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Abstract: A reductionist proof for sender anonymity of an asymmetric bilinear pair-
ing based mixnet (BILMIX) is presented. We give an experiment-based definition for
anonymity and show that BILMIX possesses anonymity in the semi-honest model
against static adversaries assuming that the co-Bilinear Diffie-Hellman Problem, the
Matching Find-Guess Problem and the Matching Diffie-Hellman Problem are hard.
A new problem called Divisible Decisional Factorized Diffie-Hellman Problem (DDF-
DHP) is introduced and showed that finding connection between data stored by the
Registration Authority and the receiver is at least as hard as breaking DDF-DHP, with
the assumption that secret keys of the Registration Authority and the special bulletin
board are kept secret.
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1 Introduction

1.1 Motivation

Mix networks (or in short mixnets) ([Danezis et al. 2009], [Ren and Wu 2010],
[Sampigethaya and Poovendran 2006]) are among the most widely used con-
structions for providing anonymous communication between participants. In
1981, shortly after the public key cryptography was presented, Chaum created a
mail system which included a single computer, called miz. The purpose of a mix
was to hide the correspondences between its input and output ([Chaum 1981]).
In the same paper, a series of mixes (or cascade mix) was also proposed by
increasing the number of mixes. The main idea is that each mix accepts an in-
put batch of encrypted messages and produces an output batch containing the
cryptographically transformed, permuted input batch. The cryptographic trans-
formation is usually a re-encryption or a decryption. In this way the mixnet
achieves untraceability between the input and output batches.

In real world there are many applications where providing unlinkability of the
message and its sender is necessary. For example, we can think of electronic vot-
ing, electronic exam, electronic tender, electronic auction and electronic opinion
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poll systems, or collectively e-assessment systems. Although the users’ identities
could be known in a mass (namely the anonymity set), during the process the
users should not be able to be linked with their messages. Focusing on these
e-assessment systems one can observe that only the users are anonymous, the
authority receiving the messages is publicly known.

After a certain deadline, the authorities evaluate the submissions and an-
nounce the results. Considering an e-exam, an e-tender or an e-auction system,
at some point the users should be informed about their success, hence knowing
their real identity is essential. The other reason to reveal user identity is to avoid
anonymous criminal activities. The situation when a user is not cooperating in
this phase, i.e. does not want to reveal his/her identity (e.g. undesirable grades)
should also be considered. Therefore the possibility of anonymity revocation is
crucial.

Depending on the application a mixnet should be able to efficiently handle
short and long messages. In case of e-voting or e-auction schemes the votes or the
bids are usually very short messages, but in case of e-exam or e-tender schemes
the submission could be significantly longer. Our aim is to construct a mixnet
which is able to handle messages with arbitrary length efficiently.

Furthermore, it could be also a natural demand that the anonymous senders
receive a reply to their messages, at least a receipt about the successful sub-
mission. For example, in case of e-tender schemes the authority can warn the
anonymous senders about a missing document. Similarly, in case of e-exams or
e-poll systems having a possibility of a reply enables to proceed more than one
round (e.g. the second questionnaire is chosen depending on the answers of the
first one).

Another requirement for the senders is to be eligible which means that the
user has to fulfill all the prerequisites for the participation in an e-assessment
system. Only eligible users’ messages are considered and evaluated and the sys-
tem has to detect the users that are not eligible and reject their submissions.
Since the users are anonymous, to determine their eligibility is cumbersome.
The identification and the submission process should be separated, therefore the
authorities of these processes as well.

The proposed mixnet is a general solution, which accomplishes all the re-
quirements mentioned above: provides the anonymity for the users, the eligibil-
ity verification, the possibility of anonymous reply and anonymity revocation,
and efficiently handles arbitrarily long messages. Moreover, considering an e-
assessment system the submissions should be secret and undeniable.

1.2 Related work

Mix networks are the basis for many applications, especially in the field of elec-
tronic voting ([Jakobsson et al. 2002]), anonymous email ([Danezis et al. 2003])
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and location privacy ([Golle et al. 2004, Huang et al. 2006]).

The onion routers (or in short ORs) were developed based on mixnets to
provide low-latency in private communication applications such as web search
or instant messaging. However, the onion routing systems have limitations
in case of anonymity and they are vulnerable to some attacks: traffic anal-
ysis attacks ([Raymond 2001], [Erdin et al. 2015]) as well as intersection at-
tacks ([Danezis and Serjantov 2004], [Wright et al. 2003]). A significant num-
ber of ORs were proposed and applied ([Backes et al. 2012], [Kate et al 2007],
[Chen et al. 2015]). The largest and widely used OR system is Tor, which has
more than 2 million users and thousands of onion routers ([Tor project 2003]).
In 2017, a new variant of fixed-cascade mixing networks, the cMix protocol was
proposed by Chaum and others ([Chaum et al. 2017]). It has a precomputation
phase to avoid computationally intensive public-key cryptographic operations
in its core real-time protocol. Therefore, it is low-latency and its fixed cascade
structure of mixnodes yields strong anonymity. The phases of cMix are similar
to the ones of onion routing, however cMix resists the typical attacks of ORs.
cMix is the first mixing suitable for low latency chat for lightweight devices.

Hybrid mix networks, introduced by Pfitzmann
([Pfitzmann and Waidner 1985]), efficiently handle messages with arbitrary
length by combining symmetric and asymmetric cryptographic primitives. A
recent system called Riffle ([Kwon et al. 2016]) is a bandwidth and compu-
tation efficient communication system with strong anonymity and provides
both sender and receiver anonymity by using verifiable shuffles and private
information retrieval. The hybrid shuffle applying asymmetric encryptions
is performed only once to share symmetric authenticated encryption keys.
The hybrid mix designed by Ohkubo and Abe ([Ohkubo and Abe 2000]) uses
symmetric encryption keys derived by applying a hash function to the results of
a Diffie-Hellman key exchange. Our construction also applies a Diffie-Hellman
key exchange and an asymmetric bilinear pairing for a secure symmetric key
exchange.

Determining the real identity of an anonymous user by a Trusted Entity is the
most commoly used technique with the directive that it uses this ability only if it
is necessary and/or it has the right to do so ([Camenisch and Lysyanskaya 2001],
[Chen et al. 2011], [Preneel et al. 2003], [Federrath et al. 2006)). It is often com-
bined with blind or fair blind signatures. In [Preneel et al. 2003] Preneel and his
co-workers gave Crowd-like and OR-like solutions of anonymity revocation in
case of anonymous internet access. They introduced a management entity and
a trustee to their proposals as well, where the trustee participates only if the
revocation is needed, it does not take part in the anonymization process.

