
A Middleware Architecture for Dynamic Adaptation in

Ubiquitous Computing

João Lopes, Rodrigo Souza, Cláudio Geyer

(Federal University of Rio Grande do Sul, Porto Alegre - RS, Brazil

{jlblopes, rssouza, geyer}@inf.ufrgs.br)

Cristiano Costa, Jorge Barbosa

(University of the Vale do Rio dos Sinos, São Leopoldo - RS, Brazil

{cac, jbarbosa}@unisinos.br)

Ana Pernas, Adenauer Yamin

(Federal University of Pelotas, Pelotas - RS, Brazil

{marilza, adenauer}@inf.ufpel.edu.br)

Abstract: The development of applications that adapt to the environment and remain
running even when the user is moving or switching device, remains an open research
challenge. In this article we present a view of the EXEHDA middleware and a new
service created for dynamic adaptation. EXEHDA is service-oriented, adaptive and
was conceived to support the execution of ubiquitous applications. The main concept
in the proposed design for the middleware and for the application is context awareness
expressed in an adaptive behavior. The middleware manages and implements the
follow-me semantics for ubiquitous applications. This is also a key to provide function-
ality adapted to the constraints and unpredictability of the large-scale environment.
To achieve this objective, EXEHDA employs various strategies in its services to allow
the adaptation to the current context, such as on-demand adaptive service loading,
and dynamic discovery and configuration. In that sense, EXEHDA provides services for
distributed adaptive execution, context recognition, ubiquitous storage and access, and
anonymous and asynchronous communications. To evaluate the new service proposed
for dynamic adaptation we developed a case study, implementing an application in
medical area. Analyzing the results we can see that the users found the application
easy to use and usefulness for health workers at a hospital. This work is sponsored by
RNP, FINEP and CNPq - Brazilian Foundations.

Key Words: Ubiquitous Computing, Service-oriented Middleware, Adaptive Middle-
ware, Context-aware Adaptation, Dynamic Adaptation.

Category: L.7, C.2.4, J.3

1 Introduction

The field of Ubiquitous Computing (UbiComp) presupposes the provision

of computing environments with information and communication technology

everywhere, for everyone, all the time. In this way, human beings will be

citizens of both the physical world and the augmented reality that extends this

world [Caceres and Friday 2012].

Journal of Universal Computer Science, vol. 20, no. 9 (2014), 1327-1351
submitted: 18/6/12, accepted: 5/5/14, appeared: 1/9/14 J.UCS

In Ubiquitous Computing, systems need to sense and adapt to the envi-

ronment [Kakousis et al. 2010]. They have to understand the context in which

they are interested. This new class of computer systems, adaptive to the

context, enables the development of richer applications, more elaborated and

complex, exploiting mobility of the user and the dynamic nature of mod-

ern computing infrastructures. Nevertheless, the development of applications

that continuously adapt to the environment and remain running even when

the user is moving or switching device, remains an open research chal-

lenge [Costa et al. 2010] [Knappmeyer et al. 2013].

We consider that a central issue in the context-aware adaptation is the degree

of expressiveness that can be achieved in the description of contextual informa-

tion [Da et al. 2011]. In that sense, the use of technologies to support semantic

processing, such as ontologies, are suitable for supporting the reasoning services

in the scope of ubiquitous applications [Baldauf et al. 2007] [Bettini et al. 2010].

Ontologies can capture the full range of concepts involved in a complex

environment, increasing the expressiveness of context information and providing

support for reasoning [Fujii and Suda 2009].

Previously published work about EXEHDA middleware [Lopes et al. 2007]

discussed and proposed services to deal with aspects related to communication,

physical resources, context information. In turn, this work discusses the context

adaptation, and proposes a new EXEHDA service created for dynamic adapta-

tion, called DA Service.

The main contribution of this work is an architectural model, and an

ontology-based semantic model designed to support the development of adaptive

applications. This proposal contributes particularly to the Context Recognition

and Adaptation Subsystem of EXEHDA middleware.

The article is structured as follows. Section 2 outlines the EXEHDA

Middleware software architecture. Section 3 describes the main features of the

EXEHDA middleware. Section 4 discusses the EXEHDA middleware services.

