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Abstract: In this paper we introduce a hierarchy of families which can be derived from
the integers using countable collections. This hierarchy coincides with the von Neumann
hierarchy of hereditary countable sets in the ZFC-theory with urelements from N. The
families from the hierarchy can be coded into countable algebraic structures preserving
their algorithmic properties. We prove that there is no maximal level of the hierarchy
and that the collection of non-lowα degrees for every computable ordinal α is the
enumeration spectrum of a family from the hierarchy. In particular, we show that the
collection of non-lowα degrees for every computable limit ordinal α is a degree spectrum
of some algebraic structure.
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1 Introduction

Under the degree spectrum of a countable algebraic structure we understand

the class of all Turing degrees that compute its isomorphic copy. It was shown

in [Goncharov et al. 2005] that for every constructive ordinal α the classes of

Lowα+1 of non-lowα+1 degrees (x(α+1) �≤ 0(α+1)) are the degree spectra of alge-

braic structures. In 2012 during a discussion Kalimullin, Montalban and Frolov

found an idea allowing to construct algebraic structures with the degree spec-

trum Lowω non-lowω degrees (unpublished). In this paper we expose a uniform

approach in obtaining the degree spectrum Lowα for limit constructive ordinals

α. To do this, we consider a hierarchy of α-families which extends the notion of a

family of sets of integers. It was shown in [Kalimullin and Faizrahmanov 2015],

[Kalimullin and Faizrahmanov 2016] that the classes Lown are examples of spec-

tra for which the hierarchy of n-families is proper. In this paper we will generalize

this hierarchy to infinite constructive ordinals.
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Definition 1. Under 0-family we understand a subset of N. For an ordinal α >

0, an α-family is a countable set of β-families for arbitrary β < α.

In fact, the α-families are the hereditary countable sets of rank � α in the von

Neumann hierarchy for the ZFC-theory with urelements from N.

Whenever it is stated that a certain function or relation with ordinal argu-

ments α, β, ... satisfies some computability property, it is presumed that these

ordinals are given by ordinal notations a, b, ..., and that the corresponding func-

tion or relation for a, b, ... satisfies the property in question. In particular, the

relation α < β will mean that we have a <O b (or a <OX b) for the corresponding

ordinal notations.

We say that an integer e is an X-enumeration index of a 0-family A ⊆ N

if A = WX
e . Let α be an X-computable ordinal given by its OX -notation. An

X-enumeration index of an α-family F is such an integer e that

F = {Hi
β : β < α, i ∈ N and ΦX

e (β, i) ↓},

where Hi
β is the β-family with the X-enumeration index ΦX

e (β, i) (with respect

to the notation β <OX α).

Definition 2. We say that an α-family F is X-c.e. if there is an X-enumeration

index of F with respect to some OX -notation of α.

In particular, for 1-families F this is equivalent to the existence of a partial

computable function ϕ such that

F = {WX
ϕ(i) : i ∈ N and ϕ(i) ↓}.

For non-empty 1-families F the function ϕ can be chosen total.

The enumeration spectrum SpF of α-family F is the class of degrees x =

deg(X) such that F isX-c.e. Extending known methods of coding countable fam-

ilies into algebraic structures (see, e.g., [Goncharov et al. 2005]), each α-family

can be coded into a structure having an X-computable copy if and only if the

α-family is X-c.e.

Theorem 3. For every α-family F there is an algebraic structure A such that

SpF is the degree spectrum of A.

Proof. To code a 0-family A let P (A) be the graph starting with a central vertex

v and adding a loop from v to itself of length n + 3 for each n ∈ A. Mark also

the central vertex by the label 0. Assume by induction that every β-family H,

β < α, is coded into a graph P (H). To code an arbitrary α-family F let P (F) be

the graph with a root vertex r and infinitely many copies of the graph P (H) for

each H ∈ F whose root (or central) vertex is connected by an edge with the new
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root r. Mark the root vertex by the label α. Let (G,E) be the graph consisting

of infinitely many disjoint copies of the graph P (F).

