakrishnan, R.: “An

Amateur’s Introduction to Recursive Query Processing Strategies”; SIGMOD

Rec.; 15, 2 (1986), 16–52.

[Ceri et al. 1990] Ceri, S., Gottlob, G., Tanca, L.: “Logic Programming and

Databases”; Springer (1990).

[Courcelle and Engelfriet 2012] Courcelle, B., Engelfriet, J.: “Graph Structure

and Monadic Second-Order Logic - A Language-Theoretic Approach”; vol-

ume 138 of Encyclopedia of mathematics and its applications; Cambridge

University Press (2012).

[Dömösi 2000] Dömösi, P.: “Unusual Algorithms for Lexicographical Enumera-

tion”; Acta Cybern.; 14, 3 (2000), 461–468.

[Dong 2009] Dong, Y.: “Linear algorithm for lexicographic enumeration of CFG

parse trees.”; Science in China Series F: Information Sciences; 52, 7 (2009),

1177–1202.

[Duncan and Hutchinson 1981] Duncan, A. G., Hutchinson, J.: “Using At-

tributed Grammars to Test Designs and Implementations”; Proceedings 5th

International Conference on Software Engineering; IEEE Press (1981); 170–

178.

[Flajolet et al. 1991] Flajolet, P., Salvy, B., Zimmermann, P.: “Automatic

Average-Case Analysis of Algorithm”; Theor. Comput. Sci.; 79, 1 (1991), 37–

109.

[Flajolet and Sedgewick 2009] Flajolet, P., Sedgewick, R.: “Analytic Combina-

torics”; Cambridge University Press (2009).

910 Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

[Flajolet et al. 1994] Flajolet, P., Zimmermann, P., Cutsem, B. V.: “A Calculus

for the Random Generation of Labelled Combinatorial Structures”; Theor.

Comput. Sci.; 132, 2 (1994), 1–35.

[Gore et al. 1997] Gore, V., Jerrum, M., Kannan, S., Sweedyk, Z., Mahaney,

S. R.: “A Quasi-Polynomial-Time Algorithm for Sampling Words from a

Context-Free Language”; Inf. Comput.; 134, 1 (1997), 59–74.

[Hopcroft and Ullman 1979] Hopcroft, J. E., Ullman, J. D.: “Introduction to

Automata Theory, Languages, and Computation”; Addison-Wesley, Reading,

Massachusetts (1979).

[Johnson et al. 1988] Johnson, D. S., Yannakakis, M., Papadimitriou, C. H.:

“On Generating All Maximal Independent Sets”; Information Processing Let-

ters; 27, 3 (1988), 119–123.

[Lämmel 2001] Lämmel, R.: “Grammar Testing”; FASE; (2001); 201–216.

[Mäkinen 1997] Mäkinen, E.: “On Lexicographic Enumeration of Regular and

Context-Free Languages”; Acta Cybern.; 13, 1 (1997), 55–62.

[Matoušek and Thomas 1992] Matoušek, J., Thomas, R.: “On the complexity of

finding iso- and other morphisms for partial k-trees”; Discrete Mathematics;

108, 1-3 (1992), 343–364.

[Maurer 1990] Maurer, P. M.: “Generating Test Data with Enhanced Context-

Free Grammars.”; IEEE Software; 7, 4 (1990), 50–55.

[Purdom 1972] Purdom, P.: “A Sentence Generator for Testing Parsers”; j-BIT;

12, 3 (1972), 366–375.

[Somerville 1998] Somerville, I.: “Software Engineering”; Addison-Wesley

(1998); 5th edition.

[Xu et al. 2011] Xu, Z., Zheng, L., Chen, H.: “A Toolkit for Generating Sen-

tences from Context-Free Grammars”; Int. J. Software and Informatics; 5, 4

(2011), 659–676.

911Florencio C.C., Daenen J., Ramon J., Van den Bussche J., Van Dyck D. ...

