
SOMSteg - Framework for Covert Channel, and its

Detection, within HTTP

Waldemar Graniszewski, Jacek Krupski, Krzysztof Szczypiorski

(Warsaw University of Technology

Warsaw, Poland

w.graniszewski@ee.pw.edu.pl, krupskij@ee.pw.edu.pl, ksz@tele.pw.edu.pl)

Abstract: Due to high efficiency and relatively ease of use, application-layer covert
channels, especially HyperText Transfer Protocol (HTTP), have been extensively stud-
ied in recent years. This paper extends a new steganographic method where the covert
channel is created within the HTTP protocol header, i.e., trailer field 1. HTTP is the
most popular protocol for browsing the Internet and gives the possibility of information
sharing. The popularity of HTTP traffic is one of the requirements for undetectable
message exchange. This paper presents SOMSteg - a framework for a covert channel,
and its detection as a countermeasure, within HTTP. The server’s and client’s parts
are implemented in the JavaScript language and based on the Node.js. Several machine
learning techniques can be used for anomaly detection. We tested the detection pos-
sibility of such hidden communication by Self Organizing Maps (SOMs). SOMs were
also used for tuning the parameters of the covert channel settings within the HTTP
trailer. The results of the performed studies are also presented.
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1 Introduction

During the First (official) International Workshop on Information Hiding, Kahn

revealed that people have being used steganography2 from the very beginning

[Kahn, 1996]. For over 60 years we have been using electronic media to trans-

fer our messages. As a result, the steganographic methods have also changed.

In the 1990’s, techniques for data hiding commonly use digital pictures as the

medium [Bender et al., 1996, Petitcolas et al., 1999]. Almost parallel to this, in-

formation camouflaging methods were introduced, which utilized vulnerabilities

and unused fields in protocols of ISO/OSI reference model, e.g., possibilities

of manipulating a jamming signal by CSMA/CD in the Ethernet or to apply

the two unused least significant bits in the type-of-service byte in the Network

Layer [Handel and Sandford, 1996].

1 This is the extended version of the paper “The covert channel over HTTP pro-
tocol”, presented during the IEEE–SPIE conference: Photonics Applications in
Astronomy, Communications, Industry, and High–Energy Physics Experiments
2016 [Graniszewski et al., 2016]

2 ”Steganography - The practice of concealing messages or information within other
non–secret text or data”[Steganography, 2016]
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Some methods protect communication just by encryption, as presented in

Figure 1. However, the usual processes of encrypting a message with a special key

have attracted the attention, not only of the casual observer but, in particular,

the attention of potential intruders, who want to break the cipher.

Figure 1: Communication protected by encryption

Figure 2: Steganographic communication

Furthermore, sufficient encryption is not always available or allowed, e.g., the

USA treated cryptography like a munition and regulated the export of cryptogra-

phy [United States Department of State, 1996, Schwartzbeck, 1997]. Moreover,

in some countries, the usage of cryptographically strong methods, like VPN,

has been constricted or VPN software was removed from repositories, like the

App Store for China [ExpressVPN, 2017]. In other states, like in Russia, some

legislation amendments have been passed that are linked to backdoors in com-

munication applications [Szoldra, 2016, Baxter, 2017]. Other countries, like the
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UK [Wakefield, 2015, Haynes, 2017], tried to gain access to encrypted commu-

nications and work on prohibition of strong encryption or/and implementation

of backdoors in software.

For every action there is always a reaction. Citizens who want to protect

their privacy and may not use strong cryptography, have always been looking

for other allowed methods to avoid censorship. Therefore, it is reasonable just

to hide the message in regular data exchanges with steganographic methods, to

overcome restrictions on cryptography – as shown in Figure 2. The problem with

such a method is known as the prisoner’s problem [Simmons, 1984].

On the other hand, terrorists can use steganography for sending secret in-

structions to their groups [Conway, 2003]. Moreover, intelligence can be sent

using covert channels by spies to their state agencies, as proved by the FBI agent

Kachhia-Patel in a complaint against Russian spies in 2010 [Kachhia-Patel, 2010].

In addition, steganography can be used to steal information from computer

systems. This issue was addressed by Lampson and named as data leakage in

1973 [Lampson, 1973]. Later, in 1985, the Department of Defense described and

formulated this problem in Trusted Computer System Evaluation Criteria, also

known as the Orange Book [United States Department of Defense, 1985].