To code a notation of α consider a structure (L,<L, P, S) where (L,<L) is

well-ordered set of type α, P is the unary predicate indicating limit elements,

and S is the successor relation on L. Fix the isomorphism h from (L,<L) onto

(α,∈).
Let A(F) be the two-sort model

A(F) = [(L,<L, P, S), (G,E), J ],

where J(a, b) holds if and only if a ∈ L and the element b ∈ G has the label

h(a).

If an X-enumeration index of F is given with respect to some OX-notation on

α then we can get anX-computable copy ofA(F), where theX-constructivisation

of (L,<L, P, S) is based on the standard X-constructivisation of the well-order

{β : β <OX α}.
Contrariwise, for given X-computable copy of A(F) we can get an an X-

enumeration index of F with respect to the OX -notation based on the construc-

tivisation of (L,<L, P, S) ∼= α.

2 The families Eα(A)

The goal of this section is to uniformly define an (α+1)-family Eα(A) such that

Eα(A) is c.e. iff A is ∅(α+1)-c.e.

for every set A ⊆ N and every constructive ordinal α.

It is known from [Kalimullin and Faizrahmanov 2015] that such (α + 1)-

family Eα(A) exists if α < ω. Namely, the families Eα(A), α < ω can be defined

by the following induction:

E0(A) = {{2x, 2x+ 1} : x ∈ N} ∪ {{2x} : x ∈ A},

Eα(A) = {Eβ(Z) : Z ∈ E0(A)}, if α = β + 1.

It is easy to check that if A is X ′-c.e. then E0(A) is an X-c.e. 1-family. Note also

that

x ∈ A ⇐⇒ (∃F ∈ E0(A))[2x ∈ F & 2x+ 1 /∈ F ],

so that

A is X ′-c.e. ⇐⇒ the 1-family E0(A) is X-c.e.

Due the uniformity in the last equivalence the condition

A is X(α+1)-c.e. ⇐⇒ the (α+ 1)-family Eα(A) is X-c.e.
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for every A ⊆ N implies the condition

A is X(α+2)-c.e. ⇐⇒ the (α+ 2)-family Eα+1(A) is X-c.e.

for every A ⊆ N. To guarantee this condition for every constructive ordinal α

we should correctly make an inductive definition of Eα(A) for limit α.

Let α be a limit constructive ordinal and let FIN be the class of all finite

subsets of N. For each Z ∈ FIN define the class Dα(Z) containing all functions

f : α → FIN such that for some finite increasing sequence

0 = β0 < β1 < . . . < βn < α,

the function f is constant in every interval [βk, βk+1), k < n, and f(β) = Z for

β ∈ [βn, α). Let Dα =
⋃

Z∈FIN Dα(Z). Then we set

Eα(A) = {{Eβ(f(β)) | β < α} : f ∈ Dα(Z) & Z ∈ E0(A)}.

Lemma4. There is computable function r such that for every computable limit

ordinal α and finite set W ∅(α)

e we have Dα(W
∅(α)

e ) = {fy : y ∈ ω}, where

fy(β) = W ∅(β)

r(e,y,β), β < α.

More precisely, the function r indeed is defined on the notations of β < α so

that Dα(W
∅(α)

e ) = {fy : y ∈ ω} and fy(|b|O) = W ∅(b)

r(e,y,b), b <O a, where a is the

O-notation of α such that ∅(α) = ∅(a).

Proof. Let y be the canonical number of a sequence (β0, . . . , βq, F1, . . . , Fq),

where

0 = β0 < β1 < . . . < βq < α

are ordinals given by their notations <O a, and F1, . . . , Fq are finite sets.

Using the notation for a ∈ O we can uniformly extend the sequence {βk}k�q

to an infinite increasing sequence {βk}k∈N such that α = limk βk.

