
An Event-Driven Integration Platform for Context-Aware
Web Services

Laura González
(Instituto de Computación, Facultad de Ingeniería, Universidad de la República

Montevideo, Uruguay
lauragon@fing.edu.uy)

Guadalupe Ortiz

(UCASE Software Engineering Group, University of Cádiz, Cádiz, Spain
guadalupe.ortiz@uca.es)

Abstract: Web services are nowadays one of the preferred technologies to implement service-
oriented architectures and to communicate distributed applications. On the other hand, context-
awareness is highly demanded for distributed applications. However, even though there are
excellent tools and frameworks for service development, getting services to be context-aware is
still under investigation. In turn, an Enterprise Service Bus (ESB) is a standards-based
integration platform, which provides mediation capabilities (e.g. routing, transformation). ESBs
are being increasingly used in conjunction with Complex Event Processing (CEP) engines to
support event-driven architectures scenarios. In this regard, this paper proposes an ESB-based
integration platform which, leveraging its mediation capabilities and a CEP engine, allows the
construction of context-aware web services. Concretely, CEP techniques are used to detect the
complex situations that may affect services and mediation mechanisms are used to adapt
service requests and responses to make them context-aware.

Keywords: web services, context-awareness, complex event processing, enterprise service bus
Categories: D.2.11, D.2.12, D.2.13

1 Introduction

Thanks to the use of XML-based protocols for interface description –Web Service
Description Language (WSDL) – and message exchange –Simple Object Access
Protocol (SOAP) –, among other facts, web services provide us with a loosely-
coupled and platform-independent communication among distributed systems. This is
why they have become an efficient solution for the implementation of distributed
systems in which modularity and communication among third parties are key factors.

On the other hand, context-aware software solutions have hugely increased in
popularity and are highly demanded, especially by mobile users. The great amount of
devices and their continuous use clearly illustrate the importance of access not only to
desktop services but also to mobile ones. It is important to mention that, even though
context awareness seems to be strongly associated with mobile applications, many
users start to demand desktop context-aware applications, therefore both markets are
relevant for software developers.

Even though there are excellent tools and frameworks for service development,
their adaptation to context has not been properly focused on to date. This is an

Journal of Universal Computer Science, vol. 20, no. 8 (2014), 1071-1088
submitted: 4/4/14, accepted: 23/7/14, appeared: 1/8/14 © J.UCS

emerging field in which many industry and scientific communities are starting to
provide their proposals. However there are not clear solutions in the scope of web
services and the existing ones provide solutions with intrusive context-adaptation [Li,
Sehic, & Dustdar, 2010; Q.Z. Sheng et al., 2009] or do not provide a method to
integrate context detection in the adaptation platform [Gilman, Su, Davidyuk, Zhou,
& Riekki, 2011]. In the past, we proposed a method for adapting services to the
invoking device [Ortiz & García De Prado, 2010] as well as to adapt them to the
client-specific context [Ortiz & Prado, 2010]; then in [Ortiz, Boubeta-Puig, García de
Prado, & Medina-Bulo, 2012] we envisaged an architecture to tackle their adaptation
to the external context. All our contributions have fostered the separation of concerns
through the use of aspect-oriented techniques in order to facilitate reusing web
services in different contextual situations. In [González & Ortiz, 2013], we followed
through with the envisaged architecture tackling the services adaptation to external
context making use of an Enterprise Service Bus (ESB) and Complex Event
Processing (CEP) and specially benefitting from the use of known ESB patterns and
the adaptive ESB infrastructure proposed in [González & Ruggia, 2012]. In this
paper, we describe with more detail and examples the proposed solution and we
discuss its main advantages and limitations. The proposed solution leverages well-
known ESB mediation patterns (e.g. transformation) in order to adapt services to
context transparently, not only for the final user but also for the service developer
since the adaptation code is completely decoupled from the service implementation
one. Secondly, the solution leverages complex event processing to analyze the events
received from external sources and to detect relevant situations for the context of the
service in question. Finally, a context reasoner which provides the transformations to
be done depending on the context events has been provided.

The rest of the paper is organized as follows: Section 2 provides background on
context-awareness, complex event processing, ESB patterns and an adaptive ESB
infrastructure. Then, Section 3 explains the proposed infrastructure which makes use
of the ESB and the CEP engine. Afterwards, Section 4 presents some further
discussion and Section 5 outlines main related work. Finally, conclusions and future
work are provided in Section 6.

2 Background

This section provides background on context-awareness, Service-oriented
Architectures (SOAs) and Web Services, CEP, ESB patterns and on an Adaptive
ESB. These concepts and solutions are the basis for our proposal.

2.1 Context-Awareness

Abowd et al.’s context definition in [Abowd et al., 1999][Abowd et al., 1999][Abowd
et al., 1999][Abowd et al., 1999][Abowd et al., 1999] is specially well-known –page
3, section 2.2: “Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and
applications themselves”.

1072 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

The term context-awareness supports the fact that the context information
provided by the client, or taken from the environment, is properly used by the system
so as to improve its quality; that is, using information such as location, social
attributes and other information to foresee the customer necessities so that we can
offer more personalized systems. Therefore, a system is context-aware if it uses the
context to provide relevant information or services to the user, adapting the system
behavior to the particular needs of a specific user.