Structure of the paper. We have divided our paper into six parts. The rest

of this paper is organized as follows: Section 2 provides a description of cover

channels within HTTP. In 2.1 we describe HTTP and its way of cooperation with

other protocols, within the TCP/IP protocol stack model. In 2.2 we present an

overview of related steganographic techniques, which also uses HTTP as a covert

channel. A description 3 of the architecture and implementation of the proposed

system is presented in section 3. Next, Section 4 describes the steganalysis meth-

ods for annomalies detection in network traffic. We use a Self Organizing Map

for testing usual HTTP requests and responses with HTTP traffic created by

our system. Section 5 shows the test results for anomalies detection using the

implemented SOMs. We provide conclusions and possible future work in Sec-

tion 6.

2 Covert channels within HTTP

2.1 HTTP - introduction

HyperText Transfer Protocol (HTTP) is the most popular Application layer

protocol (see Figure 3) for browsing the Internet and gives the possibility of

sharing information. This protocol is stateless, i.e., it does not save information

about previous transactions with a client. This feature is an advantage: HTTP

requests do not have any history records so they are smaller and they do not

3 We used the structure to describe hidden methods proposed
by [Wendzel et al., 2016].
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overload a server. To save any important information, for instance session data,

one can use cookies or data in the URL address [Barth, 2011].

HTTP works in the client–server model and functions as a request–response

protocol. When the client connects to the server, its browser sends a HTTP

request to see or to get selected data. The server replies with a HTTP response.

This also includes information about accepted encodings and the type of content.

Sometimes in the response header, one can also find a date of last modification

or the Accept–Charset [Fielding et al., 1999].

Before sending, the application’s data are segmented into pieces and encap-

sulated by lower layer protocols, as shown in Figure 3. On the right hand side

of the picture there are the layers of the TCP/IP network model. During the

encapsulation, protocols headers are added to the pieces of data.

Figure 3: Data encapsulation in TCP/IP network model

As an example, a HTTP message from the application layer is wrapped by

a TCP header in the transport layer. This layer is responsible for the transport

reliability. Then a TCP segment is wrapped into an IP datagram in the Internet

layer. Later an addressed IP datagram is wrapped in the network access layer and

creates an Ethernet frame. This layer is responsible for communication between

computer network devices. The Network Access layer sends each data frame to

the medium [Braden, 1989].

Figure 3 presents how HTTP co–operates with other protocols, especially

with TCP and IP. While traveling across a computer network each packet can

go through different intermediary network devices, and each of them checks the

packet’s address. Routers, which work in the Internet layer, check the IP address

of the datagram and forward it to the appropriate interface.

When the encapsulated information reaches the destination, starting from

the network access layer and finishing at the application layer, the decapsula-

tion process begins. In the end, the HTTP message arrives at the destination’s

computer application, for example, a browser.

867Graniszewski W., Krupski J., Szczypiorski K.: SOMSteg ...



2.2 Related steganographic techniques using HTTP protocol

As mentioned in Subsection 2.1, HTTP is one of the most popular protocols for

information exchange. For this reason it seems to be a good choice as a potential

steganographic medium 4.

In several countries, free use of Web content is prohibited. Therefore, early

published works use these techniques to avoid censorship in the Internet. Feam-

ster et al. [Feamster et al., 2002] used image steganography to send hidden data.

Dyatlov and Castro [Dyatlov and Castro, 2003] hid data inside HTTP re-

quests and responses. They took into consideration various design aspects of

HTTP client–server covert channel communication:

– type of server model which can be implemented,

– how to design a tool to add confusion from a traffic watcher point of view,

– types of functionality that can be applied to the covert channel.

Among the types of the server model they studied:

– httpd–like server model,

– Proxy–like server model,

– CGI–like server model.

Van Horenbeeck [Horenbeeck, 2006] discussed HTTP Entity Tag tunneling.

He developed this technique during a penetration test of a more sensitive net-

work. Though only HTTP was available to transfer data out, he checked a num-

ber of connections through the proxy using different headers, which are valid in

RFC for HTTP, e.g., general-header (section 4.5 of RFC 2616), request-header

(section 5.3 of RFC 2616), response-header (section 6.2 of RFC 2616), and entity-

header (section 7.1 of RFC 2616) [Fielding et al., 1999]. He tested the possibility

of leaking an Excel spreadsheet that contained a set of sensitive numbers.

Schear et al. proposed Glavlit [Schear et al., 2006]. They developed and eval-

uated a system for preventing exfiltration of data over HTTP protocol responses.

They performed on–the–fly parsing of the protocol, and verified the content of

the structured fields. In some cases, RFC loosely defines the header syntax and

does not explicitly require presence / lack or a certain order of the response

header. This can lead to undetectable usage of HTTP steganography. The de-

veloped system can restrict the usage of HTTP communication in cases of data

leakage, where necessary.

