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Abstract: Taking full advantages of the L1-norm support vector machine and the
L2-norm support vector machine, a new improved double regularization support vec-
tor machine is proposed to analyze the datasets with small samples, high dimension-
s and high correlations in the parts of the variables. A kind of smooth function is used
to approximately overcome the disdifferentiability of the L1-norm and the steepest de-
scent method is used to solve the model. But the parameters of this model bring some
trouble about the accuracy of the experiments. By use of the characteristics of chaotic
systems, we propose a chaotic particle swarm optimization to select the parameters in
the model. Experiments show the improvement gains the better effects.
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1 Introduction

Based on the principle of structural risk minimization and the nature of Statisti-

cal Learning Theory (SLT), Support Vector Machine (SVM) was first proposed

to deal with finite training datasets by Vapnik [Vapnik, 2013]. In order to pre-

vent the over-fitting phenomenon, a Structural Risk Minimization (SRM) was

used to process the finite training data sets. At the same time, a regularization

or a penalty term was added to SRM, which based on the empirical risk func-

tion. It describes a general model of capacity control and provides a trade-off
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between hypothesis space complexity (the VC dimension of approximating func-

tions) and the quality of fitting the training data (empirical error). Generally

speaking, regularization about model complexity is a monotonically increasing

function. That means the more complexity of the model, the greater the reg-

ularizer value. Regularization term can be the norm of the model parameter

[Deng and Tian, 2004]. The model has the following form:

min
f∈F

1

N

N∑
i=1

L(yi, f(xi)) + λJ(f) (1)

Here the first term is the empirical risk which usually is replaced by some loss

functions and the second term is the regularization which may be some vector

parameter. λ ≥ 0 is the parameter which controls the trade-off between the loss

function L(yi, f(xi)) and the penalty J(f). According to the maximum distance

method for two classification hyperplanes [Shawe-Taylor and Cristianini, 2004],

the regularization can select the L2-norm of the vector parameter and the model

can be showed as the following:

min
f∈F

1

N

N∑
i=1

L(yi, f(xi)) +
λ

2
‖w‖

2
2 (2)

Here ‖w‖22 is the Euclidean Distance which also can be used in the ridge regres-

sion and neural network. The L2-norm penalty can help groups of correlated

variables get selected together and it tends to make highly correlated input vari-

ables which have similar fitted coefficients [Li et al., 2006]. We often call them

the grouping effect. With the help of this penalty, the number of selected in-

put variables are no longer bounded by samples number n. However, ‖w‖22 can

not produce the sparse coefficients and automatically select variables. On this

occasion, some researchers proposed to replace ‖w‖22 with ‖w‖1. The L1-norm

penalized optimization problem can be showed as the following optimization

problem:

min
f∈F

1

N

N∑
i=1

L(yi, f(xi)) + λ ‖w‖1 (3)

Contrary to the L2-norm, the numbers of variables which is selected by the L1-

norm is upper bounded by the sample size n. For highly relevant variables, the

L1-norm tends to select only one or few of them. L1-norm penalty has a unique

property that is selecting variable automatically. Just as the two norms for their

advantages and disadvantages, each coin has the two sides. Some researchers

made full use of the advantages of the two norms and proposed a double reg-

ularization support vector machine [Li et al., 2016, Li et al., 2008]. The model
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Figure 1: 2-dimensional contour plots of L1-norm, L2-norm and L1-norm+L2-

norm, which have the different smoothness at the zero point.

can be expressed as the following form:

min
f∈F

1

N

N∑
i=1

L(yi, f(xi)) + λ1 ‖w‖1 + λ2 ‖w‖
2
2 (4)

The description of them can be found in Figure 1 in the two-dimensional

space. The hybrid norm support vector machine for microarray classification is

first proposed by Juntao [Li and Jia, 2010] and it has two major benefits:

� It can select variables automatically.

� It has the grouping effect, where highly correlated variables tend to be selected

or removed together.

This model is very effective for classification, but the optimal solution of

the problem (4) is very complex [Wu and Zhang, 2011]. In the following pa-

per, we will introduce a polynomial smooth function and positive function to

change the character approximately and give the steepest descent algorithm to

gain the solutions. We choose the chaotic particle swarm optimization to select

the parameters of the model. With regards to the above design principles, the

contributions of this papers are summarized as follows.

(1) We devise a quadratic polynomial smooth function and change the dou-

ble regularization support vector machine into an unconstrained optimization

function. At the same time, we use a positive function to replace the non-

differentiable ‖w‖1 approximately. The model becomes an unconstrained and

differentiable problem.
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(2) We use the steepest descent algorithm to solve the optimization model.