There are mixnet solutions that provide anonymous reply. In [Chaum 1981]
Chaum proposed untraceable return addresses which allow the receiver to send a
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reply message without knowing senders identity. Another example is the Mixmin-
ion ([Danezis et al. 2003]), which is an anonymous remailer protocol and it sup-
ports Single-Use Reply Blocks (or SURBs) to allow anonymous recipients. In
these schemes the sender recursively encrypts the return address block and sends
it in the body of the message. These encryptions are necessary, even if the re-
ceiver does not intend to reply. In our construction cryptographic operations are
needed only if the receiver sends messages back.

Our proposed protocol is based on bilinear pairings ([Menezes 1993]). As a
consequence of the Boneh and Franklin’s ID-based cryptosystem based on bilin-
ear pairings ([Boneh and Franklin 2001]) many new cryptographic constructions
appeared. In 2009, Zhong proposed an identity-based, re-encryption mix network
([Zhong 2009]) based on symmetric bilinear maps. Zhong’s scheme applies only
asymmetric encryptions, hence it can be used for sending short messages, only.
At a fixed security level, group elements in the asymmetric setting are smaller
and pairings can be computed more efficiently. As far as we know, our construc-
tion is the first hybrid mixnet, which is based on asymmetric bilinear maps.

1.3 Our results

The most important requirement for the mix networks is the anonymity property,
i.e. possessing all the messages sent to determine the identity of a sender should
be a hard problem. However, the possibility of anonymity revocation, anony-
mous reply, eligibility verification is also expected in practice, see the examples
above. Most of the cases the system should also efficiently handle arbitrarily long
messages, therefore, our main objective is to construct a complex mixnet which
possesses all the previous requirements.

We presented our symmetric bilinear pairing based hybrid mixnet with
anonymity revocation in 2015 ([Huszti and Kovacs 2015]). We designed a hybrid
miz to handle short and long messages. In [Huszti and Kovacs 2015] besides
describing the protocol we examined the time and space complexity compared
to Zhong’s proposal ([Zhong 2009]) as well. Besides the complexity calculations
we also proved that our solution was correct. More details can be found in our
previous paper [Huszti and Kovacs 2015].

Here, we improve our scheme ([Huszti and Kovacs 2015]) by applying asym-
metric bilinear maps and prove sender anonymity in the semi honest model
against a static adversary. In this model the corrupted parties do not deviate
from the protocol specification, but they collaborate with the adversary to gather
information and secrets. We assume that at least one mix server and two users
are trustworthy, so they are not corrupted by the adversary, i.e. they do not
reveal their secrets (the secret keys and secret permutations). We also assume
the existence of a special bulletin board operating honestly, possessing a key
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pair. Furthermore, the secret keys of the Registration Authority and the bul-
letin board are kept secret, e.g. they are secretly shared in a threshold manner.
We give the definition of anonymity with the help of an experiment and ap-
ply a reductionist proof. We call our asymmetric bilinear pairing based mixnet
protocol BILMIX.

We show that if an adversary is able to break sender anonymity, then there
exists a polynomial time algorithm that solves the co-Bilinear Diffie-Hellman
Problem (co-BDHP), or else it solves either the Matching Find-Guess Problem
(MFGP) or the Matching Diffie-Hellman Problem (MDHP). We also define vari-
ations of a new problem called Divisible Decisional Factorized Diffie-Hellman
Problem (DDF-DHP) and show that finding connection between data stored
by the Registration Authority and the receiver is at least as hard as breaking
DDF-DHP.

1.4 Outline of the paper

The remainder of the paper is organized as follows. Section 2 outlines the nec-
essary definitions and problems. Section 3 describes our proposed protocol. The
security analysis with a focus on proving anonymity property is presented in
section 4. Finally, Section 5 concludes with a summary.

2 Preliminaries

In this section we overview the basic definitions and the hard problems we apply
for the construction of BILMIX. Our protocol is based on asymmetric bilinear
maps, we apply a blind signature scheme for hiding the link between senders
and their messages. The security of the protocol is based on the variations of the
Diffie-Hellman problem.

Beginning with the work of Joux ([Joux 2004]) in 2000, bilinear
pairings have been extensively used to design cryptographic protocols
([Boneh and Franklin 2001], [Boneh et al. 2002], [Boldyreva 2003]). We differen-
tiate symmetric and asymmetric bilinear maps. First we give the definition of
the asymmetric bilinear map.

Definition 1 Asymmetric bilinear map. Let G;, G2 and Gr be three
groups of order ¢ for some large prime q. A map e : G; X Go — G is an
asymmetric bilinear map if satisfies the following properties:

1. Bilinear: We say that a map e : G1 X G2 — Gr is bilinear if e(aPy,bPs) =
e(Py, Py)? for all (Py, Py) € Gy x G5 and all a,b € Zy.

2. Non-degenerate: The map does not send all pairs in G; x G2 to the identity
in Gr. VP, € Gl, e(Pl,Pg) =1VP e Gy iff P, = 1G1.
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3. Computable: There is an efficient algorithm to compute e(Py, P») for any
(Pl,PQ) € G1 X Ga.

Asymmetric pairings for which an efficiently-computable isomorphism 1 :
Gy — G; is known are called Type 2 pairings ([Galbraith et al. 2008]),
while asymmetric pairings for which no efficiently computable isomorphism is
known either from G; to Gy or from Gy to G; are called Type 3 pairings
([Galbraith et al. 2008]). Many cryptographic protocols in the asymmetric set-
ting rely on the existence of i for their security reduction while some use it in
the protocol itself. Known examples of such pairings are the Weil and Tate pair-
ings over suitable elliptic curve groups G1 and Gs. If G; = G5 then the pairing
is symmetric and it is called a Type I pairing. Since Type I pairings are quite
restricted in terms of the choice of curves and are significantly slower than their
asymmetric counterparts at higher security levels ([Hankerson et al. 2008]), we
apply pairings Type 3. Typically, G1, G are elliptic curve groups and Gt is a
multiplicative group of a finite field.

From now on let G, G2 be elliptic curve groups with generator elements
P and Ps, respectively. Usually the security of cryptographic protocols apply-
ing bilinear maps is based on the variants of the Diffie-Hellman Problem. In
[Smart and Vercauteren 2005], the following computational and decisional prob-
lems are defined.

We define a pairing problem instance to be a tuple ' =
(¢,G1,Go,Gr, P1, Py,e). First we define various notions of the Compu-
tational Diffie-Hellman (CDH) and the Decisional Diffie-Hellman (DDH)
problems.