4 Good systematic reviews of all steganography and steganalysis techniques can
be found in [Zander et al., 2007, Lubacz et al., 2014, Mileva and Panajotov, 2014,
Mazurczyk et al., 2016].
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Blasco et al. presented a framework for avoiding steganography usage over

HTTP [Blasco et al., 2012]. In their paper, they analyzed the steganographic

possibilities of this protocol and then developed StegoProxy as a tool for pre-

venting steganography. They proposed an active warden model to eliminate any

covert communication channel.

Wang et al. [Wang et al., 2017] presented the possibility to exploit content

delivery networks (CDN) for covert channel communication. Among other as-

pects they also explored the possibility of applying HTTP-based covert channel

attacks under the CDN environment. They constructed a proof-of-concept covert

channel on Amazon CloudFront.

Schen et al. [Shen et al., 2018] discussed behavior-based covert channels in

HTTP. They decided to deal with application-layer protocols because of the

relatively rigorous formats of lower-layer protocols (e.g., TCP, UDP, IP). They

first proposed a basic behavior-based covert channel, Lost in HTTP Behaviors

(LiHB). Due to some limitations of LiHB they presented an enhanced secure

HTTP Behavior-based Covert Channel (HBCC) that takes the advantage of the

request-flow distributions. They exploited the natural behavior of browsers to

design covert channels in which the distribution relationships between HTTP

requests and flows are dynamic.

3 Proposed covert channel system

3.1 Architecture of covert channel system

The application that was developed is an example of a covert channel program.

It is a client–server system that uses HTTP headers as the data carrier. To

communicate, actors should have two parts of the program: a server that only

sends data and a client’s part that only receives messages.

Figure 4: Two way communication used in application
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The communication could be held one way (one sender and receiver) or two

ways where each of the users has two parts of the application. In the first case,

the server, only sends data and the client’s part, only receives messages. In the

second case there are two different servers sending data so there are two different

communication channels, as shown in Figure 4. Such a solution gives the possi-

bility to use two ports, which seems more secure than one port communication.

In general, there could be more than one receiver that is waiting for information

from the sender. There are not any intermediaries in the communication, so the

covert channel is a direct one [Wendzel et al., 2016].

According to Figure 6, which presents the UML use–case diagram, there are

two actors: a receiver and a sender [Booch et al., 1999]. The receiver starts the

communication. If the receiver node is not started, the sender is not currently

listening to the receiver’s socket – the communication would not be initiated.

This is based on a HTTP request and response idea. The server sends HTTP

responses only when it gets HTTP requests from the receiver’s side. Sending

messages includes editing HTTP headers.

The sender is working on the server’s side of the application that builds

HTTP headers and saves a secret message in the protocol’s field named trailer.

It is an optional field. Trailer is used for connections based on series of chunks.

In Figure 5 the communication is chunked as the Transfer-Encoding field value

indicates, so a trailer occurs. Its presence gives the opportunity to transmit ad-

ditional fields with metadata [Fielding and Reschke, 2014], for instance message

integrity check.

In [Wendzel et al., 2016] one can find a description of the crucial attributes

of the steganographic algorithm, which should help the reader to understand

those techniques. It is worth mentioning the hidden pattern, as it standard-

izes hiding methods. The technique we utilize in the application, according

to [Wendzel et al., 2015], is an example of an Add Redundancy Pattern. This

pattern’s full path of the hierarchy is as in the following:

Network Covert Channels

’−−Covert Storage Channels

’−−Modi f i ca t i on o f Non−Payload

’−−Struc ture Modifying

’−−Add Redundancy

Covert Channel camouflages data in the HTTP header field so it is a Covert

Storage Channel. During the communication the payload is not modified, as the

data carrier is in the trailer field (Modification of Non-Payload). In the process

of tucking secret data an optional field is added to the header, so the structure is

not conserved (Structure Modifying). As the trailer field is not used by default,

we utilize an Add Redundancy Pattern.

The sender’s part of the application can run in five different modes. The first
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Figure 5: Caught HTTP response with covert steganographic communication

made by program

Figure 6: Use case diagram of application
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one opens the program and sends the number of messages that was set. The

next possibility is to send a given text in a random number of messages to the

receiver. The third option is to change the port number on which the server is

working 5. The fourth mode is to read the text from a given file, and the last

– default possibility, sends one HTTP message to the receiver. The receiver can

reply via the second instance of the server using the same application but opened

parallel. In this case, two-channel communication is utilized (see Figure 4).

Figure 7: Sequence diagram of application

Figure 7 presents the order of sequences during the communication. First,

the server starts working and the sender sets the number of messages that will

be transferred to the receiver. Then the server starts listening and it enables the

sending of the data. In the last message there is a special flag that closes the

receiver’s application. While working the receiver can restart the application,

and then the remaining messages will be delivered, but the previous information

will be lost.