(3) There are three main parameters which decide the experiment effect of

the double regularization model. We use the chaotic particle swarm optimization

to select the optimal parameters.

This paper is organized as follows. In Section 2, we briefly introduce the

L2-norm SVM and L1-norm SVM with some loss functions, then describe our

Improved Doubly Regularized Support Vector Machine (IDRSVM) with a loss

function in section 3. In section 4, the Chaotic Particle Swarm Optimization

(CPSO) algorithm is briefly introduced and is used to optimize the parameter

selection of IDRSVM in section 5. The last two sections are the numerical exper-

iments that is demonstrated the effectiveness of our method and the conclusions.

2 L2-svm and L1-svm with the loss function

Given a training dataset {(xi, yi)}
n
i=1, where xi is a vector with p predictor vari-

ables and yi ∈ {−1, 1} denotes the class label. Based on the principle of Struc-

tural Risk Minimization (SRM) and the nature of Statistical Learning Theory

(SLT) [Vapnik, 2013], some researchers proposed the following L2-norm Support

Vector Machine(L2-SVM), which can be seen in Figure 2.{
min
(w,b)

1
2‖w‖

2
2 + C

∑n

i=1 ξi

subject to yi((w · xi) + b) ≥ 1− ξi
(5)

Here ξ is a slack variable and this kind of SVM was widely used in data anal-

ysis. Some researchers consider that L2-SVM can be equivalently transformed

into the ”loss+penalty” forma.

min
(w,b)

1

2
‖w‖22 + C

n∑
i=1

[1− yi((w · xi) + b)]+ (6)

The last item in the model (6), x+ is a positive function and the optimization

problem becomes an unconstraint optimization. The L2-norm penalty achieves

the bias-variance tradeoff and reduces the variance of the estimated coefficients.

It can bring the better prediction accuracy. But the model only emphasises

the group effect in the ”large p, small n” problem. Mostly this model can not

automatically select variables. As far as the L1-norm penalty is concerned, it

tends to select only one or few of the variables, especially for highly correlated

and relevant variables [Pelckmans et al., 2005]. If we replace the L2-norm with

the L1-norm, the unconstraint optimization problem can become the following

format:

min
(w,b)

‖w‖1 + C

n∑
i=1

[1− yi((w · xi) + b)]+ (7)
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Figure 2: L2-norm support vector machine. The white � denote the positive and black
� denotes the negative which are divided into two classes by SVM.

This is an L1-norm Support Vector Machine (L1-SVM) without any constraint

condition. With the help of L1-norm and the positive function, this model can

be used to perform automatic variable selection. Being similar to the L2-norm

penalty, the L1-norm penalty can also improve the prediction accuracy of classi-

fication and reduce the coefficients of irrelevant variables exactly. The parameter

C can balance the regularization term and the estimated item. But the L1-norm

function is non-differentiable and it can brings some trouble in the process of

performing data analysis [Wu and Zhang, 2011]. The next section will introduce

the algorithm with the help of some smooth functions.

3 IDRSVM

3.1 A smooth function

In recent years, some researchers proposed many kinds of smooth functions which

have the different characters. One of the polynomial smooth functions can be

expressed as the following equation [Deng et al., 2012]:

L(x, k) =

⎧⎪⎨
⎪⎩

x : x > 1
k

(kx+1)2

4k : − 1
k
≤ x ≤ 1

k

0 : x < − 1
k

(8)

This differentiable smooth function is smoother and more accurate than that

of the positive function x+ near the zero point. [Yuan et al., 2005] gave the

607Qin C., Xue Z., Feng Q., Hunag X.: Selecting Parameters ...



−0.2 −0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

sigmoid

x2

x+

Figure 3: The compare of the three loss functions at the inflection point which is
reflected around the zero point.

difference with the plus function in his paper. If a smooth function is defined

as the formula (8) and x+ is the positive function, for any given x and k, the

following lemma is true.

(1) L(x, k) ≥ x+

(2) L(x, k)2 − x2
+ ≤ 1

19k2

From the lemma, we can see the polynomial smooth function has higher

precision than that of the function x+ under the same k value. Even though

compared to the sigmoid function: L(x, k) = x + 1
k
log(1 + e−kx), k > 0, the

formula (8) has better accuracy at the elbow. The compare about the three loss

functions can be found around zero point in Figure 3.