Definition 2 The CDH, ;. Problem. Given a pairing problem instance I" =
(¢,G1,G2,Gr, P1, Py, e) and values i, j, k € {1,2} we define the CDH; ;;, Prob-
lem to be the following: Given aP; and bF;, with a,b € Z7, we are asked to
compute abPy.

Definition3 The DDH, ;; Problem. Given a pairing problem instance I" =
(¢,G1,G2,Gr, P1, Py, e) and values i, j, k € {1,2} we define the DDH; ; 1, Prob-
lem to be the following: Given aF;, bP; and cPy, with a,b,c € Z;, we are asked
to decide whether c¢Py, = abP;.

When G{ = s, these problems reduce to the standard CDH and DDH
problems. In some publications ([Boneh et al. 2002],[Chatterjee et al. 2010]) the
cases of i = k = 1,j = 2 are defined as co-CDH and co-DDH problems.

Similarly to what happens in symmetric pairing groups, the DDH; ;; with
i # j problem is easy in asymmetric bilinear map groups. According to the
terminology, those groups are called Gap Diffie-Hellman groups, where CDHP
is hard, but DDHP is easy.
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We can also formalize a number of variations of the Bilinear Diffie-Hellman
(BDH) problem.

Definition 4 The BDH, ;; Problem. Given a pairing problem instance I" =
(¢,G1,G2,Gr, P1, Py, e) and values 1, j, k € {1,2} we define the BDH, ; j, prob-
lem to be the following: Given aF;,bP; and cPy, with a,b,c € Z, we are asked
to compute e(Py, Py)be.

Variations of the co-Bilinear Diffie-Hellman (co-BDH) Problem are formal-
ized as follows.

Definition 5 The co — BDH,;, Problem. Given a pairing problem instance
I' = (q,G1,G2,Gr, P1, Py, e) and values j, k € {1,2} we define the co— BDH; j,
Problem to be the following: Given aP1, aP,bP; and cPy, with a,b,c € Z7, we
are asked to compute e( Py, Py)?c.

We apply blind short signatures to provide a valid signature on the sub-
mission in a way that the signer (Registration Authority) does not learn any
information about the message. Boldyreva in [Boldyreva 2003] provided a blind
signature scheme based on any Gap Diffie-Hellman (GDH) group.

We apply a blind GDH signature scheme based on the variant of
the BLS signature ([Boneh et al. 2002]), the BLS-3b signature given in
[Chatterjee et al. 2010], which uses Type 3 pairings.

Definition 6 Blind BLS-3b signature scheme. The public parameters are:
Gap co-Diffie-Hellman groups (G1,G2) with prime order ¢, generator elements
P, € Gy and P, € G5 and a Map-to-point hash function H : {0,1}* — G;. The
Blind BLS-3b signature description is the following:

— Keygen: The secret key is a random value x € Z7 and the public key is
(Ppuby » Ppuby) = (xP1,2Ps) € G1 x Gy for a signer.

— Blind Signature Issuing Protocol: Given secret key x and a message
m € {0,1}*.

e (Blinding) The user chooses randomly r € Zy, computes
M' =rP; + H(m) and sends M’ to the signer.

e (Signing) The signer computes ¢’ = M’ and sends back o’ to the user.

e (Unblinding) The user then computes the signature o = o’ — Py, and
outputs (m, o).

— Verify: Given public key (Ppyub,, Ppub, ), & message m and a signature o,
verify e(H(m), Ppub,) = €(o, Ps).
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The security of the BLS-3b signature scheme is based on the vari-
ant of the Computational co-Diffie-Hellman Problem that is given in
[Chatterjee et al. 2010].

Definition 7 The co-CDH* Problem. Given a pairing problem instance
I' = (¢,G1,G2,Gr, Py, Ps,e) we define the co — CDH* Problem to be the fol-
lowing: Given aPy, aP; and bP;, with a,b € Z, we are asked to compute abP;.

The intractability of discrete logarithm problem in G and G2 are both nec-
essary for the hardness of co-CDHP*. If co-CDHP* in (G1,G>2) is hard, and H
is a random function, then the BLS-3b signature scheme is secure.

3 The BILMIX

In this section we detail the steps of BILMIX. Our proposed protocol can be built
on any G, Ga, G groups, where (G1,G2) are Gap Diffie-Hellman groups and
G is a multiplicative group. There are several senders (51, ..., S, ), mix servers
(My,...,Mn = R), where the last mix server is the receiver, furthermore there
is a Registration Authority (R.A) participating in our protocol. We use a publicly
readable special bulletin board (8f) for showing the verification values.

There are seven phases in BILMIX. Phases 1-5 are required, and phases 6-7
are optional. We describe them briefly at first.

Preparation: In this phase all the parameters and keys are generated, public
ones are made public. A key pair is generated for 3. The Registration Authority
generates the system parameters and a key pair, the mix servers also compute
their secret, public keys. The mixnet, i.e. all mix servers together generate the
mixnet public keys, too.

Registration: The sender indicates his intention of sending a message to
the receiver and gets the permission from the Registration Authority for it. If
the sender is eligible then the Registration Authority gives a signature on the
sender’s blinded message.

Submission: The senders compose and send their messages to the first mix
server. Messages equipped with the signature of the Registration Authority are
encrypted with symmetric keys calculated by the senders. Besides the ciphertext
a parameter, which is essential for the mix servers to calculate the symmetric
keys applied for the decryption, is also transmitted.

Mixing: The first mix server gets the messages from the senders, decrypts
and transmits the permutated list of the messages to the next mix server. The
messages are being transmitted through the mix network - each server decrypts
and permutes the messages - until they arrive to the last mix server, the receiver.

Receiving: The last mix server, the receiver, calculates the symmetric keys
and decrypts the messages. The receiver also verifies the eligibility of the sender
via the signature of R.A.
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There are two optional phases. In some systems it is necessary to send a reply
to the anonymous sender without revealing his identity and/or to reveal the real
identity of the senders.

Anonymous Reply: In this optional phase the receiver can send a message
to the anonymous sender by using a value which is calculated and placed into
the encrypted message by the sender in the submission phase.

Anonymity Revocation: In this optional phase the sender’s ID is revealed.
There are two ways for this: with the sender’s help or with the joint support of
all mix servers.

3.1 Preparation

During preparation the system parameters, public and secret keys are generated
involving the Registration Authority and the mix servers.