Section 5 details the context-aware adaptation in the EXEHDA middleware,

introducing a service for dynamic adaptation control. In Section 6 we present a

case study and the evaluation of the dynamic adaptation service. Finally, related

work and concluding remarks are presented in sections 7 and 8, respectively.

2 EXEHDA Middleware Software Architecture

The foundation of our proposal is the EXEHDA Software Architecture, in

which cells form a large-scale computing environment. These cells are composed

of several mobile and stationary physical resources. The components of the

computing environment, such as: data, code, devices, services and resources,

are ubiquitous and managed by a middleware that provides continuous access

to them [Augustin et al. 2008].

1328 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

In this computing scenario, the mobile devices are increasingly used as

interfaces. They do not store neither code nor data persistently (except for some

caching strategy), but operate as portals that obtain the code to be executed and

that can transfer the execution to other devices using proximity or resource avail-

ability as a selection criterion [Bellavista et al. 2012]. Furthermore, each user has

a virtual environment that can be accessed at any location, and with the available

device. Moreover, the user’s location in the environment has a significant effect

in the way ubiquitous applications are executed. As the user moves physically,

i.e. by carrying his current device - user mobility - or changing the device being

used - terminal mobility, his currently running applications, in addition to the

user’s virtual environment, need to be continuously available to him, following

the user’s movements in the ubiquitous space. Such behavior defines what we

call follow-me semantics of ubiquitous applications [Costa et al. 2008].

The main properties of EXEHDA applications are: distributed, mobile,

adaptive and reactive to the context, and capable of expressing the follow-me

semantics - the application follows the user in his movement at a large-scale

space. The application’s code is installed on-demand on the devices used and

this installation is adaptive to context of each device [Augustin et al. 2005].

Another behavior present in ubiquitous executions is the notion of planned

disconnections. A mobile device, for example, would rather operate disconnected

to reduce battery consumption and, at specific moments, reconnect to update

the state of the global execution. Such disconnection/reconnection procedures

should be, whenever possible, transparent to the applications.

The EXEHDA middleware software architecture, shown in Figure 1, aims

to provide an integrated solution to build and execute large-scale ubiquitous

applications. The execution of such applications is supported by EXEHDA

middleware.

EXEHDA architecture is divided in a logical organization of three layers:

(Upper) application layer; (Middle) support layer, and execution environment;

and (Lower) basic systems’ layer. The Upper Layer corresponds to the abstrac-

tions provides to the application designer to ease the development of ubiquitous

context-aware adaptive application. This is mainly obtained by the provision of

a Java Framework. We also have in this and the next layer the representation of

context awareness. The reason for that is to underscores its importance in the

architecture, highlighting their presence in the design of many components.

In the Middle Layer are the support mechanisms for the implementation

of ubiquitous application and adaptation strategies. This layer consists of

two levels: the first level consists of the application service modules, and the

second level is formed by the EXEHDA basic services. These basic services

enable features required for the upper level and cover various aspects, such as

ubiquitous access, communication, distributed execution, context recognition,

1329Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Figure 1: EXEHDA Middleware Software Architecture

and adaptation.

Finally, the Lower Layer of the architecture is composed of native languages

and systems that integrate the execution physical environment. For reasons of

portability, in this layer the platform for implementation is the Java Virtual

Machine in its different approaches. The architecture assumes the existence of a

network to support the execution of components and services on a global scale.

3 EXEHDA Middleware Features

EXEHDA is service-oriented architecture that contribute in three perspectives:

(i) provide a management through services to control the physical environment

in which the processing will take place; (ii) support for execution of applications,

by providing the services and abstractions needed to implement the follow-me

semantics; and (iii) offers an API (Application Programming Interface) to foster

ubiquitous application development [Yamin et al. 2005a].

The requirements of operation in a high heterogeneous environment, in

which hardware capabilities and software availability on each device may

vary, have motivated the use of pluggable services. In this approach, the

middleware minimum core extends its functionalities according to the availability

of resources. The loading of these pluggable services is done on-demand and,

moreover, is context adaptive. In this way, we are able to employ implementations

of services that are better tuned to each device and also reduce resource

1330 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

consumption by only loading services that are effectively used. Such scheme

is possible because services are defined by their semantics and interface rather

than by a specific implementation.