Before communication starts the client and the sender should exchange the

staganographic key. The key contains the sender’s IP address, port number and

data carrier. The last is built in the program. One may use the following port

numbers: 80, 8008, 8080. The secrets that are encapsulated in the key have to

5 A few ports could be used for HTTP, e.g., 80 (so called well known port number) or
alternative ports, like 8008, 8080.
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be sent via a different secured channel.

Another possibility is not to use the receiver’s part of the application, but

instead take advantage of a protocol sniffer. This program analyses the network

traffic. Sniffers capture each packet and give a possibility of reading it. One can

capture all packets and look for HTTP responses and through them find the

secret message. The information about the exact time of communication makes

it possible to find the HTTP response edited by the application.

3.2 Implementation

The steganographic application takes advantage of Node.js – an open–source,

cross–platform JavaScript runtime environment. The framework was published

in late 2009 in Berlin [Surhone et al., 2010] by Ryan Dah – a member of the

Joyent group and is currently developed by the Node.js foundation. This runtime

environment enables the JavaScript language to make the whole server side code

independently. In this the application the HTTP servers have been used.

Listing 1: The steganographic application default mode pseudocode

1 s e r v e r = new http . Server ( )
2
3 s e r v e r ( func t i on ( request , r e sponse ) {
4
5 add s e r v e r L i s t en e r {
6 func t i on ( data ) {
7 data <− t ex t g iven by the user in standard input
8 text to send <− data , f l a g
9 response : wr i t e HTTP Head(

10 in a f i e l d s e r v e r ’ s answer wr i t e ”200”
11 in a f i e l d t r a i l e r wr i t e ” text to send ”)
12
13 p r i n t (”Message sent ”)
14 response : wr i t e ” Just v i s i b l e data” in a f i e l d

r e s e rved f o r GET data
15 }
16 }
17 }) Server l i s t e n s to the s e t port

The pseudocode in Listing 1 shows the default mode of the steganographic

application, which will run when opened without any other parameters. In the

first line the object server is created as an instance of the class HTTP server.

Then in line 3 there is a function that sends the response only when given the

request. The function in line 6 reads the input data from the user and assigns it

to the variable texttosend. At the end of the texttosent variable there is a Flag.

It is only in the last message that there is an order to stop the communication.

Then in line 9 the HTTP header is created. In the field server’s answer code

200 is written, in the trailer field, the variable texttosend. Then one is informed

about the sent data. In line 14 the server adds to the response an additional text
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for a field supposed to transfer the text. Line 17 of the listing informs us that

the server listens to the selected port.

To capture traffic between the server and the client the Wireshark sniffer was

used [Lamping et al., 2014]. Figure 5 shows a caught HTTP message, with a

secret communication made by the application. One can learn that the packet

gives a HTTP response with server code 200. Then there is information that the

HTTP version is 1.1. After that there is some data about the HTTP request,

for which this HTTP message is an answer. Below that, there is a trailer field

in which one can find the clandestine message.

Listing 2: Application open file mode pseudocode

1 f i l ename <− name o f the a f i l e g iven by the user in standard
input

2 Read f i l e ” f i l ename ”{
3 func t i on ( e r ror , data ) {
4 i f ( e r r o r ) throw e r r o r
5 t ex t <− data
6 p r i n t ” In the f i l e the re i s a t ex t : ”
7 p r i n t t ex t
8 l ength <−t ex t . l ength
9

10 whi l e ( i < l ength ) {
11 . . .
12 }
13
14 s e r v e r = new http . Server ( )
15
16 s e r v e r ( func t i on ( request , r e sponse ) {
17 . . .
18 }) Server l i s t e n s to the s e t port
19
20 }
21 }

Listing 2 is the application’s open file mode. In the beginning the file name is

taken from the user. Then the reading file function checks whether there are any

errors. In line 5 the data typed by the user is assigned to the text variable. Then

the console shows the loaded text. In the while loop the text is cut into smaller

pieces. In line 14 of the listing a new instance of a class HTTP server is created.

This is the algorithm for creating an application server similar to that shown in

Listing 1.

In Listing 3, at the beginning of the receiver’s side of the application, the

basic HTTP request options are set. The most important setting is the GET

method in which data would be sent. Then the data is processed. Next in line 12

the secret message is read. Then the existence of the flag is checked. If there is

a flag, this means that the last part of the message is processed. After printing

the text, the process is closed. In lines 22 and 23 there is a condition that shows

errors only if they occur.