A context-classification can be found at [García de Prado & Ortiz, 2011]; in this
paper we will focus on the environmental context, which describes the environmental
conditions of both user and services. Sensors or specific services are normally used in
order to provide such kind of information as location, weather, noise, social events,
etcetera. This type of context will imply adapting the information sent to the client;
for instance, if the user is in a location where it is raining when searching for cultural
activities, outdoors ones will be avoided.

2.2 Service-Oriented Architectures and Web Services

In recent years, SOAs have emerged as an efficient solution for the implementation of
systems in which modularity and communication among third parties are key factors.
This fact has led to the increasing development of distributed applications made up of
reusable and sharable components (services). These components have well-defined
platform-independent interfaces, which allow SOA-based systems to quickly and
easily adapt to changing business conditions

Even though SOAs do not necessarily need to be built through web services, it is
de facto standard. Web services are often seen as applications accessible to other
applications over the Web [Alonso, Casati, Kuno, & Machiraju, 2004]. Such
applications will be accessible via HTTP or SMTP, which facilitates message
exchanges, and always provide an interface description (WSDL document) describing
the functionality offered by the service in question. Besides, services mainly use
SOAP as message format for communication. This message is composed of a
mandatory body, where invocation parameters are included, and one or more optional
headers.

REST, considered an alternative for Web Services implementation and mainly
used from browser-based clients, describes a set of architectural principles by which
data can be transmitted currently using HTTP methods. Even though REST can be
quite useful for simple services, its multiple limitations suggest the use of SOAP
services in many cases [Pautasso, Zimmermann, & Leymann, 2008]; this is why we
focused on SOAP-based services in this paper.

2.3 Complex Event Processing and SOA 2.0

CEP [Luckham, 2002] is a technology that provides a set of techniques to help
discover complex events by analyzing and correlating other basic and complex
events. Therefore, CEP allows the detection of complex and meaningful events,
known as situations, and inferring valuable knowledge for end users. For instance,
let’s suppose that we are looking for tourism activities in a city we are visiting; going
to a museum is fine when is raining; however it is not the same that it is raining when

1073Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

you are going to visit the museum, than it is raining and public transports have gone
on strike, when you are five kilometers away from the museum.

In order to detect complex events, event queries have to continuously monitor
incoming streams of simple events [Eckert, Bry, Brodt, Poppe, & Hausmann, 2011].
These queries specify situations as a combination of simple events occurring, or not
occurring, over time. One approach to implement event queries is by using production
rules. This approach is followed by various well-known products like Drools Fusion,
which is the component of the Drools platform (http://www.jboss.org/drools/)
providing CEP support.

These events will help make decisions when necessary. Currently, the integration
of Event-Driven Architecture (EDA) and SOA is known as Event-Driven SOA (ED-
SOA) or SOA 2.0 [Sosinsky, 2011]. SOA 2.0 will ensure that services not only
exchange messages between them, but also publish events and receive event
notifications from others. For this purpose, an Enterprise Service Bus (ESB) will be
necessary to process, enrich and route messages between services of different
applications. Further information on the integration of CEP with SOA in other
scenarios can be found at [Boubeta-Puig, Ortiz, & Medina-Bulo, 2011].

2.4 ESB Patterns

ESB behavior has been characterized through different patterns. This section reviews
the relevant connectivity and mediation patterns for this work.

Connectivity patterns specify high level integration styles for ESB-based
solutions [Wylie & Lambros, 2009]. For example, service virtualization patterns take
an existing service and deploy a new virtual service in the ESB. These patterns
introduce a point of mediation in the ESB, between the client and target service,
which can be used to route and transform messages, among others. Gateway patterns
are used to apply a common set of mediations to all incoming and/or outgoing
messages (e.g. security related mediations). Event-driven integration patterns deals
with distribution of events through the ESB and the integration with CEP engines. In
particular, the event distributor pattern allows the distribution of events to multiple
interested parties, the event extractor pattern monitors interactions across the ESB and
passes relevant events to a CEP engine, and the event reactor pattern extends the
previous one by synchronically interacting with a CEP engine to be informed if the
latest event has triggered a complex event.

Mediation patterns specify families of mediation operations that can be
performed over messages passing through the ESB [Hérault, Thomas, & Fourier,
2005; Schmidt, Hutchison, Lambros, & Phippen, 2005]. Two commonly supported
types of mediation operations are routing and transformation. Routing patterns
dynamically determines the message path according to different factors. For example,
the content-based routing pattern determines the message path based on its content
and the itinerary-based routing determines the message destination based on an
itinerary included in the message itself [Chappell, 2004]. Transformation patterns deal
with the runtime transformation of messages [Hohpe, 2004]. In particular, the content
transformation pattern deal with data transformation (e.g. data model transformation,
data format transformation [Erl, 2009]), the content enrichment pattern consists of
complementing the message content with data obtained from other sources and the
content filter patterns consist of removing unimportant data items from messages.

1074 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

2.5 Adaptive ESB Infrastructure

This section describes the Adaptive ESB Infrastructure proposed in [González &
Ruggia, 2012], which has the goal of dynamically and automatically dealing with
adaptation requirements in service based systems at runtime.