Additionally, in each node, a execution profile defines the loading policy that

will be applied for each of the middleware services. This loading policy specifies

one of two currently available modes: (i) bootstrap, meaning that the service

should be loaded in the node startup process; or (ii) on demand, meaning that

the service will be loaded in its first use.

The minimum core provides the loading policy for services and is included

in each node that composes the execution environment. Using this feature, we

can configure what is needed and when it should be loaded. However, there

are two services that must always be present: (i) Profile Manager, in charge of

interpreting the execution profiles, making these profiles available at runtime for

the other middleware services; (ii) Service Manager, which activates services in

anode based on the information provided by the Profile Manager. Service code

is loaded on demand from a service repository, which may be local or remote

depending on the device storage capacity and the nature of the service being

loaded.

EXEHDA has the requirement of remaining operational during periods

of planned disconnection. To support this feature, we split the services into

two parts: a node instance, and a cellular instance. The former is local to

each device, while the latter executes in the base node. Hence, the local

device will remain operational during the planned disconnection, regarding

that the node instance of that service would temporary renounce the access

to resources that are in the network. On the other hand, the cellular instance

of the service, in execution on the base node of the cell, acts as a reference

point for services that require distributed, inter-node or inter-cell, coordination

procedures [Augustin et al. 2005].

4 EXEHDA Middleware Services

EXEHDA is composed of several integrated services. An overview of these

services is presented in this section. The new service created for dynamic

adaptation (DA Service) is described in section 5.

The middleware services are conceptually organized in subsystems: data and

code ubiquitous access, uncoupled spatial and temporal communication, large-

scale distribution, context recognition and adaptation [Yamin et al. 2005b]. The

subsystem integration is shown in Figure 2.

1331Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Figure 2: EXEHDA Middleware Subsystems

4.1 Multi-Level Communication Services

Regarding communications, EXEHDA currently provides, through the Dis-

patcher, WORB, and CCManager services, three types of communication

primitives, each one addressing a distinct abstraction level.

The Dispatcher Service corresponds to the lowest abstraction level, pro-

viding message-based communications. Message delivering is done through

per-application channels, which may be configured to ensure several levels of

protection for the data being transmitted. Protection levels range from data

integrity, using digital signatures, to privacy through encryption mechanisms.

Additionally, the Dispatcher Service uses a checkpointing/recovery mechanism

for the channels, which is activated when a planned disconnection is in course.

This feature may or may not be activated by the upper communication layers

depending on its particular demands.

In order to make the development of distributed services easier, EXEHDA

also provides an intermediary solution for communications, based on Remote

Method Invocations, through the WORB Service. The programming model

is similar to Java RMI, but optimized to the ubiquitous requirements. More

specifically, WORB remote method invocations, differently from Java RMI, do

1332 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

not require that the device keep connected during the entire execution of the

method on the remote node. Instead, WORB was built on the functionality pro-

vided by the Dispatcher Service, including a per-invocation ID. The invocation

ID remains valid during the disconnection, allowing the WORB to re-sync with

the remote node after reconnection and obtain the returned values from the

invocation.

At a higher level, the CCManager Service provides tuple-space based

communications. It builds on the WORB Service, which also handles planned

disconnections, providing to applications an anonymous and asynchronous

communication support. This model is provided in the CCManager Service and

is better suited to scenarios that application components might migrate among

nodes, since it does not require both sides to coexist at the same time for the

communication to take place.

4.2 Management Services of Physical Resources

From the middleware point of view, environment resources fit in one of two

categories: processing node or specialized resources. The former corresponds

to the nodes, which effectively execute and whose access is managed by the

middleware. The latter corresponds to specialized devices, e.g. printers, scanners,

etc., whose access is not done through one of the middleware services, but

through the use of some specific libraries. Although not managed by EXEHDA,

the specialized devices are also cataloged in the CIB Service in order to allow

applications to locate and use them.