From the lemma and Figure 3, we can know that the differentiable quadratic

polynomial smooth function can be taken place of the x+ in a certain extent

[Mustafa et al., 2011]. On the other hand, the positive function x+ is equivalent

to the function max{0, x} and it is a non-differentiable at the zero point. So we

can have the following equation.

max{0, x} = x+ ≈ L(x, k) (9)

Here k is a given number, when k = 10, and the error is about 0.0005. We can

gain the relations max{0, x} = x+ ≈ L(x, k) in a certain range. On the other

hand, we can have the following equations.

‖x‖ = 2max{0, x} − x ≈ 2L(x, k)− x (10)
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So we can use the quadratic polynomial smooth function to substitute the L1-

SVM approximately, which can bring some convenient conditions for the model,

when we solve the optimization problem. Of course, we must select the proper

k and not decrease the accuracy of the model (4).

3.2 IDRSVM

Basing on the advantages of the L1-SVM and the L2-SVM, we can gain the Dou-

bly Regularized Support Vector Machine (DRSVM) in the following expression.⎧⎪⎨
⎪⎩

min
(w,b)

C2

2 ‖w‖22 + C1‖w‖1 +
∑n

i=1 ξi

s. t. yi((w · xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, 3, ...n.

(11)

C2, C1 are the balance parameters. With the help of the quadratic polynomial

smooth function and the positive function, we get the approximate deformation

of formulation (12).

min
(w,b)

C2

2
‖w‖22 + 2C1L(w, k)− C1w +Σn

i L(yi(w · xi), b, k) (12)

Where L(x, k) is the quadratic polynomial smooth function and there are three

parameters in our model (the smooth factor k and the trade-off parameter

C1, C2). A researcher [Yuan et al., 2005] gave parameter k the upper bound in

the optimization problem.

kp2
(n, ε) ≤

√
0.0909n

2ε
(13)

Where n is the sample number and ε is the accuracy of the smooth function.

The formula (12) is an unconstrained optimization problem and it is the first

order continuous differentiable. The solutions of this model are difficult to find

from the dual optimization problem. An exact line search is used to solve the

formula (12) easily [Wardi et al., 2015].

The steepest descent algorithm for the improved DRSVM

(1)Set X0 = (w0, b0) and ε > 0, let k⇐0.

(2)Compute ∇f(Xk), if ∇f(Xk) < ε, stop, take Xk = (wk, bk), otherwise

go to(3)

(3)Compute pk = −∇f(Xk)

(4)Seek tk and make: f(Xk + tkpk) = min
t>0

f(Xk + tpk)let: X
k+1 = Xk +

tpk, k = k + 1,then go to(2)
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4 CPSO

4.1 Chaotic mapping and PSO

The Chaotic Optimization Algorithm (COA) [Wei, 2009] is a recently proposed

population-based stochastic optimization algorithm. With the help of some chaot-

ic maps, it can select the better points as the current optimum points. The

chaotic ergodicity, regularity, initial sensitivity and topological transitivity are

used during the process of optimization. COA is a stochastic search method

that differs from any of the existing swarm intelligence optimization method-

s [Assarzadeh and Naghsh-Nilchi, 2015]. Their several chaotic sequences can be

selected in the algorithm and the logistic maps are frequently used chaotic behav-

ior maps and chaotic sequences. In this paper, the logistic maps can be expressed

as the following equation [Eberhart and Kennedy, 1995].

Cr(t+1) = k × Cr(t) × (1− Cr(t)) (14)

Where control variable (k ∈ [0, 4]) is the parameter of the logistic mapping which

is in the chaotic state and generates chaotic sequences in (0,1). Generated se-

quences are not periodic and converge, but it must converge to one specific value

outside the given range. On the other hand, the standard real-binary Particle

Swarm Optimization (PSO) algorithm is a search algorithm based on simulat-

ing the social behavior of birds within a flock. This algorithm is proposed by

[Eberhart and Kennedy, 1995]. In this algorithm, the velocity V and the posi-

tion X of each particle will be changed according to the following expressions:

V t+1
id = wV t

id + c1r1(P
t
id −Xt

id) + c2r2(P
t
gd −Xt

id) (15)

Xt+1
id = Xt

id + V t+1
id (16)

Where w is the inertia weight to be employed to control the impact of the veloc-

ity of previous history. Vid is the ith particle velocity at iteration dth. Generally,

the value of the velocity in V can be clamped to the range [−Vmax, Vmax] for

controlling excessive roaming of the particle outside the search space. Xid is the

ith current particle position at iteration dth. r1, r2 are the random number be-

tween (0,1). c1, c2 are the learning or acceleration factors. In the PSO algorithm,

the maximal generations or the best position of the particle may be the stop-

ping criteria [Eberhart and Kennedy, 1995]. So the PSO algorithm has shown

its robustness and efficacy in solving complex optimization problems.