Assuming that ∅(α) = {〈γ, x〉 : γ < α & x ∈ ∅(γ)} we can define Kβ =

{〈γ, x〉 : γ < β & x ∈ ∅(γ)} ≤T ∅(β) and choose a computable function r such

that

W ∅(β)

r(e,y,β) =

{
Fs, if βs−1 � β < βs, 1 � s � q,

ŴKβ

e,s , if βs−1 � β < βs for s > q

for β < α, where ŴKβ

e,s is the part of WKβ

e,s computed using the oracle Kβ � u

such that 〈γ, x〉 ≥ u for all γ ∈ [β, α). Note that the c.e. relation γ ∈ [β, α) on

ordinal notations is computable in ∅′ ≤T ∅(β) for β > 0.

If W ∅(α)

e is finite then W ∅(α)

e = ŴKβ

e beginning some β < α so that the

function fy:

fy(β) = W ∅(β)

r(e,y,β), β < α,
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belongs to Dα(W
∅(α)

e ) since ŴKβs

e = W ∅(α)

e beginning some βs.

Conversely, suppose that a function f : α → FIN belongs to Dα(W
∅(α)

e ).

Since W ∅(α)

e is finite we can fix an integer p ∈ N and an ordinal ρ < α such that

W ∅(α)

e = ŴKγ

e,s for every s � p and γ ∈ [ρ, α). Let

0 = β0 < β1 < . . . < βq < α

be a sequence of ordinals such that f is constant on every interval [βs, βs+1),

s < q, and f(β) = W ∅(α)

e for every β ∈ [βq, α). Extend the sequence by one more

element βq+1 = max(ρ, βq) + 1. If q + 1 < p we also can extend it further via

βq+i = max(ρ, βq) + i, 1 < i � p− q, so that in any case we have the sequence

0 = β0 < β1 < . . . < βmax(p,q+1) < α

such that βmax(p,q+1) ∈ [ρ, α). Then f = fy for the canonical index y of the

sequence (β0, . . . , βmax(p,q+1), F1, . . . , Fmax(p,q+1)), where Fs = f(βs), 1 � i �
max(p, q + 1).

Lemma5. There is a partial computable function g such that for every com-

putable ordinal α and every integer e the value g(e, α) is the enumeration index

of the (α+ 1)-family Eα(W
∅(α+1)

e ).

Proof. Fix a computable function f such that for every m and X

E0(W
X′
m ) = {WX

f(i,m) : i ∈ N}.

For example, we can set

WX
f(i,m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{2x, 2x+ 1}, if i = 〈0, x〉;
{2x}, if i = 〈s+ 1, x〉 and x ∈ W

X′
t

m,t

for all t > s;

{2x, 2x+ 1}, otherwise,

where {X ′
t}t∈ω is an X-computable enumeration of X ′.

For α = 0 the value g(e, 0) is the index of the computable function

Φg(e,0)(β, i) =

{
f(i, e), if β = 0,

undefined, otherwise.

It is easy to see that g(e, 0) is the enumeration index of the 1-family E0(W
∅′
e ).

Let α > 0. Assume by induction that g(e, α) is defined such that g(e, α) is

the enumeration index of the (α+ 1)-family Eα(W
∅(α+1)

e ) for every e.

Since

Eα+1(W
∅(α+2)

e ) = {Eα(W
∅(α+1)

f(i,e) ) : i ∈ N}
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the index g(e, α+ 1) defined by

Φg(e,α+1)(β, i) =

{
g(f(i, e), α), if β = α+ 1,

undefined, otherwise

is the enumeration index of Eα+1(W
∅(α+2)

e ).

Suppose now that α is limit ordinal and the function g(e, β) is defined for β <

α such that g(e, β) is the enumeration index of the (β + 1)-family Eβ(W
∅(β+1)

e )

for every e and β < α.