RA generates the system parameters, such as: groups G1, Go, G, generator
elements P € G, Q € G5, a bilinear map e : G; X Gy — G, hash functions
Hy : {0,1}* — Gy and Hy : Gp — {0,1}'. A key pair is generated for 38,
7 € Z; and 7(Q) denote the secret and public key, respectively. For signing R.A
chooses a random secret value 5 € Z; and outputs public key (5P,3Q). The
secret keys 7,5 can be shared in a threshold manner. Public key parameter 7sP
is also calculated with the help of 8.

My M; My
SKmy = (m1, 1) SKMJ. = (mj,x;) SKr = (mn,zN)
_— )
m1Q oy mee (TH_, mpQ

mQ = ([Ix2, mi)@

w1miQ A2 wpmi@ AT _y =pmi)@
Wg = (= zeme)Q
TN
PKMl =xz1mi1Q PKMJ' :Ij(ni:l mk)Q PKr =xnymQ

Table 1: Calculating the server key pairs and the public keys of the mixnet.

Table 1 shows the key generation process of the mix servers. Each mix server M;
generates a key pair (SKMJ. , PK ), where j = 1,..., N, and the mixnet public
keys mQ,TmQ € Ga. Let SKaq; = (my, x;), where mj, x; € Z; are random and
secret. For calculating the public keys each mix server outputs (Hi:l mk)Q and
(ITj—1 zrmi)Q to the next server and M calculates PKnq, = x;([Tj._q mx)@Q.
Lastly, R computes m() and zmQ, where m,z € Z;. The value m@) is used
for calculating commitment values p;, and Tm(@ is necessary for the encrypted
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identities €;, where T is never calculated explicitly. R also outputs z 5@ public
key for providing anonymous reply.

3.2 Registration

The senders and RA participate in this phase, RA verifies senders el-
igibility and blindly authorizes their messages. Blind BLS-3b signatures
([Chatterjee et al. 2010]) are applied for hiding the messages, hence the Reg-
istration Authority is not able link a message with its sender. This means, that
even RA cannot relate IDs to the messages.

Si RA BB
Si, msg, u® SK =75
Hy(msg) +uDP PK = (sP,5Q,7sP)

Si,Hl(msg)i»u(i)P
_— .
S(Hy(msg) + u“)P)
S;.e(3(Hy (msg)+u(?) P) mQ)

S(Hq(msg)+ul?) P) :
—————— e(5(Hy (msg)+u(®) P) zmQ)

uD3P, 5Hy(msg), msg pi = e(S(Hy(msg) + u' P), mQ)"
e(Hy (msg), Q) = e(H1(msg),5Q) ci = i ® Ha(e(5(Hi(msg) +u'? P), 7mQ)")

Table 2: Signature generation.

Table 2 shows all the calculations performed for generating the signature on
the message being submitted. Firstly, sender S; creates the message msg that
he would like to send to the receiver R. After calculating the blinded message
Hy(msg) + u® P, where the blinding factor u(? e Zy is chosen randomly, S;
sends his ID (S;) and the blinded message on a secret, authenticated channel to
RA. Knowing the ID, RA checks the database containing eligible users’ data
whether S; is eligible. If S; is in the database, R.A blindly signs the message and
sends 5(H,(msg) + uY P) back. Moreover, RA calculates and transfers values
e(3(Hy(msg) + uW P),mQ), e(5(Hy(msg) + u» P),7mQ) and S; to 3 on an
authenticated channel, a commitment value ; = e(5(Hy(msg) +u® P,mQ)" for
verification purposes and a value ; = S; @ Hy(e(3(Hy(msg) + u P), zmQ)"),
which is the sender’s encrypted ID is calculated by #3. 83 publishes all pairs
(1i,€;) in a permuted order.

After receiving the signed blinded message, S; is able to obtain a valid signa-
ture on msg i.e. calculating 5H; (msg) with the knowledge of u(¥3P. S; is able to
verify the signature by checking the equality e(SHi(msg), @) = e(Hi(msg),3Q).
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3.3 Message submission and mixing

This phase consists of two parts: submission and mixing. During submission
senders calculate the symmetric keys and encrypt their messages. After collecting
all submissions the first mix server starts the mixing part. Each mix server
decrypts and permutes the messages and transmits them to the next server, the
last mix server is the receiver.

During submission each sender composes his plaintext p =
msg|[SH1(msg)||as,7Q, which consists of the signed message and a pa-
rameter as,7(Q), where ag, is a secret, random value. The parameter a,,7Q
is optional, it is necessary only for the anonymous reply. S; chooses u(®
randomly and generates N symmetric keys: K;i) = Hy(e(TsSP, PKMJ.)““))
(U =
Kgr(= Ky) is applied first, and the key of the first mix server at last, and
Ml(i) = EncK£i>(EncKéi)(. ..Ench>(p))) is obtained. Finally, S; transfers the

1,...,N). S; uses all keys to encrypt the plaintext. The receiver key

pair (Vl(i)7 Ml(l)) to the first mix, where Vl(i) = u()7Q. The mix servers are able
to compute the same symmetric keys with the help of Vl(i).

Only the first mix server collects the pairs from the senders, the other mix
servers obtain their input from the previous servers. Table 8 shows the calcula-
tions made by a mix server (denoted by M;, where j = 2,..., N — 1). The first
mix server proceeds the same calculations, the only difference is that the input
comes from the senders. The computations of the last mix server - the receiver
- are a little bit different.

Mj-a M; Mz
SKm; = (my,z5)

Py = 2;(IThey mi)@

0 _ (i)

= ma Vi

K = Hy(e(5P,V)")
@ _ ()

Mj:»l = DecK](i) (sz )

() (i)
Viral1M5 0

Table 3: Calculations of a mix server.

Table 3 summarizes the input, the calculations and the output of a mix
server for a message sent by the sender S;. The mix server M; receives n
pairs (Vj(i)||M;i)), where ¢ = 1,...,n. Each pair originates from a sender.
The mix server uses the first value for calculating the symmetric key that is
necessary to decrypt the second value. For each sender, M, calculates a ran-

domized symmetric key K ]@ from values Vj(i)l, 5P with the secret key z;.
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With this key M, removes one "encryption layer” from the ciphertexts, hence

M](fgl = EncK(Q1 (EnCKﬁ)z (... Ench) (p))). M, applies a random permutation
and sends the permuted list of new pairs to the next mix. The factor m; assures

the unlinkability between V}(i) and Vj(iﬂ).

3.4 Receiving the message

The last mix server, the receiver R, obtains the pairs from My _;. After calcu-
lating the symmetric key, R decrypts the message, verifies the eligibility of the
anonymous sender, stores the signed message and the parameter that is used to
reply anonymously.