The Discoverer Service is in charge of finding specialized resources in the

environment based on an abstract definition of the resource. Typically, this

service interacts with the CIB Service from its own cell, aiming at satisfying

the resource discovery request in the scope of the local cell. When the local

resources fail to fulfill the request, the Discoverer Service interacts with the

Resource Broker service of the neighbors cells. The strategy adopted in this

extra-cell search is characteristic of the particular Discoverer Service instance

in use. These services employ a language to describe resources and its interfaces

are standardized. Since the Middleware does not manage specialized resources,

the results of a Discoverer Service search do not imply resource allocation or

even resource reservation.

4.3 Services to Build the Context Information

The Monitor Service implements a monitoring scheme based on sensors, which

employs indexes to describe specific aspect of the environment. These sensors

can be customized through parameters. The whole set of sensors installed on a

node is part of the node description information registered in the CIB Service.

1333Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

The data generated by each sensor is gathered by the Monitor Service, which

typically runs on the same node that sensors are installed. The gathered data

is published by the Monitor Service to a Collector Service, which typically runs

on the base-node.

Both the gathering of data by the sensors and the publication to the

Collector Service by the Monitor occurs in discrete multiples of a per-node

configured quantum. The quantum parameter allows the resource owner to

control, externally to the middleware, the degree of intrusion of the monitoring

mechanism in the host. After a quantum of time expires, the Monitor Service

executes a pooling operation over the active sensors in the node. Then, it applies

the publishing criteria specified for the sensor data, determining, or not, the

generation of a publishing event for that sensor. Thus, the events generated after

a quantum expiration are grouped into a single message, reducing the amount

of data that the Monitor has to transmit to the Collector.

The Collector Service aggregates information from several monitors in the cell

and forwards them to the registered consumers. Among such consumers are other

middleware services like the Context Manager and the Dynamic Adaptation

Service.

5 Dynamic Adaptation Control Service

In order to increase the flexibility for specifying adaptations, the Dynamic

Adaptation Service (DA Service) is designed to support the definition of

application requirements.

In the design of the service we considered that several elements of context

could be relevant for a given application, and that the possibility of various

adaptations for the same software component could help the maintainability

and even the improvement in the quality of the execution, whenever a context

change occurs.

This adaptation control model allows an incremental development of speci-

fications, which includes policies, rules, parameters, constraints, and adaptation

actions. This feature enables reuse and customization of these specifications in

the development of adaptive applications.

The Dynamic Adaptation Service employs utility functions, which considers

the parameters of adaptation and execution context, as well as user preferences.

This function calculates the weighted sum of the differences between the

parameters offered by the environment and required by the application, where

the weights reflect the priorities of user needs. Within this model, the goal of DA

Service can be formulated as a guarantee that at any time, the adaptation with

the highest utility is performed and does not violate the resource constraints

imposed by the environment.

1334 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

The DA Service aggregates a semantic approach to the EXEHDA’s services.

It is based on a model represented by ontologies. The semantic model, an

overview of this service architecture, and the integration with the others

EXEHDA’s middleware services are presented in the next subsections.

5.1 Semantic Model

The semantic model used by DA Service includes an ontology, called OntUbi,

which represents the environment managed by EXEHDA. The OntUbi is

composed by the following ontologies: (i) OntContext - Context Situation - it

represents the collected contexts, notified contexts, and contexts of interest (see

Figure 3); (ii) OntAdapt - Adaptation Policy - rules, parameters, operations and

preferences, constraints and adaptation actions for the applications components.

Figure 3: Context Situation Ontology

1335Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

In OntUbi, elements of context are entities and have three basic categories

of information: (i) hardware resources: devices, peripherals and information

of nodes and sensors, such as location, memory, battery, bandwidth, CPU

load, among others; (ii) software resources: description of the operating system,

middleware and applications, and adaptation policy; (iii) user resources: user

profile and preferences.

The Adaptation Policy is in charge of registering the profiles of the

application software components. This ontology is composed by specification

rules that manage the adaptive behavior of the application components.

In OntAdapt, we can set policies for various applications. Each application

may consist of several components, instances of relationship “Application_Com-

ponent”. Each component can have several adaptations, instances of the rela-

tionship “Component_Adapter”. Each adaptation can have multiple parameters,

instances of relationship “Adapter_ParamType”. A parameter can have multiple

instances of lower value, higher value, and utility value, which will be instances

of the relationship “ParamType_ParamValue”.