The proposed adaptive solution assumes that services communicate by sending
messages through the ESB, applying service virtualization patterns. The approach to
achieve adaptation at runtime is to intercept all incoming ESB messages and, if an
adaptation is required for the invoked service, drive them through adaptation flows.
These flows include all the mediations steps (e.g. transformations, routings) required
to carry out a specific adaptation strategy (e.g. invoke an equivalent service). In order
to know if an adaptation is required for a specific service, the infrastructure maintains
a table with adaptation directives for each service. These directives are generated
based on monitored service properties and service level requirements.

In order to show the general operation of the infrastructure, Figure 1 presents an
example of an adaptation flow which consists of applying a transformation before
invoking the target service.

Figure 1: Adaptive ESB Infrastructure

First, the client sends a message through the ESB (1) to invoke the target service.
The message is intercepted by an adaptation gateway following the gateway pattern.
Given that there is an adaptation directive for the invoked service, the adaptation
gateway attaches an adaptation flow to the message and routes it to the first step in the
flow (2), following the itinerary-based routing pattern. After the required
transformation (also specified in the message) is performed, the message is routed to
the next step in the flow (3) which finally invokes the target web service (4).

3 The Proposed Integration Platform

This section presents the proposed solution which, leveraging ESB and CEP
capabilities, allows the construction of context-aware web services. The examples in
this section are an adaptation of the ones presented in [Kapitsaki, Prezerakos,
Tselikas, & Venieris, 2009].

3.1 General Description

The approach consists of applying service virtualization patterns to build and expose
context-aware services through the ESB, based on services which are not necessarily

1075Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

context-aware. The context-aware adaptation logic is executed within the ESB, using
its mediation capabilities, and it is automatically generated according to the situations
in which the invoking users are. These situations are detected, thanks to their previous
definition in the CEP engine, as complex events that are triggered based on the
contextual data arriving to the ESB from different sources. Figure 2 presents a high
level view of the proposed architecture.

ESB

Client Application

Context Aware
Web Service 1

(CAWS1)

Web Service 1Context-aware
Adaptation Logic

Web
Services

Applications Sensors

Contextual Data Producers

T
C

P
 /

 IP

H
T

T
P

 /
 X

M
L

H
T

T
P

 /
S

O
A

P

Contextual
Data

CEP
Engine

userId,
situation

Contextual
Data

C
om

p
lex

E
ven

t

E
ven

t

Context
Reasoner

userId, serviceId,
adaptations

Figure 2: General Architecture

Contextual data producers provide different type of contextual data to the ESB in
the form of events. For example, a mobile device with GPS support can provide
information regarding the geographic location of a user. Also, sensors can monitor the
environment to provide information concerning temperature and rain, among others.
The CEP Engine receives contextual data through the ESB (event distributor pattern)
and, based on rules deployed in the engine, detects the complex situations in which
users are. For example, based on the geographic location of a user and the weather
conditions in a city, the engine can detect that a user is in a place where it is raining.

The Context Reasoner receives the situations in which users are and
automatically generates the required adaptations for each configured service. For
instance, if a service returns the attractions in a specific city and the user is in a city
where it is raining, an adaptation can consist of not returning the attractions which
involve outdoor activities. To this end, the situations which affect each service and the
adaptations to be applied in each case have to be configured in the Context Reasoner.

1076 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

Finally, the ESB receives the required adaptations for each pair (user, service)
and, when an invocation arrives, applies these adaptations leveraging the ESB
mediation capabilities. Following with the previous example, the content filter pattern
can be used to take out from the service response (i.e. a SOAP message) the
attractions which involve outdoors activities.

As a summary, Figure 3 presents the main conceptual elements of the proposed
solution and the previously mentioned examples.

Figure 3: Main Conceptual Elements of the Proposed Solution

3.2 Receiving Contextual Data

Contextual data are obtained from the providers as events, configuring the built-in
connectivity capabilities that ESBs offer. The received events are then passed to the
CEP Engine. Table 1 presents different types of contextual data that can be received
in the context of the examples described in the previous section.

Contextual Data Description Structure Example

Weather in City It specifies the weather conditions
in a city.

[city, temp,
rain?]

(Madrid, 17°C,
true)

User Location It specifies the current geographic
coordinates of a user.

[userId, lat,
long]

(jsmith, 40.41, -
3.71)

User Agent It specifies the current user agent
of a user.

[userId,
userAgent]

(jsmith,
Mozilla/5.0....)

Language Preference It specifies the language
preference of a user.

[userId,
language]

(jsmith, EN)

Table 1: Examples of Contextual Data

For instance, the weather information can be obtained by configuring connectors
in the ESB in order to periodically invoke a web service or to consume an RSS feed.
Also, the user location can be obtained by configuring an HTTP endpoint in the ESB
which receives events from an application running on the mobile devices of users and

1077Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

which has access to the device GPS capabilities. Finally, the user agent can be
obtained from the requests performed by the users to the platform.

3.3 Detecting Situations

Situations are detected as complex events by the CEP Engine. In order to specify
when a user is in a particular situation, a set of rules or patterns have to be deployed
within the engine for each situation. These rules can be based on: the received
contextual data, other detected situations and utility functions. Table 2 shows some
situations that can be detected using the examples of contextual data presented in
section 3.2 and the required elements in order to detect them.

Situation Description Elements to Detect the Situation

InCity The user is in a specific city. Contextual Data: User Location

Utility Function: getCityFromCoords (lat,
long)

InCityRaining The user is in a city where it
is raining.