R calculates the key KW = H, (e(sP,mn Vjs,i))mN) from the input values and
decrypts M](\?). After receiving p = msg||SHi(msg)||as,7Q, R checks, whether
the message p came from an eligible sender by verifying the signature of RA. R
sends SHy(msg) to 56 that publishes (5sH;(msg),7sH;(msg)). R also computes
the commitment value u; = e(SP, mNV]E,i)) - e(FsHy(msg), mQ) and verifies its
existence on 8. If y; is in the database, then R.A has received H(msg) +u® P
during registration, where u(? is the secret value known only by S;. Being p; and
€; on BB means, that after the deadline, the sender’s identity can be revealed
by the mix servers, including R. The receiver stores: u;||msg|[sHy(msg)||as,7Q
for eligible senders. The value p; is necessary for anonymity revocation and the
value ag,7Q is for the reply to the anonymous sender.

3.5 Anonymous reply

In this phase the roles (sender and receiver) are reversed, the receiver R would
like to send a message back to the anonymous senders.

The receiver calculates the symmetric key Kg) = H(e(SP,as,7Q)"N) to

encrypt the message t(®. I(g) is computed from the public key of R.A, the secret

key of the receiver and the user’s value as,7Q) stored by the receiver. R creates

— —

the values Vl(i) = a,,7Q and Ml(i) = Enc};\ (t@) and sends them to the first

()
R

mix server. There is a pair for each sender.
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Mj-1 M; My
SKm; = (my, ;)
PKMj = IJ(H{C=1 my) P
v
J J
O _ (D)
VJL m; - V;
K KD — Hy(e(5P, V( 1)“"J)
Mﬁl( D2 Bne — (M)
@
J

T,

Table 4: Calculations of a mix server for the reply messages.

Mix servers perform similar calculations to the mixing phase. The first ele-
ment is multiplied by m;, the second value is encrypted. Server M; sends the
new pairs to the next mix server in permuted order. Server My _1 outputs all

the calculated pairs with index H; (K N_1) on Bf.
To obtain the reply plaintext t(), S; calculates the symmetric keys (KJ@ =
Hy(e(TSP, PKpg,)*) (j=1,...,N—1), K\ = Hy(e(SFP,2xQ)*:)) and looks

for the value H1(K1(\Z}),1) on 3. If the sender finds the hash value, accesses all
the corresponding data and decrypts the encrypted message,

) = Dec (DecK( 5 (- Dec/(T (M( ))))

3.6 Anonymity revocation

In this optional phase the identity of a sender is determined after a deadline.
In general, anonymity revocation should be provided even if the sender is not
willing to cooperate with the authority (e.g. an examinee does not want to obtain
a bad grade).

For the case when the sender is not cooperative, the mixnet determines the
identity of the sender. The real identity of a sender can be retrieved only, if
either the sender reveals it himself or all the mix servers together calculate it,
as follows. The receiver possessing p; calculates p;™, where zx is the secret
key parameter, and transmits it to the first mix server. Server M, powers the
received value to the secret key parameter x; and sends it to the next server.
Finally, 17 = [e(3P, u)m7rQ) - e(F5Hy (msg), mQ)|” is computed. By calculating
the hash value Ho(u¥), which equals to Ho(e(3(H;(msg) + u P),7mQ)7), the
identity number S; is revealed via S; = Ha(uT) @ ¢e;, where ¢; is available on 30.

We should mention if the sender is cooperative, the real identity can be
revealed without the mix servers in an easier and lower-cost way. The sender
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provides the secret value u( and R can determine the identity of the sender by
calculating Hy(e(F5H,(msg), TmQ) - e(uV75P, 7mQ)) @ &;.

From the calculations above one can see the adaption of the property of
bilinearity. The mixnet obtains the necessary hash value for anonymity revo-
cation by calculating Hy(e(5(H,(msg) + v P), 7mQ)%), 43 needs to compute
Hs(e(3(Hy(msg)+u® P), #mQ)7™) and the sender is able to verify the correctness
of ; on B8 by computing €; = S; & Hs(e(FsH,(msg),TmQ) - e(FsP, WQ)““)).

4 Security of BILMIX

4.1 Correctness

First we prove that our scheme is correct concerning the mix process, the anony-
mous reply and also the process of anonymity revocation.

Definition 8 Correctness. We call our miznet correct, if for every plaintext
calculated by the receiver there is a corresponding ciphertext in the input list of
the miznet. This means that every plaintext is a multiple decryption of a cipher-
text, and no two plaintexts are the multiple decryptions of the same ciphertext.

The following theorem states that our mixnet is correct.
Theorem 9. The proposed mix protocol is operating correctly.

Proof. Each sender S; bends a pair (Vl(i) = u(i)FQ,Ml(i)) to the first
mix server My, where M is an N-times encryption of the plaintext
p containing the message msg of S;. M;j receives n pairs from the

senders. M; (where j = 2,...,N — 1) receives a permutation of mod-
ified pairs from M,;_;. Senders calculate the symmetric keys for all mix
servers: Kj(.l) = Hg(e(ﬁP,PKMj)“(i)) = Hy(e(TsP,z;([[]_; mk)Q)“(z)),
where j = 1,...,N — 1. Mix server M;, J = 1,...,N — 1 calcu-

lates symmetric key K(i) = Hj(e(SP, V}Ql)“) = H2(€(§P7mJV}i))IJ)
Hy(e(5P, mJ(Hk 1mk) OFQ)*7) = Hy(e(5P, (H,{:1 mp)uDFQ)*7). Because
of the bilinear property of pairing e the corresponding keys are the same iff
j=J. A A

R receives a set of the pairs (V™ M) from My_;, where o(i) is

the permutation of ¢ = 1,...,n. In order to get the plaintexts the re-
ceiver does the following calculatlons for all M ](\?) P = DecK<J)(M (J)) =

DecK(j)(EncKu) (pi)),i=1,...,n,i=0(j) and K(J (sP, mNV(J))"”N =

Ha(e
Hy(e(SP, mN(Hk 1 mk)u(j)FQ)’”N) = Hy(e(3P,mu7Q)*~). The symmet-

ric key for R calculated by the sender S; is the following: Kz(zi) =

Hy(e(TsP, PKR)“U)) = Hs(e(TsP, xNWQ)“(i)). Using the bilinear property of
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pairing e the receiver is able to get a plaintext if and only if Kg) = Kg),
thus the plaintext p; is p;. R calculates p; and checks whether it is on
BB: p; = e(SP, mNVIS,i)) . e(ﬁHl(msg),mQ) = e(SP, 7)11\[(]_[,1;];11 mk)u(i)FQ) :
e(F5H1(msg), mQ) = e(3P,mu7Q) - e(T5H,(msg), mQ) = e(5u') P,7mQ) -
e(3H(msg), 7mQ) = e(3(u + Hy(msg)P),7mQ).