The OntAdapt is instantiated in the application development time and

used at runtime by the DA Service to guide the context adaptations of the

components. The ontological model allows an incremental evolution of the

OntAdapt instances, such as rules, parameters, adapters, and operations.

Figure 4 shows the attributes and relationships between classes of OntAdapt.

This ontology is instantiated and maintained by the developer, using a frame-

work, called FWADAPT [Warken et al. 2010]. The programmer employs this

framework, in development time, to instantiate the adaptation policy.

The main aims considered in the design of this framework were: (i) to be ge-

neral, allowing different kind of applications follow the EXEHDA’s programming

model; (ii) to provide procedures for editing or extending definitions previously

established in applications; (iii) to enable resources that foster the reuse of

existing specifications to adaptations, rules, and operations.

5.2 Architectural Model

The design of the DA Service considers the following architectural features:

(i) monitoring of context, which must be kept detached from the application,

and executes through the use of reusable elements in the middleware; (ii) context

processing, which executes in the middleware and must be extensible, supporting

the inclusion of new elements of context and new ways of reasoning.

In the adaptation decision-making, the model considers three categories of

information: (i) the context, based on monitored data, semantic information and

inferences; (ii) the adaptation policy of the application; (iii) the user preferences.

The DA Service supports both functional (that selects the code being

executed) and non-functional (related to scheduling and resource allocation)

1336 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Figure 4: Adaptation Policy Ontology

adaptations [Lopes et al. 2007]. Moreover, the service includes a Multi-level

Collaborative adaptation organized in two levels. At the application level, in

development time, two approaches are provided: (i) creation of the following

ontologies: Adaptation Policy and Context of Interest; (ii) programming of the

adaptive commands in the software components. Furthermore, at the application

level, at runtime, the middleware activates commands that trigger the EXEHDA

adaptive services. At the same time, in the service level, the middleware makes

the decision of adaptation, considering the state of the context, the adaptation

policy, and of user preferences.

DA Service communicates through predefined interfaces, both with the

applications, by the commands of adaptation, as with other middleware services.

The service encompasses communication, contextual data, adaptation decisions,

and can be developed, modified and extended independently.

1337Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

We present the definition of DA Service software architecture in Figure 5.

The service is organized in the following modules.

Figure 5: Software Architecture of the DA Service

Notified Contexts Handler module receives the identification of notified

contexts from the Context Recognition Subsystem. These contexts are accessed

in order to define the possible interest of the application component, and the

sensor values associated with it. This mechanism also deals with application

policy, using the semantic processor, and accesses the information needed to

determine the adaptation rule. In this module DA Service prepares all the needed

information for deciding which adaptation to make.

A list with one or more actions to adapt, classified by criteria of utility, is

produced by Adapter Rules Processor module. It infers the possible options for

adaptive actions, using the adaptation rule and the parameters values used to

evaluate it. Possible actions are classified using the utility function, from higher

to lower use of adaptive action. Functional and non-functional adaptations are

computed the same way, through the adaptation rule.

User Rules Processor module accesses the user’s preferences for the applica-

tion in the User class on OntUbi. These preferences are sorted by utility value.

This way, it selects the one with the highest utility value to the user, from the

possible adaptive actions inferred in the previous module.

The information necessary for adaptation action, obtained from the previous

1338 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

module, is provided by Inferred Adaptation Provider module. The implementa-

tion of the adaptation is inserted into the code of the running component. At

this moment, the Executor Service of the EXEHDA access the information for

adaptation execution.

Semantic Processor module accesses, instantiates, and infers the information

needed to compute the adaptation rules. The product of these rules is delivered

to the mechanism that makes the retention of the adaptation decisions for the

applications components.

5.3 Integration with Other EXEHDA Middleware Services

The generation of the context state information, which guides many of

the middleware operations and also the application adaptive behavior, is

accomplished by the EXEHDA Context Recognition Subsystem, through the

cooperative operation of the Monitor, Collector and Context Manager services.

The produced context state information feeds both functional and non-functional

adaptation processes, which are managed by the DA Service.

When a new component is instantiated through the use of the Executor

Service, other middleware services are activated. Even though the component

being instantiated may not be adaptive itself, at least non-functional adaptations

would take place. Thus, information about the current context state becomes

necessary.