4.2 CPSO

Compared with many other metaheuristic algorithms, PSO algorithm has sev-

eral advantages (simple mathematical model and relative simple possibility of
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Figure 4: The flow of the Chaotic Particle Swarm Optimization

implementation) [Wei, 2009]. But each coin has two sides, there are some disad-

vantages in the PSO algorithm. It is prone to premature convergence (especially

when dealing with the complex multimodal search problems) and the ability of

local optimization is poor. One of the ways to overcome rapid convergence is em-

bedding the Chaotic Optimization Algorithm (COA). COA with the ergodicity,

randomicity and regularity is regarded as an optimizer to enhance optimization

performance of the PSO algorithm [Wei, 2009]. This algorithm keeps the legality

and diversity of solution in one population. Under the chaotic logistic map, the

variable traverses all the states in a certain range in order to obtain the opti-

mal solution. To enhance the global optimal solution of the refined search, COA

is introduced into the PSO algorithm (namely the CPSO algorithm). It easily

jumps out of the local minimum. In the CPSO algorithm, the chaotic scrambling

thoughts are respectively added into the initial position and optimum position of

particle, which enhances the quick searching ability of the PSO algorithm in the

initial stage. The chaotic idea can help the algorithm to jump out of the local

extreme values and achieve global optimum. The flow of the CPSO is described

as Figure 4.

5 CPSO+IDRSVM algorithm

5.1 Evaluation criterions

For their small sample, non–linear, local minimum and high dimension, the stan-

dard L2-SVM is a widely used tool for classification problems. L1-SVM is a vari-

ant of the standard L2-SVM, which constrains the L1-norm of the fitted coeffi-

cients. Two models have different emphasises in the process of data analysis. The
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L2-norm penalty of L2-SVM is to help groups of correlated variables to be select-

ed together. This model tends to make highly correlated input variables, which is

often called the grouping effect. Different from the L2-SVM, the L1-SVM has the

property of automatically selecting variables. But when there are several highly

correlated variables, the L1-SVM tends to pick only a few of them, and removes

the rest, furthermore, the number of selected variables of the L1-SVM is up-

per bounded by the size of the training data [Ghorbanzad’e and Hossein, 2012].

Based on the L1-SVM and the L2-SVM, a Doubly Regularized Support Vector

Machine (DRSVM) is proposed to fit the data analysis with high dimensions and

small samples. There are several parameters (regularization parameter C1, C2,

smooth coefficient k) in this model which have a great effect on the performance

in the practical application. So we will use the CPSO algorithm to select the pa-

rameters effectively. Classification accuracy is used to design a fitness function

which is defined as follows:

Fitnessi =
correct number of objects

number of objects
(17)

To fully characterize the classifier performance, a confusion matrix is considered

to assess the credibility of the classifier which can be shown in Table 1. The cap-

positive negative

positive TP FP

negative FN TN%

Table 1: A confusion matrix

ital letters T, F, P and N express true, false, positive and negative respectively.

It is very important for the imbalanced data classification, where even a total

error in predicting a rare class [Huang et al., 2013]. It would have only a small

impact on the total accuracy. The specificity and the sensitivity can be defined

as the following.

Specificity =
TN

TN + FP
(18)

Sensitivity =
TP

TP + FN
(19)

Accuracy =
TP + TN

TN + PN + FP + FN
(20)

Apart from the upper evaluation criteria, a kind of the Matthews’s correlation co-

efficient (MCC) [Mustafa et al., 2011] is also defined to characterize the classier
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performance with imbalanced class distribution.

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FN)(TN + FP )
(21)

Where TP and TN are the number of the true positive and true negative, re-

spectively. FP and FN are the number of the false positive and false negative.

Accuracy is used as a statistical measure of how well a binary classification test

correctly identifies or excludes a condition. It is the proportion of true results

(both true positives and true negatives) among the total number of cases exam-

ined. MCC can reflect both sensitivity and specificity of the prediction algorithm.