The anonymous reply works similarly to the message submission. In this
case the sender is R and the anonymous receiver is the sender S; who sent

o —

the message msg stored. S; calculates the value indexr = H1(K](\l,),1) =

Hy(H2(e(TSP, PK py_,)"4)) Hy (Hy(e(F5P, oy -1 (TThsy ma)@)™))
and looks for it on (3. Since mix server Mpy_; printed the pair

(VY M) with the index Hi(KY ,) = Hi(Ha(e(3P,V)™ 1)) =
Hi(Hy(e(P,my-a V)™ ) = Hi(Ha(eGP (IS mi)as, 7@)™ 1)),

S; finds index and two other values: VIS;) = (1_[,13[:_11 my)as,7Q and
My = Enc == (... (Enc — (Ene.— (1)), where K} = Hy(e(5P, V,}))™) =
N—-1 1 R

Hy(e(SP, (Hf;:1 my)as,TQ)%) calculated by M,. Due to the bilin-
ear property of e these keys are the same as S; calculates for M;:
H2(e(ﬁpa PKMj)asi) = HQ(e(ﬁpv xj(ijzl mk)Q)as’)

Furthermore, R calculates symmetric key: I?;l = Hy(e(3P,as,7Q)*™ and
S; calculates symmetric key: I?R: = Hs(e(TsP,xnQ)%). Pairing e has bilinear
property so I?;l = Hy(e(SP,as,7Q)*~) = Ha(e(TSP,xnQ)%i) = I?;z holds.

4.2 Anonymity
4.2.1 Security Model

We consider a static adversary in the semi-honest model. A model is called semi-
honest, if the dishonest users follow the protocol and also keep a record of all
intermediate results. An adversary is static, if corrupted players are specified at
the beginning of the protocol, they stay corrupted during the whole process and
no new ones stand in with them. The adversary observes all public information
and possesses all attacked players’ secret information (i.e. keys, permutation).

4.2.2 The Experiment of Anonymity

We give the definition of anonymity with the help of an experiment. The
anonymity property of our system says that an adversary who has access to cor-
rupt players’ secret data and observes all the public information of the protocol
including views of the Registration Authority and mix servers, input ciphertexts
and the shuffled list of output messages, cannot link a message with the sender.
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We also assume, that there is at least one mix server and two senders that are not
corrupted by the adversary, i.e. the secret permutation and secret keys are not
revealed to the adversary, furthermore secret keys of the Registration Authority
and (3 are not revealed to the adversary. At the end, the adversary tries to
give an input/output message pair that originates from a non-corrupted sender
according to the knowledge he gained during the registration and the mixing
part. The experiment is run by adversary Ag,on, and the challenger Sys.

Definition 10 Anonymity. The experiment is parameterized by security
parameter A.

1. The challenger Sys generates secret and public keys for input 1*. Public keys
and public parameters are sent to 4.

2. Secret keys and secret random permutations m; of the corrupted mix servers
are given to Agnon-

3. Sys runs the mix process with the list of ciphertexts (ci1,...,¢,) that is
published with the output list of plaintexts (pr(1),...,Prm)) on B3, where
corrupted users’ message pairs (p;, ¢;) and all intermediate results are revealed
to Aunon-

4. The adversary outputs b’ € {0,1} for (co,c1,pp, p;) pairs, where b € {0,1},
where plaintexts, ciphertexts are generated by senders that were never corrupted
and b = 1—b, and assuming that user-specific commitment values and encrypted
identity values for all users are listed on 83 in a permuted order.

We define the advantage of the adversary in this experiment by

1
Advsys A V) =PI =] = 5.
The mix network process possesses property of anonymity if for any PPT
adversary Agnon the advantage Advgys, 4,.,,., (A) is negligible, where probability is
taken over the coin-flips of Aypon, as well as random coins used in the experiment

for key, permutation, plaintexts and identity number generation.

4.2.3 Proving Anonymity

Let us review the Matching Diffie-Hellman Problem ([Frankel et al. 1996],
[Ohkubo and Abe 2000])) and  the  Matching Find-Guess  Problem
([Fujisaki and Okamoto 1999]).

Definition 11 Matching Diffie-Hellman Problem (MDHP) in G». For
every r € Z; given Q,rQ € Gz and Vy, Vi, 1V, V5 € G, the problem is to
output b € {0, 1}.
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Definition 12 Matching Find-Guess Problem (MFGP). For ev-
ery plaintexts xg,x; and for every secret symmetric keys Ky, K1 given
(Enci, (o), Enck, (x1), xp, x7), the problem is to output b € {0, 1}.

Theorem 13. If there exists a static adversary in the semi-honest model that
breaks sender anonymity in BILMIX, there exists a polynomial time algorithm A
that solves the co— BDH P, 5, or else it solves either the MEFGP or the MDHP
with probability non-negligibly better than 1/2 in the random oracle model.

Proof. First of all, we prove that if BILMIX does not provide sender anonymity,
i.e. there exists a polynomial time algorithm Agpon, We can construct an efficient
algorithm A that solves the following problems with the help of Agpon.

Definition 14 BILMIX Problem (BP). For any P,sP € Gi and
Q,rQ,miQ € Gy there are tuples (Vo,Mg(O)), (Vl,ME(I)), (r%7Mé?1),
(rVI;,Méi)l) given, where s,r,x € Zy, V; € G2, moreover Mj@ are ci-
phertexts for i € {0,1} and j € {&,& + 1}, where Mé?l = DecKéb) (Mf(b)) and
Kg(b) = Hy(e(3P,V4,)"™). The problem is to output b € {0, 1}.

We construct the efficient algorithm A, as follows. A simulates the operation
of the players of Sys, i.e. mix servers, RA and the corrupt senders. The honest
senders and the honest mix server, denoted by (So,S1), M, respectively, are
chosen at the beginning. A sets r@Q to be the message being sent to the next
mix server by Mg and rz@ to be the public key of M. Afterwards, A generates
the remaining secret/public keys and input messages. A during the simulation
rejects secret key exposure queries with respect £th key. A simulates the view
by simulating the keys and the list of ciphertexts in the following way.