Contextual Data: Weather in City

Situations: InCity

UsingMobileDevice The user is using a mobile
device.

Contextual Data: User Agent

Utility Function: isMobile(userAgent)

LanguagePreference The user prefers a specific
language.

Contextual Data: Language Preference

Table 2: Examples of Situations

The specification of the complex events to detect these situations can be
performed using different languages according to the specific CEP Engine that is
used. In the following examples, the Drools Rule Language (DRL), the language
leveraged by the Drools Fusion platform, is used to illustrate the proposal. Figure 4
presents a DRL Rule to trigger the InCity situation. Concretely, whenever user
location data are received, the utility function getCityFromCoords is used to get the
current city of the user and an InCity event with this information is triggered.

Figure 4: DRL Rule to Trigger the InCity Situation

Similarly, Figure 5 presents a DRL Rule to trigger the InCityRaining situation. In
this case the event is triggered when it is detected that a user is in a specific city and it
is raining in the named city.

1078 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

Figure 5: DRL Rule to Trigger the Situation InCityRaining

As mentioned above, although the examples are based on DRL and Drools
Fusion, other languages and CEP Engines can be used to specify and detect these
situations.

3.4 Configuring Context-aware Adaptations

In order to adapt services according to the situations in which the invoking users are,
the following data have to be configured in the Context Reasoner: i) the situations
which affect each service; ii) the adaptations to be applied in each case; iii) the
moment to apply these adaptations (i.e. in the service request or response).

As an example, consider an Attractions service with an operation named
getAttractions which optionally receives the name of a city and returns a list of
attractions. For each attraction the following data is returned: name, short description,
long description and a Boolean value indicating if the attraction involves outdoor
activities. Table 3 presents some adaptations that can be configured for this service,
according to the situations presented in Section 3.3, and the required mediation
patterns to implement these adaptations.

Situation Adaptation / Moment Pattern

InCity Add to the request the optional parameter to
specify the city.

Content Enrichment

InCityRaining Remove from the response the attractions
involving outdoor activities.

Content Filter

UsingMobileDevice Remove from the response the long
description of the returned attractions.

Content Filter

LanguagePreference Translate the short description of the
attractions in the response.

Content Transformation

Table 3: Configuration of Adaptations

In order to implement the adaptations, the mediation patterns which are used in
each one of them have to be configured with all the required information. For
instance, in the first adaptation of Table 3, an XSLT transformation can be specified

1079Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

for the content enrichment pattern so that SOAP request messages can be transformed
by adding the city parameter. Note that these adaptations are not going to be
completely specified until a specific situation is detected for a user, i.e., in the
aforesaid XSLT transformation the concrete city is not specified at this time.

An ESB can provide different implementations for a given mediation pattern. For
instance, the content transformation pattern is usually implemented through XSLT
transformations or template engines. Also, ESBs are designed to be easily extended,
for example, with new mediation patterns and new implementations for them. In this
way, if a complex transformation logic is required (e.g. language translation) the
proper implementation (e.g. using an external translation service) can be set up in the
ESB using its extensibility mechanisms.

Finally, the adaptations for each service have to be prioritized so that the ESB
knows which one applies first, in case more than one has to be performed.

3.5 Adapting Services within the ESB

After configuring the adaptations for each service, when the Context Reasoner
receives information regarding the situation of a user, it can automatically generate
the required adaptation logic to be performed for the pair (user, service) and
communicate it to the ESB. For example, assuming that the Context Reasoner was
informed that the users “jsmith” and “awright” are in Madrid and London,
respectively, Table 4 presents two different concrete adaptations, to be sent to the
ESB, resulting from the first adaptation of Table 3.

Service / Operation User Adaptation

AttractionsService /
getAttractions

jsmith XSLT transformation adding the Madrid value, for
the city parameter, in the SOAP request.

AttractionsService /
getAttractions

awright XSLT transformation adding the London value,
for the city parameter, in the SOAP request.

Table 4: Adaptations to be Applied in the ESB

This way, users receive different results from the Attractions service according to
their specific situation, in this case, the city where they currently are.

In order to dynamically apply these adaptations within the ESB, the Adaptive
ESB Infrastructure presented in Section 2.5 is used. Concretely, the information
which is sent to the ESB is treated as adaptation directives to be applied to the
invocations to the Attractions service coming from the specified users. To this end,
the Adaptive ESB Infrastructure was enhanced to consider users information in the
requests and to apply adaptation directives. Figure 6 presents how the Adaptive ESB
Infrastructure, with the aforementioned enhancements, is used to apply the context-
aware adaptation logic presented in Table 4.

1080 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

Figure 6: Applying Context-aware Adaptations

4 Further Discussion

In this section we discuss the use of other mediation patterns to perform context-
aware adaptations, as well as the advantages, disadventages and limitations of the
proposed solution.

4.1 Using other Mediation Patterns

The examples presented in Section 3 only use transformation patterns (e.g. content
filter, content enrichment) to perform the context-aware adaptations. However, ESB
products provide a rich set of mediation capabilities which can also be used to
perform adaptations.

In particular, routing mediation patterns can be used to route a service request to
other service/s in order to provide a more suitable response according to the situation
of the invoking user. Following with the example presented in section 3.4, if there is a
new service which only provides information regarding attractions in Madrid and it
was detected that a user is in Madrid, the requests from this user can be adapted by
routing them to this new service. Also, if a user is in a situation (e.g. an emergency
situation) which requires a higher level of quality of service (e.g. regarding
availability), requests from this user can be routed to equivalent services which fulfill
these quality of service requirements.