Since ∅(β) �T ∅(β+1) by Lemma 4 there is a partial computable function r

such that Dα(W
∅(α)

f(i,e)) = {fy : y ∈ N}, where

fy(β) = W ∅(β+1)

r(e,y,β), β < α,

so that we have

Eα(W
∅(α+1)

e ) = {{Eβ(f(β)) | β < α} : f ∈ Dα(Z) & Z ∈ E0(W
∅(α+1)

e )} =

{{Eβ(f(β)) | β < α} : f ∈ Dα(W
∅(α)

f(i,e)) & i ∈ N} =

{{Eβ

(
W ∅(β+1)

r(f(i,e),y,β)

)
| β < α} : i, y ∈ N}.

Define a partial computable function v such that for every y, i and e the

value v(y, i, e) is the enumeration index of the α-family

{Eβ

(
W ∅(β+1)

r(f(i,e),y,β)

)
| β < α}

by letting

Φv(y,i,e)(γ, j) =

{
g(r(f(i, e), y, β), β), if γ = β + 1,

undefined, if γ = 0 or γ is a limit ordinal.

Then the value of g(e, α) defined by

Φg(e,α)(β, 〈y, i〉) =
{
v(y, i, e), if β = α,

undefined, otherwise

is the enumeration index of Eα(W
∅(α+1)

e ).

Lemma6. There is a partial computable function h such that whenever e is an

enumeration index of Eα(A), A = W ∅(α+1)

h(e,α) .

Proof. Define the value of h(e, 0) by letting

W ∅′
h(e,0) = {x : ∃i∃t∀y∀s [WΦe,t(0,i),t �= ∅& [y ∈ WΦe,s(0,i),s ⇒ y = 2x]]}.
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It’s easy to see that W ∅′
h(e,0) = {x : ∃i [WΦe(0,i) = {2x}]}. Thus if e is an enumer-

ation index of E0(A) then A = W ∅′
h(e,0).

Suppose α = β + 1. Let

W ∅(α+1)

h(e,α) = {x : ∃i [W ∅(α)

h(Φe(β,i),β)
= {2x}]}.

Therefore if e is an enumeration index of Eα(A) then A = W ∅(α+1)

h(e,α) .

Suppose now that α is limit ordinal. Let U be the partial computable function

defined by

U(e, α, β, j, i) = ΦΦe(α,j)(β, i).

Define the value of h(e, α) by letting

W ∅(α+1)

h(e,α) = {x : ∃i∃γ < α∀β ∈ (γ, α)∀i [W ∅(β+1)

h(U(e,α,β,j,i),β) = {2x}]}.

Let e be an enumeration index of Eα(A). Every α-family

{Eβ(f(β)) | β < α},

where f ∈ ⋃
Z∈E0(A) Dα(Z), has the enumeration index Φe(α, j) for some j. Then

every (β + 1)-family in this α-family has the enumeration index U(e, α, β, j, i)

for some i. Therefore x ∈ A iff

∃i∃γ < α∀β ∈ (γ, α)∀i [W ∅(β+1)

h(U(e,α,β,j,i),β) = {2x}].

Hence A = W ∅(α+1)

h(e,α) .

Corollary 7. Let α < ωCK
1 . Then A ∈ Σ0

1(X
(α+1)) iff Eα(A) X-c.e.

3 Main Result

It was shown in [Kalimullin and Faizrahmanov 2016] that for every integer n

the class Lown is the enumeration spectrum of m-family for some integer m.

Namely, the following theorem holds.

Theorem 8. For each integer n > 0 the classes Low2n−1 and Low2n−2 are the

enumeration spectra of n-families.

Now we will generalize this to infinite (and, therefore, to limit) computable

ordinals.

Theorem 9. For every computable ordinal α there is an (α+1)-family with the

enumeration spectrum Lowα.
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Proof. Define the 1-family W by letting

W = {{n} ⊕ F : F ∈ FIN, F �= W ∅(α)

n }.
By Wehner’s Theorem (see [Wehner 1998]) relativised to ∅(α) the family W is

X-c.e. iff ∅(α) <T X for every X ≥T ∅(α). Suppose that α = β + 1. Define the

(α+ 1)-family

F = {Eβ({n} ⊕ F ) : F ∈ FIN, F �= W ∅(α)

n }.
Now we show that Lowα is the enumeration spectrum of F. Let ∅(α) <T X(α).