874 Graniszewski W., Krupski J., Szczypiorski K.: SOMSteg ...



Listing 3: Receiver’s side of steganographic application pseudocode

1 c r ea t e http reque s t {
2 host <− ” 192 . 168 . 5 0 . 5 0 ”
3 port <− ”2015”
4 u r l <− ”/”
5 method <− ” get ”}
6
7 func t i on ( re sponse ) {
8
9 response : read text from GET data f i e l d

10
11 response ( func t i on ( ) {
12 data <− t ex t from t r a i l e r f i e l d
13 end <− l a s t 4 cha ra c t e r s o f the data
14 i f ( end == ” f l a g ” ) {
15 data <− data without l a s t 4 cha ra c t e r s
16 p r i n t data
17 e x i t
18 }
19 p r i n t data
20 })
21
22 response ( func t i on ( e r r o r ) {
23 p r i n t e r r o r
24 })
25
26 }

In Figure 8 one can notice communication from the perspective of the Wire-

shark packet catcher. In this example the application sends only one message.

There are nine datagrams that contain seven TCP and two HTTP protocols.

Figure 8: Packets caught during one–message communication made by applica-

tion
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Node.js servers use, like all other web applications, the TCP protocol as

the Transport Layer Protocol. The Node.js HTTP server is inherited from the

Node.js TCP server. This state of affairs is not a coincidence. When users send

data via the Internet, they want to be sure that the data will be delivered. The

TCP protocol gives users this assurance. Three TCP segments are sent from the

sender to the receiver, and they establish the connection. To have reliable com-

munication there is a three–way handshake. After that the fourth segment is the

HTTP request with the information. Then the sender transmits the TCP seg-

ment and a secret message hidden in the HTTP header. The last TCP segment

informs the server and then the client about the end of the communication. An

interesting fact is that the TCP segments have approximately 50 bytes, whereas

HTTP messages are two to four times bigger. In this simulation the secret data

was very short: four characters plus a flag.

4 Steganalysis tool for covert channel detection

The most practical method is to check whether there are any patterns or anoma-

lies in the sizes of the protocol’s messages. Since their introduction, machine

learning techniques (formerly known as Artificial Intelligence - AI), have been

successfully implemented. Among them we can distinguish [Mohd et al., 2016]:

– unsupervised learning, e.g., Support Vector Machine,

– supervised learning, e.g., Self Organizing Maps (SOM).

4.1 SOMs for anomaly detection

In our tests for anomaly detection we selected Self Organizing Maps (SOMs),

which were developed by Kohonen [Kohonen, 1982]. They can be used also for

classification of the given objects. Kohonen Network is a special example of

neural networks that during learning do not need any kind of supervision and

have been successfully implemented in many network anomaly detection sys-

tem [Rhodes et al., 2000, Feyereisl and Aickelin, 2009].

4.2 Learning and testing of SOM

The basic part of SOM is a neuron. All neurons create a grid. The topology of the

map is established by a neighborhood relation of the neurons. After all iterations,

the grid gains its structure, i.e., contiguous neurons do not significantly stand

out as their weight vectors are similar [Vesanto et al., 2000].
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The network operation consists of two phases: learning and testing. The tests

use the Matlab program and SOM Toolbox for Matlab 5 made by Juha Vesanto,

Johan Himberg, Esa Alhoniemi and Juha Parhankangas [Vesanto et al., 2000].

In the learning phase, Kohonen Networks use clustering algorithms such as

k–means. In each iteration, the random vector of the input data is selected

and the distances between it and the SOM weight vectors are calculated. After

finding the most similar neuron’s weight vector to the input data (called Best

Matching Unit – BMU), the locations of all weight vectors are updated. They

are moved towards the input vector. The map created by the tool presents a

unified distance matrix, which consists of the distances between SOM units.

After each iteration, weight of the BMU is updated accordingly:

Wv(s+ 1) = Wv(s) +ΔWv(s+ 1) (1)

ΔWv(s+ 1) is the change in the unit’s weight, given by formula (2):

ΔWv = θ(u, v, s)α(s)(D(t)−Wv(s)), (2)

where:

– s - the current iteration,

– λ - the iteration limit,

– t - the index of the target input data vector in the input data set D,

– D(t) - a target input data vector,

– v - the index of the node in the map,

– Wv - the current weight vector of node v,

– u - the index of the best matching unit (BMU) in the map,

– θ(u, v, s) - a restraint due to distance from BMU, usually called the neigh-

borhood function,

– α(s) - a learning restraint due to iteration progress.

A graphical representation of the matrix reveals the cluster build of SOM. In

Figure 9 one can notice an orange dot that represents the location of an input

data vector and a set of neurons with highlighted green BMU. The picture shows

one iteration, when the whole set is being updated. A considerable advantage

of these maps is to search for any kind of structure or pattern that an analyst

could not identify.
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Figure 9: One iteration in SOM learning phase

5 Test results of SOM usage for anomaly detection

The results of these tests are devoted to finding any anomalies in the network

traffic made by the application presented in Section 3. The simplest way to find

something different in a big stream of data is to compare each stream’s object.