Other mediation patterns that can be used to adapt to quality of service
requirements are: cache, recipient list and aggregator [González & Ruggia, 2011]. For
instance, the cache mediation pattern [Rao et al., 2006] receives a request and returns
a response which was previously stored and returned for that request. This can be
used, for example, to deal with response time or availability requirements.

4.2 Advantages, Disadvantages and Limitations of the Solution

The main advantage of the proposed solution is that given that the context-aware
adaptation logic is performed within the ESB, it is completely decoupled from
services and their clients. This way, services and applications developers do not have
to deal with these matters and they can delegate this kind of features to the integration
platform. Also, the solution promotes a clear separation between business logic and
context-adaptation logic which can facilitate the maintainability of this kind of
software solutions. In the past we also made a proposal in which the adaptation to
context was developed through the use of aspect-oriented programming [Ortiz et al.,

1081Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

2012]; however we considered that, if the ESB can proceed at runtime with the
adaptation in a completely decoupled way – so that services implementation do not
have to be modified– then the use of dynamic AOP could introduce a greater
overhead. In any case, in our close future work we are developing two
implementations of a common case-study –with ESB adaptation and with AOP-based
adaptation– in order to evaluate and compare the efficiency of both solutions.

On the other side, the main disadvantage of the proposal is the overhead that it
introduces in service invocations. The execution of some adaptations can be time
consuming and may degrade the response time perceived by the end user. Regarding
this point, in previous work [González, Laborde, Galnares, Fenoglio, & Ruggia, 2013]
we performed tests in order to quantify the overhead in the invocations introduced by
the Adaptive ESB Infrastructure described in Section 2.5. The result of these tests,
which were obtained based on 1200 invocations to a Web Service, have shown that
the adaptations which involve transformations are the ones which introduce more
overhead (332 milliseconds). However, applying the cache mediation pattern leads to
lower response times than invoking the target service. In summary, we believe that
the obtained values are acceptable, given that for most of the adaptations the overhead
introduced by the platform is less than 200 milliseconds.

Lastly, the main limitations of the solution concern dealing with advanced
security characteristics, handling changes in web services contracts and the required
time to detect a situation and build a suitable adaptation. Regarding security, if web
services require exchanging encrypted or digitally signed information (e.g. using WS-
Security mechanisms), some adaptation actions (i.e. transformations) may not be
possible. With respect to changes in web services contracts, given that the
specification of some adaptations (e.g. transformations using XSLT) are specified
based on the web service technical contract (e.g. WSDL message declarations), if a
web service contract changes a transformation may become invalid to perform a
specific adaptation; please bear in mind that this is not only applicable to the
adaptation logic but contract changes may imply invalid invocations in general.
Finally, given the event-based mechanism to detect situations, some adaptations may
not be available on time for a specific request when the situation of a user changes.
Even though we use real time engines for event detection, this could happen if the
time required for detecting a situation and building a suitable adaptation for it, takes
longer than the arrival of a new request from the user.

5 Related Work

In this section we will highlight the main research on the integration of CEP and
SOA, the use of complex-event processing for context-awareness and approaches for
context-aware service implementation.

Several works on CEP and SOA integration in different domains can be found in
the literature; in the following lines we summarize some representative ones. For
instance, Taher et al. [Taher, Fauvet, Dumas, & Benslimane, 2008] propose the
adaptation of interactions of web service messages between incompatible interfaces.
In this regard, they develop an architecture that integrates a CEP engine and
input/output adapters for SOAP messages. Input adapters receive messages sent by
web services, transform them into the appropriate representation to be manipulated by

1082 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

the CEP engine and send them to the latter. Similarly, output adapters receive events
from the engine, transform them to SOAP messages and then they are sent to web
services.

There are some approaches which use CEP for monitoring such as the one from
Xu et al. [Xu, Wolf, Stojanovic, & Happel, 2010], where CEP is used in the Ambient
Assisted Living (AAL) domain. They propose its use to detect events in AAL for
being able to take real time actions. The paper from Li et al. [Li et al., 2010] is also
worth a special mention. They provide an adaptive approach to context provisioning
and automatic generation of actions. The latter definitely bears similarities with our
proposal, however we focus on non-intrusive service result adaptation rather than
action taking.

Most of the work found in the context adaptation area specially focuses on client
side adaptation. We can mention, for instance, the paper from Laakko and Hiltunen
[Laakko & Hiltunen, 2005] where content adaptation is done through a proxy. They
focus on adapting XHTML (Extensible Hypertext Markup Language) with XHTML
MP (XHTML mobile profile) and WML (Wireless Markup Language). Another
example is URICA [Mohomed, Cai, Chavoshi, & de Lara, 2006]: a technique for
automatic content adaptation for mobile devices presented by Mohomed et al. The
system can learn through interaction with the user, identifying the most relevant
context for the latter. It is very interesting work, but it overheads the client
computation.