A sets 5P as a public key for R.A and simulates keys of the ascending servers

by randomly choosing mey1, Meyo,...,my and Xep1, Teya, ..., 2y to be the

secret keys, and generating mep17Q, Mep1Meyor@,. .. ,(H,ivzfﬂ mg)rQ
N

and  TeyiMmep1rQ,  TepoMep1Meyor@, ..., TN (szg-i-l mg)r@Q  to  be

the public keys. For the descending servers A randomly chooses
Me—1,Me—2,...,m1 and T¢_1,Te_2,...,21 as secret keys, and sets Q,mgle,
mg_llmg_12Q,. . (Hi;; m; 1)Q and z¢_1Q, ;vg,gmg_llc} wg,gmg_llmg_le, cee
xl(Hi;; mlzl)Q as public keys. The following public values are also gen-
erated for all servers (starting from the first one): xl(Hi;é m;Q,. ..,
Izt ee)me @, (isien)Q ([T 2w)2rQ ([ wn)wwesarme1Q, -
(ITizs #0)2 (TR gy ) Q.

A reveals the secret values of corrupt users and all public ones to Agnon, then
randomly chooses permutations for the corrupt servers and also reveals them to
Agnon- For simplicity, we set all corrupt server permutations to the identity.
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The list of messages are simulated as follows. Denote the elements of the list
sent to M; by Vj(Z)HMJ@, where 4 = 1,...,n is the index number of a sender
and j =1,..., N the sequential number of a mix server. A simulates the list for

Meq1 by 1nsert1ng (rVs, §(+)1) and (rVj, g(Jr)l) into random positions and for

the rest of the list A randomly chooses yéll € Z,, calculates V(-s-)1 = y£+1Q and

randomly chooses M5 +1 from the ciphertext space. Then A simulates the list
for Mg, he inserts (VO,M(O)) and (Vq, M, M4 )) into the proper positions, for the
rest of the list randomly chooses yé) € Z * and sets V( D= g)Q. A computes
M() EncK@)(ME(Jr)l) where K() Hy(e(STP, TJJQ) ), where u() = m[!.

mehy T

For descending servers 4 randomly chooses mgz) forj =¢&—1,...,1, calculates
Vj(z) = (my))_1 . Vj(i)l, and K](-l) = Hy(e(SP, Vj(}r)l)xf) and computes Mj@ =

EnCKJ(i) (Mj(ﬁl)

where ¢ € Z7 is randomly chosen.

For ascending servers A randomly chooses mgi) for j =&+2,...,N —1,
calculates Vj(i) = mg.i_)l . Vj(i)l and K]@ = Hy(e(SP, m§i)‘/j(i))xj> and computes
M = Decyo (M),

After decryption the last server receives the plaintexts that are revealed to
Agnon- Plaintext p; is a form of msg;||sign;||rv;. A outputs p;,e;, where p; =
e(sP, mNVjﬁ,i)) - e(tsign, H;I;[:Hl mgrQ) and chooses ¢; € {0, 1} randomly.

During simulation A calls random oracles for calculating hash values. After
A reveals the list of plaintexts, ciphertexts and all intermediate results, i.e.
properly simulated views and lists, Agnon distinguishes the two messages in
Mp’s list originate from Sy and Sy, i.e outputs b. From this result A can derive
the correspondence between the pairs given in BILMIX Problem and output b.
We get the advantage of static adversary as Advg = Advg,,,,,-

As a second step we prove the following lemma.

Lemma15. If A breaks BP, there exists a polynomial time algorithm A that
breaks the co — BDHP, 5, or else it breaks either the MFGP or the MDHP.

For solving the co — BDH P, 5 or else for solving either the M FGP or the
M DH P we create algorithms Ao BDHP 5> AMFGP, AMDHP, respectively. We
construct A as follows.

1. A receives a co — BDHP,  instance (P,aP,bP) € G and (Q,aQ,cQ) €
G3 and an MFGP instance (Encg,(zo), Enck, (z1), Ty, 25) and an MDHP
instance (Q,7Q, (Vo, V1), (rVs, rV3)).

2. Input each instance to the appropriate algorithm, to ACO_BDHPLQ or AMFGP
or Appup.
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3. Output the data received from the algorithms as a solution to the input
instances.

Let list the steps of the algorithms ACO_BDHPM, flMFGP and AMDHP.
.,[lco BDHP; » after receiving its input generates a problem instance for the sub-
routine A. A solves the problem and outputs the necessary data to AcoppH P -
Ao BDH P, Dasses the output to A. A has access to the random oracle Ho.
Denote the maximum number of queries to Hs by gnum, that is polynomial in
the security parameter A\. We assume that there is j € {0, 1}, such that the value
e(3P,V;)™ is among the values that A can ask from H,. If A asks the proper
e(3P,V;)™, A solves the co — BDHP 5. Let Q; denote the value that is asked
from H,. We denote the probability that e(5P, V)" is element of the list:

Pe.o_ppup,, = Pri3i e {l,... ,qnum},3j € {0,1} : Q; = e(5P,V;)™"].

Algorithm ACO,BDHPM:

. Receives (P,aP,bP) € G? and (Q,aQ, cQ) € G5.

. Sets rQ = Q,rzQ = cQ, Q := r~'Q, where r € Zy randomly chosen.

. Sets P := P,sP := bP.

. Chooses by € {0,1} randomly.

- Sets Vj, := aQ and randomly chooses Vi € Gs.

. Calculates Vo := r =1V and Vi := r~1V/.

. Randomly chooses ciphertexts Mé(o) M P from the ciphertext space, keys
= Deck, (ME(Z)) for i € {0,1}.

N O ULk W N

Ky, K; from the keyspace and calculates Mg( le
8. Chooses b € {0, 1} randomly.

9. Chooses i € [1, ..., gnum] randomly.

10. Sends problem instance {P,sP,Q,rQ, rxzQ, (Vo, Mg(o)),(Vl7 Mél)),
(VM) (V. M)} to A.

11. A makes a query to Hs. If he asks the i-th query, output the value A asked
and stop.

We note that the simulation is perfect only if the proper @; — that gives the
solution to the problem instance — is asked, otherwise no query is sent to Ho.
In case A receives an MFGP problem instance, it is forwarded to Ay pap.

Algorithm Aypap: -

1. Receives (Méo) := Encg, (xo),Mg(l) := Enck, (xl),Méi)l = xb,MéTl = xp).
2. Randomly chooses P € G1, Q € G2 and 5,7,z € Z; calculates sP,r() and
reQ.