5.1 Test data set

In the application, the communication is based on one type of Application Layer

protocol – HTTP. It is important that the packets with edited headers, i.e., with

secret data, do not stand out when compared with typical HTTP traffic. In the

tests there will be 10 samples with 1000 HTTP protocols each. Samples come

from:

1. browsing the Acer company webpage (A),

2. browsing the Cisco company webpage (C),

3. browsing the Dell company webpage (D),

4. browsing the Faculty of Electrical Engineering at Warsaw University of Tech-

nology webpage (E),

5. browsing the HP company webpage (H),

6. browsing the Intel company webpage (I),

7. browsing the Logitech company webpage (L),

8. browsing the Node.js framework webpage (N),

9. browsing the Oracle company webpage (O),

10. using our steganographic application with different settings(S).
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5.2 Substring preparation

To check the usefulness of the application in tests, a long message will be sent.

When one wants to send just a few short messages, this will not be as abnormal

as sending a much bigger piece of text. In tests the server will send a 1000–

character text from a file.

Listing 4 shows the algorithm that cuts a given text into random parts. In

the while loop random variables are made, and they are drawn between variables

named minimum and maximum. For every substring a new variable is drawn,

which cuts out the next group of characters from the text. As long as i is smaller

than the length, a new random variable is created. For security reasons, the if

statement in line 7 checks whether the length of a substring is bigger than

the whole text. Then in the message array substrings are saved. The counter i

becomes the pointer to the last letter of the text saved in the message array.

Listing 4: Pseudocode of algorithm that cuts text from file into substrings

1 j<−0;
2 i<−0;
3
4 whi l e ( i < l ength ) {
5 random <− a random number between minimum and maximum
6
7 i f ( i+random > l ength )
8 random <− l enght − i ;
9

10 message [ j ]<− sub s t r i ng o f t ex t between i and random
11 j<− j +1;
12 i<− i+ random ;
13 }

5.3 Anomalies pattern detection in HTTP traffic

The tests will check the impact of the variables minimum and maximum for the

detection of any patterns in HTTP messages made by the program. For every test

a text consisting of 1000 characters was loaded to the steganographic application,

and then the text was sent in parts of random length. During communication

the packet sniffer was opened, and it recorded every packet. The presence of the

HTTP protocol in each IP datagram was checked. Thereafter, for the analysis,

1000 HTTP protocols were taken. Then these packets’ lengths were put into

the matrix with nine other samples of 1000 HTTP protocols each, making the

matrix 10x1001, where there were labels in the last column.

5.3.1 Sizes of HTTP messages in test

Table 1 contains the minimum and maximum values for each of the six tests. The

first column, named Message length, shows the range of drawing a random length

879Graniszewski W., Krupski J., Szczypiorski K.: SOMSteg ...



of the substring of the given 1000 character text. The next column presents the

same numbers but as a percentages of the 1000 character text that is being sent.

The third column shows the range of the ballast in every HTTP request. This

kind of extra data was introduced due to the conclusions from the test presented

in Subsection 5.3.2.

Table 1: Sizes of HTTP messages in tests

Message length % of text HTTP request ballast

1 10 to 200 1% to 20% —

2 10 to 200 1% to 20% 10 to 20

3 10 to 200 1% to 20% 10 to 100

4 10 to 400 1% to 40% 10 to 200

5 100 to 500 10% to 50% 100 to 500

6 50 to 300 5% to 30% 50 to 300

Tests 1, 2 and 3 have the same range of substrings when sending HTTP

responses. The difference between them is that in the first case extra data are

not added to the receiver’s side. In test number 2, one adds from 10 to 20 ballast

signs to the HTTP request. The number of characters 10 and 20 stand for 1% and

2% of the 1000 characters text that is being sent through the HTTP response.

In tests 1 to 4 the range of random substrings of the text is huge. It means

that a message (1000 characters in length) will be cut into only a few pieces.

This special concept’s aim is to result in disorder in the HTTP message sizes.

Only test number 5 has a very big minimum variable for both sides.

From test 2 until the last one, random data will also be added to the HTTP

request. On the receiver’s side, the random variables in the range are also wide.

This method has to hide the trend of identical HTTP messages made by the re-

ceiver’s side of the program. Half of all HTTP messages made by the application

are HTTP requests made by the client.
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5.3.2 Test for random variables in range 1%–20% without additional

characters

Figure 10 shows the result of the test. One can notice that each label stands

for the 1000 sample set. Two labels are not visible. This means that for the

SOM only eight samples are unique. Matlab shows only one label if the others

are similar to it. That means that samples O and N are hidden. After removing

visible labels, N and O show up. N is very similar to the A label, because it was

in the same cell as A before and O in its turn is similar to the I label.