The paper from Gilman et al [Gilman et al., 2011] also deserves special mention.
They provide a framework for adapting services to context through a complex
architecture composed of several components, among them a context-reasoner,
context discoverer and observers, handlers and managers. There are also systems
based on multi-agents, such as the one presented by Fraile et al [Fraile, De Paz, Bajo,
De Paz, & Corchado, 2012], which uses them for implementing context-aware
computing for home care. Sheng et al [Quan Z. Sheng & Benatallah, 2005] proposes
ContextUML, a modeling language for context-aware model-driven web services.
Several years later they improved their proposal supplying [Q.Z. Sheng et al., 2009] a
platform for developing context-aware web services. This platform, named
ContextServ, is based on ContextUML and provides an integrated environment where
developers can specify and deploy context-aware services as well as generating BPEL
code. The main drawback of this proposal is that the way in which context is
modelled is rather complex; it requires a high learning curve and it does not seem to
be intuitive for a software developer. Follow-ups on the project are more focused on
BPEL compositions [Yahyaoui, Mourad, Almulla, Yao, & Sheng, 2012], or user
personalization [Yu, Han, Sheng, & Gunarso, 2012]. In any case, none of these works
takes advantage of the use of the ESB and CEP, which leverages the context-aware
system usability and maintenance.

We also mention some other related approaches. Strobbe et al also makes use of
ontologies in [Strobbe, Van Laere, Dhoedt, De Turck, & Demeester, 2011] to provide
a Context-Aware Service Platform for adding and abstracting context information.
This proposal is not particularly useful for web services and only focuses on context
management but not on context adaptation. Not only is the environmental context
relevant, but also specific user preferences. In this sense we can mention, for instance,
the paper from Bao et al [Bao, Cao, Chen, Tian, & Xiong, 2012], where techniques to

1083Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

model and learn personalized contexts are provided. Since we also take care of
personal context in our approach, this proposal could be used in conjunction with our
adaptation process. A thorough analysis of context-awareness related work can be
found in [García de Prado & Ortiz, 2011].

To sum up, our proposal mainly differs from others in benefiting from the
advantages of the use of CEP and an ESB to adapt services to context information in a
decoupled way, where the context can be automatically detected through real time
events.

6 Conclusions and Future Work

Even though context-awareness is an important capability in current distributed
systems, solutions to provide context-aware web services are still under investigation.
This paper addresses this issue by proposing an ESB-based integration platform
which, leveraging its mediation capabilities and a CEP engine, allows the construction
of context-aware web services. CEP techniques are used to detect complex situations
that may affect services and mediation mechanisms are used to adapt services
requests and responses to make them context-aware.

The proposed solution has several advantages. Firstly, given that the adaptation
logic is performed at the ESB, services are adapted to context in a transparent way
without affecting clients or services. Secondly, the use of CEP techniques allows to
process different type of information with high throughput and detecting complex
situations to adapt services. Finally, the design of the proposed architecture is based
on commonly supported ESB and CEP patterns so it is likely to be implemented in a
wide range of products supporting these characteristics.

On the other hand, several aspects remain to be addressed or analyzed. For
instance, this paper only focuses in some ESB mediation capabilities. Therefore a
further analysis is required to know how other more advanced mediation capabilities
can be leveraged to adapt services to context within the ESB. There is also the need to
analyze how advanced web services features (e.g. security, transactions support,
asynchronous invocations) may affect the proposed solution. For example, if SOAP
messages are encrypted or digitally signed some of the adaptation mechanisms may
not be applied. Finally, even though proofs of concepts have been performed with the
different technologies over which the proposed solution is based (i.e. ESB and CEP),
a more complete prototype has to be developed in order to evaluate the solution as a
whole, regarding functional and non-functional aspects. Two implementations of a
common case study will be developed – one based on ESB adaptations and the other
on aspect-oriented adaptations – and will be evaluated with the aim of proving which
the optimal solution is. Future work will mainly concentrate on these aspects.

Acknowledgements

G. Ortiz acknowledges the support from Ministerio de Ciencia e Innovación
(TIN2011-27242)

1084 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

References

[Abowd, Dey, Brown, Davies, Smith, & Steggles, 1999]. Abowd, G. D., Dey, A. K.,
Brown, P. J., Davies, N., Smith, M., & Steggles, P. Towards a Better Understanding
of Context and Context-Awareness [pp. 304–307]. London, UK: Springer-Verlag.
(1999) DOI:10.1007/3-540-48157-5_29

[Alonso, Casati, Kuno, & Machiraju, 2004]. Alonso, G., Casati, F., Kuno, H., &
Machiraju, V. Web services: concepts, architectures, and applications. Berlin ; New
York: Springer. (2004)

[Bao, Cao, Chen, Tian, & Xiong, 2012]. Bao, T., Cao, H., Chen, E., Tian, J., &
Xiong, H. An unsupervised approach to modeling personalized contexts of mobile
users. Knowledge and Information Systems, 31[2], 345–370. (2012)
DOI:10.1007/s10115-011-0417-1

[Boubeta-Puig, Ortiz, & Medina-Bulo, 2011]. Boubeta-Puig, J., Ortiz, G., & Medina-
Bulo, I. An Approach of Early Disease Detection using CEP and SOA. In Service
Computation 2011, The Third International Conferences on Advanced Service
Computing [pp. 143–148]. (2011) Retrieved from
http://www.thinkmind.org/index.php?view=article&articleid=service_
computation_2011_6_30_10134

[Chappell, 2004]. Chappell, D. A. Enterprise service bus [1st ed.]. Sebastopol, Calif:
O’Reilly. (2004)