Hence W is X(α)-c.e. By the Lemma 5 relativised to X we have that F is X-c.e.

Conversely, suppose that F is X-c.e. Using the Lemma 6 relativised to X we

obtain that W is X(α)-c.e. Therefore ∅(α) <T X(α).

Suppose now that α is limit ordinal. We show that Lowα is the enumeration

spectrum of the (α+ 1)-family

F = {{Eβ({n} ⊕ f(β)) | β < α} : f ∈ Dα,
⋃
β<α

f(β) �= W ∅(α)

n }.

Let ∅(α) <T X(α). Denote by B the set of canonical numbers of all sequences

(β0, . . . , βq, F1, . . . , Fq), where

0 = β0 < β1 < . . . < βq < α

are ordinals given by their notations <O a, |a|O = α, and F1, . . . , Fq are finite

sets. Since W is X(α)-c.e. we can fix a partial computable function u such that

for every y ∈ B and every n ∈ N the sequence {WX(α)

u(y,i,n)}i∈N consists of all finite

sets F that satisfy the conditions

F �= W ∅(α)

n ,

q⋃
k=1

Fk ⊆ F,

where (F1, . . . , Fq) is second part of the sequence with number y. By Lemma 4

we can fix a partial computable function r such that

F = {{Eβ({n} ⊕WX(β+1)

r(u(y,i,n),y,β)) | β < α} : i, n ∈ N, y ∈ B}.
Hence F is X-c.e.

Conversely, let F is X-c.e. By Lemma 6 relativised to X there is a partial

computable function d such that

F = {{Eβ(W
X(β+1)

d(i,β) ) | β < α} : i ∈ N}.
Therefore, the 1-family

W = {
⋃
β<α

WX(β+1)

d(i,β) : i ∈ N}

is X(α)-c.e., and hence ∅(α) <T X(α).
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Corollary 10. For every computable ordinal α there is a structure A whose

degree spectrum is equal to Lowα.

Note that, the last result for successor ordinal α was known from a general

framework from [Goncharov et al. 2005]. The use of α-families allows to get the

result for limit ordinals.

4 Further results and discussions

It was shown in [Kalimullin and Faizrahmanov 2016] that the n-families, n ∈ N,

form a hierarchy on their enumeration spectra. Namely, for every integer n > 0

there is an n-family F such that SpF is not enumeration spectrum of an m-

family, m < n. Furthermore, the classes Lown are examples of spectra for which

the hierarchy of m-families is proper.

Theorem 11. For every n the class Low2n is not an enumeration spectrum of

an n-family.

On other hand, by Theorem 8 Low2n is an enumeration spectrum of an (n+1)-

family. To show that there is no maximal level of the hierarchy of α-families,

α < ωCK
1 , we prove the following Lemma.

Lemma12. There is a computable function g such that for all α < ωCK
1 , X ⊆ N

and δ ∈ (0, 1) ∩Q

μ{Y : (X ⊕ Y )(α) = ΦX(α)⊕Y
g(α,δ) } > δ,

where μ is the uniform probability measure on the Cantor space.

Proof. It was shown in [Stillwell 1972] that there is a computable function f

such that for every set X and every rational δ ∈ (0, 1)

μ{Y : (X ⊕ Y )′ = ΦX′⊕Y
f(δ) } > δ.

Thus, we can fix a computable function d such that

μ{Y : Φ(X⊕Y )′
e = ΦX′⊕Y

d(δ,e) } > δ

for all X , e, δ. Define ΦZ
g(0,δ) = Z for every Z. Fix a computable function h such

that (ΦZ
e )

′ = ΦZ′
h(e) for every Z, e if ΦZ

e is total. Suppose α = β + 1. Assume by

induction that the Lemma holds for β. Let

g(α, δ) = d

(
1 + δ

2
, h

(
g

(
β,

1 + δ

2

)))
.
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For every set X and rational δ ∈ (0, 1) let C0 ⊆ 2N be the class defined by

C0 = {Y : (X ⊕ Y )(α) =
(
ΦX(β)⊕Y

g(β, 1+δ
2 )

)′
}.