5.2 Algorithm

Under the help of the smooth function and the plus function, we gain the model

(12) which approximates to model (11) in a certain error range. The optimization

steps of the CPSO+IDRSVM method are described in the following table:

6 Experiments and discussions

6.1 Descriptions of datasets

In order to verify the effectiveness of our proposed method, five pattern recog-

nition problems with different feature dimensions are used to show the per-

formance of the classifier. These datasets are obtained from the UCI machine

learning repository [Asuncion and Newman, 2007]. A description of the datasets

are given here:

(1) Abalone dataset

Abalone dataset often is used to predict the age of abalone from physical

measurements. After some preprocessing (cutting the shell through the cone,

staining it, counting the number of rings through a microscope) the age of a-

balone can be found. This dataset contains 4177 instances and 8 attributes. The

negative number dividing the positive number (imbalance ratio) is 40.

(2) Yeast dataset

Yeast dataset is another dataset form the UCI machine learning repository,

which is used to predict the cellular localization sites of proteins. It contains

1484 instances and 9 features (8 predictive, 1 name ).

(3) Haberman dataset

Haberman’s survival data contains cases from a study that was conducted

between 1958 and 1970 at the University of Chicago’s Billings Hospital on the

survival of patients. All of them had undergone surgery for breast cancer. There

are 306 instances and 4 attributes.

(4) Wisconsin Diagnostic Breast Cancer (WDBC)
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The optimization steps of CPSO+IDRSVM method

Step1:Initialize parameters (population size N , maximum number of it-

eration Tmax, current iteration t=1, learning factor c1, c2, inertia weight

[wmin, wmax], velocity range [vmin, vmax], position range [xmin, xmax]).

Step 2: Select the fitness function (17) which is used to evaluate the

performance of the IDRSVM method and calculate the fitness value of

each particle.

Step 3: Initialize a vector Crdi (0)(d = 1, 2, 3, ..., D) and generate chaotic

queues Crdi (t) by the logistic map (14).

Step 4: Transform the chaotic queues into the range of parameter of

IDRSVM according to Xd
i (t) = Xd

min + (Xd
max −Xd

min)Crdi (t).

Step 5: Run the steepest descent algorithm about the IDRSVM model

and calculate the fitness function of accuracy.

Step 6: Obtain the individual best P d
ibest and global Gd

ibest and judge the

stopping criteria (a sufficiently good fitness value or maximum iteration).

Go to step 10.

Step 7: Update Vi and Xi of each particle. At the same time c1, c2, r1, r2

and w are obtained.

Step 8: Compare the fitness value of each particle with its individual best

P d
ibest and global Gd

ibest then update them as current position and velocity.

Step 9: Determine the end condition. If the end condition is met, the

searching process is ended and return to the result of the current best

individual. Otherwise, return to Step 5 to recalculate until the termination

condition is met or the number of iteration Tmax is achieved.

Step 10: The obtained optimal position is the values of parameters of the

IDRSVM model.

Step 11: Obtain the optimized CPSO+IDRSVM model.

Breast cancer is the one of the popular current cancer in UCI datasets. It is

the second largest cause of cancer deaths among women. The WDBC dataset

contains 569 instances and 32 features and has 30 inputs that are continuous

and classify a tumor as either benign or malignant.

(5) Wisconsin Breast Cancer Dataset (WBCD)

Wisconsin breast cancer dataset was created by Wolberg from the Universi-

ty of Wisconsin. It contains 699 instances and 9 features. In this dataset, 241

instances are malignant and 458 instances are benign.
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Dataset sample features positive negative imb.ratio

Abalone 4177 8 103 4074 40

Yeast 1484 8 51 1433 28

Haberman 306 3 81 225 2.5

WDBC 569 10 241 458 1.9

WBCD 699 32 212 357 1.7

Table 2: Details of the datasets: the biggest ratio is 40 and two smaller ratio are 1.9
and 1.7 respectively.

6.2 Data analysis

The evaluation criterion includes sensitivity, specificity, the overall classification

accuracy, Matthews correlation coefficient and running time. CPSO+IDRSVM

model will be performed on the five different imbalance ratio datasets. At the

same time, the experiment results will compare with the SVM and the DRSVM

which is reported in other journals.Our experiments are coded and executed on

the same computer in MATLAB 7.12. Table 3 and Table 4 present the results

corresponding to the five different imbalance ratio datasets (Abalone, Yeast,

Haberman, WDBC and WBCD), respectively. These datasets have the different

imbalance ratio from 40 to 1.7. In all the datasets, the performance metrics of the

10 runs are averaged and reported. Sensitivity, specificity, accuracy and MCC

are shown in two tables. These values demonstrate the ability of the proposed

classifier. By comparison with other mentioned classifiers, the results of the two

tables show that testing accuracy and MCC of the CPSO+IDRSVM classifier

are better than other classifiers in every three datasets.