3. Randomly chooses V, Vi € G2 and calculates V = vV, V{ = rV7.

4. Randomly chooses bg € {0,1}.

5. Sends problem instance {P,3P, Q,rQ,rzQ, (Vo, ME(O)),(Vl, Mf(l)),
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(Vi ME), (Vi ME)} to A

6. A makes a query to Hs. For all queries randomly chooses a value form the
keyspace.

7. Returns value b that is output by A.

If A receives a MDHP problem instance, then it is forwarded to /lM DHP-

Algorithm Avprp:
1. Receives (Q,7Q, (Vo, V1), (rVy,7V5)).
2. Randomly chooses P € G1, 5,2 € Z; and calculates sP and rz(Q.

3. Randomly chooses ciphertexts Méo),Mél)

Ky, Ky from the keyspace and calculates M5(21 = Decg, (Méi)) for ¢ € {0,1}.
4. Randomly chooses by € {0,1}.
5. Sends problem instance { P, 5P, Q, rQ, rzQ, (Vo,Mg(O)),(Vl7 MY )) (rV, 5(301))

(rV3, M5b+01))} to A.
6. A makes a query to Hs. For all queries randomly chooses a value form the
keyspace.

7. Returns value b that is output by A.

from the ciphertext space, keys

Ayrer generates the instance {P,3P,Q,rQ,rzQ, (VO,M(O))
(Vl,Mg(l)),(Vbo,Mé?l) Vs £+1)} and Ay ppp calculates the instance

(P3P, Q,rQ,rzQ, (Vo, M{"),(Vi, M), (rV, ML), (Vi M),

Note that these instances might not be correct to A, since b may not equal to
bo. If b # by, A does not stop in tpeyy steps, where tpo is polynomial in A.
Therefore A chooses b € {0,1} randomly.

The success probability of A is calculated as follows. Assume that
P.o_BpmHP, , is not negligible. The probability that AcofBDHPl,g outputs Q; =
e(5P, Vi)' is 52z

The other case is when P.,_pprp, , is negligible. AMFGP and AMDHP re-
ceive an input and generate the problem instances to A. The probability that
b = by and b # by is 1 In case b = by the success probability equals to the
success probability of .A denoted by P4. When b # by, A chooses b € {O 1}, let
P, denote the probability that b is chosen. Hence, the probability that A outputs
the bit b is (1 — P.o— BDHP1 2)(lPA + %Pb). Assuming P4 > % + p, where p is
not negligible and P, = 5 we get

. That is not negligible.

1 1 1 1
SPat3R)2(G+5

1 .
3 5 3 )PeoBDHP, , > 3 + i,

=

(1 — Pco—BDHPLz)(

for some [ that is not negligible. Therefore the success probability of A is not
negligible. Since all algorithms are efficient, A is efficient as well.
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We also prove that if DDHj 52 Problem is hard, then the adversary is not
able to link the plaintexts with their senders, even if RA reveals all data from
the database, except the secret key 5 and R provides all data including the
secret keys. We define variations of a new problem called Divisible Decisional
Factorized Diffie-Hellman Problem(DDF-DHP) as follows.

Definition 16 The DDF — DH; ; Problem. Given a pairing problem in-
stance I' = (q,G1,G2,Gr, Py, P2,e) and values 4,5 € {1,2} we define the
DDF — DH; ; Problem to be the following: Given aP;,bP;,xP; and cP;, with
a,b,c,r € Z, we are asked to decide whether ¢ = x/ab (mod gq).

Lemma 17. Given a pairing problem instance I' = (q,G1,Ga, Gp, Py, Py, €) if
there is an efficient adversary that breaks DDF — DH; ; Problem, then we can
construct a polynomial time algorithm that breaks the DDH; ; ; Problem, where
values i,j € {1,2}.

Proof. Appm,;,; algorithm is constructed as follows. Appg, ,, receives in-
put aP;, bP;, ¢Pj, with a,b,c € Z;, generates and submits input instance
(an = ﬁPj,ij = ij, (EP]' = dEPj, CPZ' = dPZ) to ADDF*DHL]’, where d € Z;;
chosen randomly. Appy. . .

75353

Appr-pn, ;- If Appr—pm, ; is efficient, then Appy, , ; is efficient as well.

returns the output (true or false) received from

Theorem 18. If there exists a static, efficient adversary in the semi-honest
model that links plaintexts with their senders in BILMIX, there exists a poly-
nomial time algorithm ADDF—DHLQ that solves DDF — DH, 5 Problem in the
random oracle model.

Proof. RA possesses a list of triplets (S, Hy (msg) +u® P, 5(H, (msg) +u') P))
and R has a list of tuples (g, H,(m59),5H,(m3g), 75 H, (Mm3g), rmu® Q). Let
A’ denote the adversary who can link plaintexts with their senders, i.e. decide
whether an element msg from the list of R is generated by S; from the list of
RA. We construct the efficient algorithm Appr_pm, , as follows.

Algorithm ADDF*DHLZZ

1. Receives (P, Q,aQ,bQ,zQ, cP), where P and Q are generators of G; and
G2, respectively.

2. Simulate public key inputs for A’: P := P, 5P := tP, s7P := vP, where
t,v € Z; are randomly chosen

Q= Q, 3Q = 1Q, 7Q = aQ, mQ = bQ, TMQ := [bQ, where | € Z7 is
randomly chosen

3. Simulate a list element of R: msg := bs, Hy(msg) := T, sHy(msg) := tT,
75H, (msg) := M, 7mu)Q := zQ, where bs is a random bitsring and T, M € G,
are chosen randomly

4. Simulate a list element of RA: S; := I, Hy(msg) + uVP := T + cP,
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3(Hy(msg) +uW P) := t(T + cP), where I is a random bitstring

5. Simulates a list element of 83: u; := e(tP,2Q) - e(M,bQ), &; := I & Ho (1)
6. Sends all data to A’.

7. Returns value b € {true, false} that is output by A’

During simulation Appr_p H, , calls random oracles for calculating hash values.
We get the advantage of static adversary as Adva,pp py, , = Advar.

5 Conclusions and future work

As far as we know, our proposal (BILMIX) is the first hybrid mixnet based
on asymmetric bilinear pairings. We have given an experiment-based security
definition of sender anonymity and also proved that the mixnet we proposed
provides anonymity against static adversaries in the semi-honest model, as-
suming that the co-Bilinear Diffie-Hellman Problem, the Matching Find-Guess
Problem and the Matching Diffie-Hellman Problem are hard. We also defined
variations of a new problem called Divisible Decisional Factorized Diffie-Hellman
Problem (DDF-DHP), we show that finding connection between data stored by
RA and R is at least as hard as breaking DDF-DHP, with the assumption that
secret keys of RA and B are kept secret. The next step is to extend BILMIX
to achieve end-to-end verifiability in a malicious model.
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