[Eckert, Bry, Brodt, Poppe, & Hausmann, 2011]. Eckert, M., Bry, F., Brodt, S.,
Poppe, O., & Hausmann, S. A CEP Babelfish: Languages for Complex Event
Processing and Querying Surveyed. In S. Helmer, A. Poulovassilis, & F. Xhafa
[Eds.], Reasoning in Event-Based Distributed Systems [Vol. 347, pp. 47–70]. Berlin,
Heidelberg: Springer Berlin Heidelberg. (2011) Retrieved from
http://link.springer.com/10.1007/978-3-642-19724-6_3

[Erl, 2009]. Erl, T. SOA design patterns [1st ed.]. Upper Saddle River, NJ: Prentice
Hall. (2009)

[Fraile, De Paz, Bajo, De Paz, & Corchado, 2012]. Fraile, J. A., De Paz, J., Bajo, J.,
De Paz, J. F., & Corchado, J. M. Combining case-based reasoning systems and
support vector regression to evaluate the atmosphere–ocean interaction. Knowledge
and Information Systems, 30[1], 155–177. (2012) DOI:10.1007/s10115-010-0368-y

[García de Prado & Ortiz, 2011]. García de Prado, A., & Ortiz, G. Context-Aware
Services: A Survey on Current Proposals. In The Third International Conferences on
Advanced Service Computing [pp. 104–109]. Rome, Italy. (2011) Retrieved from
http://www.thinkmind.org/index.php?view=article&articleid=service_computation_2
011_5_10_10018

[Gilman, Su, Davidyuk, Zhou, & Riekki, 2011]. Gilman, E., Su, X., Davidyuk, O.,
Zhou, J., & Riekki, J. Perception framework for supporting development of context-
aware web services. International Journal of Pervasive Computing and
Communications, 7[4], 339–364. (2011) DOI:10.1108/17427371111189665

1085Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

[González, Laborde, Galnares, Fenoglio, & Ruggia, 2013]. González, L., Laborde, J.,
Galnares, M., Fenoglio, M., & Ruggia, R. An Adaptive Enterprise Service Bus
Infrastructure for Service Based Systems. Presented at the 1st Workshop on Pervasive
Analytical Service Clouds for the Enterprise and Beyond, Berlin, Germany. (2013)

[González & Ortiz, 2013]. González, L., & Ortiz, G. An ESB-Based Infrastructure for
Event-Driven Context-Aware Web Services. In C. Canal & M. Villari [Eds.],
Advances in Service-Oriented and Cloud Computing [Vol. 393, pp. 360–369].
Springer Berlin Heidelberg. (2013) Retrieved from
http://link.springer.com/chapter/10.1007%2F978-3-642-45364-9_29

[González & Ruggia, 2011]. González, L., & Ruggia, R. Addressing QoS issues in
service based systems through an adaptive ESB infrastructure [pp. 1–7]. ACM Press.
(2011) DOI:10.1145/2093185.2093189

[González & Ruggia, 2012]. González, L., & Ruggia, R. Adaptive ESB Infrastructure
for Service Based Systems. In G. Ortiz & J. Cubo [Eds.], Adaptive Web Services for
Modular and Reusable Software Development: Tactics and Solutions. IGI Global.
(2012) Retrieved from http://services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2089-6

[Hérault, Thomas, & Fourier, 2005]. Hérault, C., Thomas, G., & Fourier, U. J.
Mediation and Enterprise Service Bus: A position paper. In Proceedings of the First
International Workshop on Mediation in Semantic Web Services. (2005)

[Hohpe, 2004]. Hohpe, G. Enterprise integration patterns: designing, building, and
deploying messaging solutions. Boston: Addison-Wesley. (2004)

[Kapitsaki, Prezerakos, Tselikas, & Venieris, 2009]. Kapitsaki, G. M., Prezerakos, G.
N., Tselikas, N. D., & Venieris, I. S. Context-aware service engineering: A survey. J.
Syst. Softw., 82[8], 1285–1297. (2009) DOI:10.1016/j.jss.2009.02.026

[Laakko & Hiltunen, 2005]. Laakko, T., & Hiltunen, T. Adapting Web Content to
Mobile User Agents. IEEE Internet Computing, 9[2], 46–53. (2005)
DOI:10.1109/MIC.2005.29

[Li, Sehic, & Dustdar, 2010]. Li, F., Sehic, S., & Dustdar, S. COPAL: An adaptive
approach to context provisioning [pp. 286 –293]. (2010)
DOI:10.1109/WIMOB.2010.5645051

[Luckham, 2002]. Luckham, D. C. The power of events: an introduction to complex
event processing in distributed enterprise systems. Addison-Wesley. (2002)

[Mohomed, Cai, Chavoshi, & de Lara, 2006]. Mohomed, I., Cai, J. C., Chavoshi, S.,
& de Lara, E. Context-aware interactive content adaptation. In Proceedings of the 4th
international conference on Mobile systems, applications and services - MobiSys
2006 [p. 42]. Uppsala, Sweden. (2006) DOI:10.1145/1134680.1134686

[Ortiz, Boubeta-Puig, García de Prado, & Medina-Bulo, 2012]. Ortiz, G., Boubeta-
Puig, J., García de Prado, A., & Medina-Bulo, I. Towards Event-Driven Context-
Aware Web Services. In Adaptive Web Services for Modular and reusable Software
Development: Tactics and Solutions [pp. 148–159. DOI: 10.4018/978–1–4666–2089–
6.ch005]. IGI Global. (2012)