Figure 10: Test 1: Result of SOM for random variables in range 1%–20% without

additional characters

The colored scale on the right side of the map stands for all possible sub-

species in the data set. This test showed that steganographic packets are in a red

subspecies only. All other HTTP messages are in blue subspecies. In addition,

the S label is very far away in the diagram from the other labels, the majority

of which are in the center of the SOM. This result means that steganographic

messages do stand out from the rest of the samples.

The main reason for the fact that in test 1 steganographic packets were not

like the other messages is the structure of the program. The covert channel
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operates on the HTTP request and response mechanism. In test 1 all HTTP

responses from the server were differentiated. On the other hand, all HTTP

requests from the client were equal to 99 bytes. To change this trend there

should be added random strings to the HTTP request on the client’s side.

5.3.3 Test for random variables in range 1%–20% with additional 10

to 20 characters

Figure 11 shows the results of the second test. One can notice that the S label

is still in a different color subspecies. There is a slight difference between the

results from the first test, and the S sample is located in a slightly lighter color.

This means that steganographic HTTP messages do assimilate to the rest of

the HTTP messages. The idea of adding random data to the HTTP request

improved the program’s detection by other applications.

Figure 11: Test 2: Result of SOM for random variables in range 1%–20% with

additional 10 to 20 characters

The graphic arrangement of the labels is also unquestionably crucial. Labels

S, D, E and L are located at the corners of the map. The A and C labels are very

close to the right in the center. There is not just one agglomeration of labels.

882 Graniszewski W., Krupski J., Szczypiorski K.: SOMSteg ...



This tendency means that every sample of packets is a little different and the S

label does not stand out in this comparison. As in the first test, label N is very

similar to label A and O to I. That is why N and O are hidden.

5.3.4 Test for random variables in range 1%–20% with additional 10

to 100 characters

Figure 12 presents the results of the next test. The label symbolizing the packets

of the steganographic application lies on an orange cell, like the D and H labels.

This is a satisfactory result. S is still different from the majority of the samples

but it is more similar to them than in the previous test. The interesting thing is

that the label L is now an outlier. In addition, the I label lies in a more intensive

colored cell than the steganographic samples. The SOM of the result of the test

3 has no labels in blue colors, which means the S label is much more similar to

the whole group when compared to the previous tests. Only two labels, A and

C, are light green.

Figure 12: Test 3: Result of SOM for random variables in range 1%–20% with

additional 10 to 100 characters

The SOM in Figure 12 is similar to the previous (Figure 11). There is neither
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an agglomeration nor small groups of samples. In this test label E is hidden, and

after disabling all other labels, the E character shows up in the same place as

the S label. This is a promising development in the HTTP message comparison

tests. However, in this test the N label is still hidden under A and O in the same

place as I.

5.3.5 Test for random variables in range 1%–40% with additional 10

to 200 characters

Figure 13 shows the SOM that is the result of the next test. There are no con-

siderable differences between this result and the SOM from Figure 11. In this

test the only difference from the previous one is the maximum range of random

drawings for the sizes of the HTTP request and HTTP response. It seems that

the changes in these variables do not affect the Kohonen’s Map. This idea just

rescaled the map. In the previous SOM, the S label was at the top while now it

is at the map’s bottom.

Figure 13: Test 4: Result of SOM for random variables in range 1%–40% with

additional 10 to 200 characters

One can notice that still labels N and O are hidden under the same labels as
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before. The E label is under S. All labels are still separately located.

5.3.6 Test for random variables in range 10%–50% with additional

100 to 500 characters

Figure 14 shows the results of the next test. There is a rapid change in the colors

of the subspecies. S is now in the sea–green color. The analysis shows that it is

generally a very close subspecies to A and the hidden N and E. This test shows

that the bigger range in the random variables for the client’s HTTP request

really camouflages the steganographic communication. In this SOM the HTTP

messages from the L sample differ considerably from the rest.

Figure 14: Test 5: Result of SOM for random variables in range 10%–50% with

additional 100 to 500 characters

The labels in the SOM presented in Figure 14 are scattered. This tendency

means that the samples differ from each other. This can be caused by the different

servers they use or by the variety of data that each website has. The result

presented in Figure 14 is satisfactory, because if normal website HTTP messages

are not identical then the S label should also be a little different from the others.
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5.3.7 Test for random variables in range 5%–30% with additional 50

to 300 characters

Figure 15 shows the results of the final test. In this test the range of random

variables is wide but not as big as in the previous example. This moderation

in choosing the range of the borders resulted in the best outcome. S is in the

subspecies where the majority of labels are. Only one label, N, really differs

from the others. At this point one can say that the steganographic messages are

hidden well.