Since (X ⊕ Y )(α) = ((X ⊕ Y )(β))′ and by induction assumption we have μC0 >
1+δ
2 . Let C1 ⊆ 2N be the class defined by

C1 = {Φ(X(β)⊕Y )′

h(g(β, 1+δ
2 ))

= ΦX(α)⊕Y
g(α,δ) }.

By definition of the function d, μC1 > 1+δ
2 . Since(

ΦX(β)⊕Y

g(β, 1+δ
2 )

)′
= Φ

(X(β)⊕Y )′

h(g(β, 1+δ
2 ))

for every Y ∈ C0 we have

(X ⊕ Y )(α) = ΦX(α)⊕Y
g(α,δ)

for every Y ∈ C0 ∩ C1 and μ(C0 ∩ C1) > δ.

Suppose now that α is limit ordinal. Assume by induction that the Lemma

holds for β < α. Let {βi}i>0 be an injective combutable sequence of all ordinals

less than α. Define the value of g(α, δ) by letting

ΦX(α)⊕Y
g(α,δ) (〈u, βi〉) = ΦX(βi)⊕Y

g
(
βi,

2i−1+δ

2i

)(u)

and ΦX(α)⊕Y
g(α,δ) (〈u, γ〉) = 0 if γ is not a (notation of) ordinal lesser α. For every

X , δ ∈ (0, 1) ∩Q, i > 0 let Ci ⊆ 2N be the class defined by

Ci = {Y : (X ⊕ Y )(βi)(u) = ΦX(βi)⊕Y

g
(
βi,

2i−1+δ

2i

)(u)}.

By induction assumption μCi >
2i−1+δ

2i . Since

(X ⊕ Y )(α)(〈u, βi〉) = (X ⊕ Y )(βi)(u)

for every Y ,i, u we have

(X ⊕ Y )(α)(〈u, βi〉) = ΦX(α)⊕Y
g(α,δ) (〈u, βi〉)

for every Y ∈ ⋂
i>0 Ci. On other hand

μ
⋂
i>0

Ci > 1−
∞∑
i=1

(
1− 2i − 1 + δ

2i

)
= 1−

∞∑
i=1

1− δ

2i
= δ.

Therefore g(α, δ) satisfies the Lemma.
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Now we will show that for a given computable ordinal α each almost c.e.

α-family has an enumeration in some fixed level of the hyperarithmetical hier-

archy. Since Δ1
1 =

⋃
α<ωCK

1

Lowα, it implies that there is no maximal level of the

hierarchy of α-families.

Definition 13. We say that an α-family F is almost c.e. if

μ{X : F is X-c.e.} = 1.

Theorem 14. For every α < ωCK
1 there is a β < ωCK

1 such that every almost

c.e. α-family is ∅(β)-c.e.
Proof. It is sufficient to define a partial computable function f such that every

almost c.e. α-family is ∅(f(α))-c.e. Since every almost c.e. set is c.e. we can define

f(0) = 0. Suppose α > 0 and F is arbitrary almost c.e. α-family. Assume by

induction that f(γ) is defined for every γ < α. Let F is X-c.e. Since each β-

family in F is ∅(f(γ))-c.e. we can uniformly choose an ordinal β < ωCK
1 such that

the set

I = {〈n, γ〉 : n is the ∅(f(γ))-enumeration index of some γ-family in F, γ < α}
is X(β)-c.e. uniformly by the X-enumeration index of F. Let f(α) = β. Since

μ{X : F is X-c.e.} = 1

there is an integer i such that

μ{X : i is an X-enumeration index of F} > 0.

Using Lebesgue’s Density Theorem we can fix an integer e such that

μ{X ⊃ σ : i is an X-enumeration index of F} >
3

4 · 2|σ|
for some σ ∈ 2<ω. Embedding the initial segment σ into enumeration algorithms

for F we can produce new index e ∈ ω such that

μ{X : e is an X-enumeration index of F} >
3

4
.