1086 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

[Ortiz & García De Prado, 2010]. Ortiz, G., & García De Prado, A. Improving device-
aware Web services and their mobile clients through an aspect-oriented, model-driven
approach. Information and Software Technology, 52[10], 1080–1093. (2010)
DOI:10.1016/j.infsof.2010.05.002

[Ortiz & Prado, 2010]. Ortiz, G., & Prado, A. G. de. Web Service Adaptation: A
Unified Approach versus Multiple Methodologies for Different Scenarios. In 2010
Fifth International Conference on Internet and Web Applications and Services [pp.
569–572]. Barcelona, Spain. (2010) DOI:10.1109/ICIW.2010.90

[Pautasso, Zimmermann, & Leymann, 2008]. Pautasso, C., Zimmermann, O., &
Leymann, F. Restful web services vs. “big”’ web services: making the right
architectural decision [p. 805]. ACM Press. (2008)
DOI:10.1145/1367497.1367606

[Rao, Fang, Tian, Lane, Srinivasan, Banks, & Lei, 2006]. Rao, Y. F., Fang, R., Tian,
Z., Lane, E., Srinivasan, H., Banks, T., & Lei, H. Cache mediation pattern
specification: an overview. (2006) Retrieved from
http://www.ibm.com/developerworks/webservices/library/ws-soa-cachemed/
?S_TACT=105AGX52&S_CMP=cn-a-ws

[Schmidt, Hutchison, Lambros, & Phippen, 2005]. Schmidt, M.-T., Hutchison, B.,
Lambros, P., & Phippen, R. The Enterprise Service Bus: Making service-oriented
architecture real. IBM Systems Journal, 44[4], 781–797. (2005)
DOI:10.1147/sj.444.0781

[Quan Z. Sheng & Benatallah, 2005]. Sheng, Q. Z., & Benatallah, B. ContextUML: a
UML-based modeling language for model-driven development of context-aware web
services. In International Conference On Mobile Business [pp. 206–212]. (2005)
DOI:10.1109/ICMB.2005.33

[Q.Z. Sheng, Pohlenz, Yu, Wong, Ngu, & Maamar, 2009]. Sheng, Q. Z., Pohlenz, S.,
Yu, J., Wong, H. S., Ngu, A. H. H., & Maamar, Z. ContextServ: A platform for rapid
and flexible development of context-aware Web services. In International Conference
on Software Engineering [pp. 619–622]. (2009) DOI:10.1109/ICSE.2009.5070570

[Sosinsky, 2011]. Sosinsky, B. Cloud Computing Bible. John Wiley & Sons. (2011)

[Strobbe, Van Laere, Dhoedt, De Turck, & Demeester, 2011]. Strobbe, M., Van
Laere, O., Dhoedt, B., De Turck, F., & Demeester, P. Hybrid reasoning technique for
improving context-aware applications. Knowledge and Information Systems, 31[3],
581–616. (2011) DOI:10.1007/s10115-011-0411-7

[Taher, Fauvet, Dumas, & Benslimane, 2008]. Taher, Y., Fauvet, M.-C., Dumas, M.,
& Benslimane, D. Using CEP technology to adapt messages exchanged by web
services [pp. 1231–1232]. New York, NY, USA: ACM. (2008)
DOI:10.1145/1367497.1367741

[Wylie & Lambros, 2009]. Wylie, H. M., & Lambros, P. Enterprise Connectivity
Patterns: Implementing integration solutions with IBM’s Enterprise Service Bus
products. (2009) Retrieved from
https://www.ibm.com/developerworks/library/ws-enterpriseconnectivitypatterns/

1087Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

[Xu, Wolf, Stojanovic, & Happel, 2010]. Xu, Y., Wolf, P., Stojanovic, N., & Happel,
H.-J. Semantic-based Complex Event Processing in the AAL Domain. In A. Polleres
& H. Chen [Eds.], ISWC Posters&Demos [Vol. 658]. CEUR-WS.org. (2010)
Retrieved from
http://dblp.uni-trier.de/db/conf/semweb/pd2010.html#XuWSH10

[Yahyaoui, Mourad, Almulla, Yao, & Sheng, 2012]. Yahyaoui, H., Mourad, A.,
Almulla, M., Yao, L., & Sheng, Q. Z. A synergy between context-aware policies and
AOP to achieve highly adaptable Web services. Service Oriented Computing and
Applications, 6[4], 379–392. (2012) DOI:10.1007/s11761-012-0113-3

[Yu, Han, Sheng, & Gunarso, 2012]. Yu, J., Han, J., Sheng, Q. Z., & Gunarso, S. O.
PerCAS: An Approach to Enabling Dynamic and Personalized Adaptation for
Context-Aware Services. In C. Liu, H. Ludwig, F. Toumani, & Q. Yu [Eds.], Service-
Oriented Computing [Vol. 7636, pp. 173–190]. Berlin, Heidelberg: Springer Berlin
Heidelberg. (2012) Retrieved from
http://www.springerlink.com/index/10.1007/978-3-642-34321-6_12

1088 Gonzalez L., Ortiz G.: An Event-Driven Integration Platform ...