Dataset Method SE SP MCC ACC Time(s)

Abanole SVM 5.23 97.54 15.45 85.61 4.47

DRSVM 7.43 89.63 19.98 79.66 8.13

CPSOIDRSVM 5.93 86.43 14.87 82.84 11.37

Yeast SVM 39.05 97.89 43.42 82.64 3.63

DRSVM 38.90 96.78 44.32 86.34 6.04

CPSOIDRSVM 40.31 95.82 42.78 81.21 12.67

Haberman SVM 20.08 90.13 56.45 85.27 2.13

DRSVM 21.15 89.69 58.12 82.04 5.36

CPSOIDRSVM 22.34 89.91 60.23 86.35 19.45

Table 3: The classification results for the bigger imbalance ratio datasets. The evalua-
tion criterions are the sensitivity (SE), specificity (SP), classification accuracy (ACC),
MCC and running time.
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Dataset Method Se Sp Mcc Acc Time(s)

Haberman SVM 20.08 90.13 56.45 85.27 2.13

DRSVM 21.15 89.69 58.12 82.04 5.36

CPSOIDRSVM 22.34 89.91 60.23 86.35 9.45

WDBC SVM 95.20 97.80 94.45 95.08 2.03

DRSVM 95.43 96.63 96.18 94.66 4.35

CPSOIDRSVM 95.93 94.43 96.64 95.25 10.56

WBCD SVM 97.70 99.40 91.42 93.64 2.43

DRSVM 91.90 96.78 94.32 97.34 5.89

CPSOIDRSVM 93.31 95.02 94.78 97.81 14.78

Table 4: The classification results for the smaller imbalance ratio data sets as the
second part and the assessment indicators and methods are same to Table 3

From results of the tables, the following points can be seen: the imbalance

ratio of datasets in Table 3 is bigger than that of in Table 4. For the three

datasets in Table 4, the experiment effect of the Haberman datasets is obvious

and the CPSO+IDRSVM classifier is the best classifier with 86.35 means testing

accuracy. The other two classifiers are 85.27 and 82.04, respectively. For the

Abalone and Yeast, those kinds of results cannot be seen from the table. But

the running time of Haberman is the longest. We think it is connected with

the imbalance ratios and the CPSO algorithm. This seems to be more obvious

from Table 2 which imbalance ratios are smaller than those of in Table 3. In

Table 4, the imbalance ratios of the three datasets are nearly to 2. The testing

accuracies of the CPSO+IDRSVM classifiers are better than the other two. In

the WDBC dataset, the testing accuracy of the CPSO+IDRSVM classifier is

95.25 and those of the other two algorithms are 95.08 and 94.66, repetitively.

In the WBCD dataset, the testing accuracies of the models, in turn, are 93.64,

97.34, 97.81. The CPSO+IDRSVM classifier gets better experimental results in

Table 4 than those of in Table 3. It shows that the small imbalance ratio datasets

is suitable for the CPSO+IDRSVM classifier. But the disadvantage of this model

maybe needs more time to run the working procedure.

7 Conclusion

Because of the different features of the different norms, the L1-SVM and the

L2-SVM have different advantages in the process of the high dimensional data

analysises. An IDRSVM has been proposed to deal with a different imbalance

ratio datasets. At the same time, the CPSO algorithm is introduced to select the

parameters which is brought by the improved model. Chaotic sequences over-

come the premature convergence and enhance the optimization performance of
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the PSO. Effectiveness and powerfulness of the CPSO as a global search meta-

heuristic algorithm, especially in high dimensional spaces, motivate us to design

a swarm intelligence based-classifier. Due to this, the CPSO+IDRSVM is used

to obtain the decision hyperplanes in the feature space. For the small imbalance

ratio datasets, the experiments results show that the performance of the CP-

SO+IDRSVM classifier is better than those of the SVM classifier and DRSVM

classifier. CPSO selecting the parameter of the IDRSVM is very effective for

the classification problems. We find the IDRSVM model can deal with the small

imbalance ratio datasets effectively. Our results also show that the proposed clas-

sifier works well for medical datasets recognition. In these cases, feature selection

helps to reduce the amount of unnecessary, irrelevant and redundant features in

datasets and improves the classification accuracy with less computational efforts.
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