Figure 15: Test 6: Result of SOM for random variables in range 5%–30% with

additional 50 to 300 characters

Like in the previous test, all the labels are scattered around the map. The E

label is still very similar to the S label and also the O label is under I.

These tests show that when sending a longer text, approximately 1000 +/-

500 characters, one has to cut it into substrings of at least 5% to 30% of the

text length. It is also important to add random data to the HTTP requests in

the same random range as the server does.
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5.4 Results analysis

It is also very important to hide the patterns in the message sizes as well as to

check the average size of a packet. From the previous tests it follows that the

average HTTP packets sizes were:

– while browsing the Acer company webpage (A): 684 bytes,

– while browsing the Cisco company webpage (C): 700 bytes,

– while browsing the Dell company webpage (D): 717 bytes,

– while browsing the Faculty of Electrical Engineering at Warsaw University

of Technology webpage (E): 531 bytes,

– while browsing the HP company webpage (H): 712 bytes,

– while browsing the Intel company webpage (I): 687 bytes,

– while browsing the Logitech company webpage (L): 852 bytes,

– while browsing the Node.js framework webpage (N): 648 bytes,

– while browsing the Oracle company webpage (O): 715 bytes.

The range is from 531 bytes to 852 bytes. While, the average message sizes from

the steganographic communication were:

– from the first test: 199 bytes,

– from the second test: 425 bytes,

– from the third test: 462 bytes,

– from the fourth test: 597 bytes,

– from the fifth test: 931 bytes,

– from the sixth test: 678 bytes.

In the aspect of average message size outcomes from tests 4 and 6 are lo-

cated in the range of normal network traffic. In the test where SOM classified

the samples, the best result was in the sixth test. The average HTTP length

result firmly confirmed this. It means that the range 5% to 30% for random sub-

strings and ballast in the HTTP requests is the best to hide the covert channel

communication.

The results obtained are convincing evidence that SOMs are a very supportive

steganalysis tool. The SOMs exposed the patterns in the sizes of the protocol

headers in the initial version of the proposed program. They could identify any
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outstanding sequence in a set of data, furthermore they do not need supervised

learning. A significant merit of visualizing these neural networks is the intuitive

map, which could be examined by a non-expert.

Usually if a computer is connected to the Internet, it is open to exchange

data. The SOM test revealed the order in sizes of the HTTP request. This order

could be detected by special steganoanalysis programs. The idea of cutting a

longer text into substrings worked. On the other hand, sending short texts or

just a few messages does not require special camouflage.

6 Conclusion

In this paper we extended the staganographic method [Graniszewski et al., 2016]

by adding a part dedicated to steganalysis of the generated traffic. For anomalies

detection we used SOMs, and, therefore, we named the framework SOMSteg. The

steganographic part uses the HTTP header field for hiding the data transfer. The

proposed Covert Channel utilizes the idea of hiding data in the Trailer field. This

method is classified as steganographic Add Redundancy Pattern. We developed

a special test environment written in the JavaScript language. The developed

program is a two channel steganographic communicator. It works based on the

HTTP Node.js server. This server has many helpful features. In each turn of

the communication not only the HTTP but also the TCP packets are sent. This

technique tones down the accumulation of the HTTP messages, which are the

data carriers.

A series of steganoanalysis tests were performed to determine the program’s

communication noticeability by third parties. Profund analysis of the HTTP

messages by SOM led to a hardening of the camouflagic algorithm.

The conducted tests showed that without any changes the HTTP messages

may be relatively easy to recognize as outliers. By manipulating the sizes of the

strings in the HTTP header field one can hide the steganography technique,

which will be not so easily detected by anomalies detection, like the SOM.

According to [Wendzel et al., 2015] Add Redundancy Pattern has a few coun-

termeasures. Traffic normalizers can restore the protocol’s headers to the default

values. More complex traffic normalizers focus on batches of protocols, so long

text sent by our program in a few HTTP messages could be detected. Machine

learning and statistical approaches could relatively easily discover the covered

channel based on the Add Redundancy Pattern; nevertheless, we applied SOM

to harden the developed application.

6.1 Future work

Intrusion Detection Systems (IDS) are utilized to secure network devices, and

some of them are enriched with Deep Packet Inspections (DPI). DPI investigates
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application traffic, i.e., protocols that are being sent, e.g., Application Control

Engine (ACE) [Cisco, 2007]. Examining their impact on our program could be

a compelling approach for the future work.

Another interesting topic would be to extend our system and test it with

HTTP/2. Dmitrova and Mileva [Dimitrova and Mileva, 2017] have already stud-

ied some possibilities of covert channels in this protocol, which could be a good

starting point for an extension of our framework. Although HTTP/2 is mainly

utilized with TLS as HTTPS it can also be used without encryption.
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