By Lemma 12

μ
{
X : X(β) = Φ∅(β)⊕X

g(β, 34 )

}
>

3

4
.

Thus, there is a c.e. operator W such that

μ{X : I = W ∅(β)⊕X} >
1

2
.

By de Leeuw’s et al. Theorem (see [Downey and Hirschfeldt 2010] Theorem 8.12.1)

relativised to ∅(β) we have that I is ∅(β)-c.e. Therefore F is ∅(β)-c.e.
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Corollary 15. For every ordinal α < ωCK
1 there is a β-family F, α < β < ωCK

1 ,

such that SpF is not enumeration spectrum of an α-family.

Proof. Fix an infinite ordinal γ such that every almost c.e. α-family is ∅(γ)-c.e.
By Theorem 9 for β = γ2+1 there is a β-family with the enumeration spectrum

Lowγ2 . On other hand, the enumeration spectrum of every almost c.e. α-family

should contain the lowγ2-degree 0(γ), and hence the class Lowγ2 is not the

enumeration spectrum of an α-family.

We finish the paper by formulating the following open questions.

1. For a given α < ωCK
1 what is the minimal possible β < ωCK

1 such that Lowα

is the enumeration spectrum of a β-family?

In the paper [Kalimullin and Faizrahmanov 2016] such minimal β was found

for the case of finite α. It was shown that for every integer n > 0 the classes

Low2n−2 and Low2n−1 are the enumeration spectra of n-families but not

enumeration spectra of (n− 1)-families. Using the operator

H0(A) = {F ⊆ N : F is finite} ∪ {N \ {x} : x ∈ A}

instead of E0 we can improve the levels obtained in Theorem 9 by showing

that for every limit α and integer n the classes Lowα+2n−1 and Lowα+2n

are enumeration spectra of an (α+ n+ 1)-families.

2. For given computable ordinals α < β does there exist a β-family F such that

SpF is not enumeration spectrum of an α-family?

It follows from Corollary 15 that for every α there is a sufficiently large β > α

such that the enumeration spectrum of some β-family is not an enumeration

spectrum of an α-family, but the proof in fact do not give an efficient bound

for β.

Acknowledgments

The research of the first author was funded by the subsidy allocated to Kazan

Federal University for the state assignment in the sphere of scientific activities,

project no. 1.2045.2014. The research of the second author was supported by

RFBR Grant No. 15-31-20607.

References

[Downey and Hirschfeldt 2010] Downey, R.G., Hirschfeldt, D.R.; “Algorithmic ran-
domness and complexity”; Theory and Applications of Computability, Springer
(2010).

954 Faizrahmanov M., Kalimullin I.: The Enumeration Spectrum Hierarchy ...



[Kalimullin and Faizrahmanov 2016] Faizrahmanov, M., Kalimullin, I.: “The Enumer-
ation Spectrum Hierarchy of n-Families”; Mathematical Logic Quarterly, to appear.

[Goncharov et al. 2005] Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller,
R., Solomon, R.: “Enumerations in computable structure theory”; Annals of Pure
and Applied Logic, 136, 3 (2005) 219-246.

[Kalimullin and Faizrahmanov 2015] Kalimullin, I. Sh., Faizrakhmanov M.Kh.: “A Hi-
erarchy of Classes of Families and n-Low Degrees”; Algebra i Logika (Russian), 54,
4 (2015) 536-541.

[Stillwell 1972] Stillwell, J.: “Decidability of the ”almost all” theory of degrees”; J.
Symbolic Logic, 37, 3 (1972) 501-506.

[Wehner 1998] Wehner, S.: “Enumerations, countable structures, and Turing degrees”;
Proc. Am. Math. Soc., 126, 7 (1998) 2131-2139.

955Faizrahmanov M., Kalimullin I.: The Enumeration Spectrum Hierarchy ...