As previously stated in this article, the adaptation model is collaborative.

Such a collaborative adaptation process occurs in two forms: (i) adaptation com-

mands, by explicit calls to some of the middleware services, and (ii) adaptation

policies, which implicitly guide middleware operations. Adaptation policies are

managed by EXEHDA DA Service in form of OWL documents, instantiated from

the Adaptation Policy Ontology and deployed together with the application code

when it is installed in the BDA ubiquitous repository.

The adaptation policy of an application is defined in the DA Service. The

adaptation policy defines not only the requirements for the resources to be

allocated in the application, but also affinity criteria among the components

and between the components and the external resources used. The DA Service

combines these abstract definitions with run-time gathered information, obtained

from the Context Recognition Subsystem, when deciding on component place-

ment. This service also negotiates resource allocation with the Resource Broker

Service.

Whenever a component migrates, the DA Service re-evaluates the affinity

criteria defined for that component, triggering the migration of other components

when necessary, thus contributing for the maintenance of the application

cohesion and implementation of the follow-me semantics.

1339Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Furthermore, the functional adaptations, also managed by the DA Service,

receive meta-data generated at development-time in the form of adaptation

policies. In this case, an adaptation policy binds component implementation to

specific context element states. The DA Service is activated when an adaptive

component is instantiated or restored after a migration, in order to select the

proper implementation for the current execution context state. Additionally,

the DA Service also takes care of the management of the run-time functional

adaptations. This is accomplished by notifying the adaptive components when

a context element for which they registered interest has changed its state. The

information about the current state of the execution context used by the DA

Service is provided by the Context Recognition Subsystem.

6 Case Study

Since the middleware is constantly under modeling and implementation, we are

using a case study strategy to evaluate the middleware services that were already

developed. The strategy employed in this evaluation uses ubiquitous applications

specially devised to assess the DA Service.

In the adaptation control model we can configure specific rules to the

adaptation control model. This allows its use in multiple scenarios, as well as in

different context domains. In this article, we employ an application that allows

functional adaptation in medical area.

The application developed uses the follow-me semantics and the context-

aware adaptation, provided by the EXEHDA services, particularly the DA

Service described in section 5. We defend a model of collaborative adaptation be-

tween application code and the execution system, as well as a semantic-oriented

approach for dynamic adaptation. In that sense, the application was modeled

considering these principles.

6.1 Ubiquitous Monitoring of Patients

The Ubiquitous Monitoring of Patients is an application targeted to the medical

area. The functions are designed to explore the context-aware adaptation control

promoted by the DA Service, considering the demands of ubiquitous behavior

of this application.

The application uses a database created specifically for this case study. The

values, alert levels, rules, and parameter adaptation are approximate averages,

with no commitment to translate an accurate medical data. This is necessary to

manipulate the data during the tests, avoiding the incursion at ethical aspects.

The proposition in this case study is to improve the monitoring of patients

that require continuous observation, avoiding the need of admitting then in an

Intensive Care Unit. The main objectives of this proposition are: (i) to show

1340 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

patient data, acquired dynamically using a mechanism of signals sensing; (ii) to

present the different alert levels to health workers, such as physicians and nurses,

in an automated way, based on the sensed data; (iii) to integrate the alerts service

application in the open communication network (Google Talk); (iv) to provide

access from both mobile devices and desktops; and (v) to enable health workers

ubiquitous access to the history of sensed data of the patients.

The health workers can run two modules: (i) dynamic capture of patients’

vital signs; and (ii) history of patients’ alerts. The signals considered in this

version are heart rate, blood pressure and temperature. Different alert levels to

health workers are produced according to the values of the signal data. On the

other hand, the history includes the date and time of the alert, its level, and the

values of vital signs. This information assists the physician’s decision-making

regarding the patient’s clinical status.

The application is designed to explore functional adaptations, managed

by the DA Service. The adaptations are specified in the ontology OntAdapt,

considering two situations: (i) the context data sensed from the patient (vital

signs), determining the software component used to display the alert level; and

(ii) the device (desktop, smartphone or tablet) used by the health workers,

selecting the component with the most appropriate interface to the device.

To build the adaptation policy, considering the specifications provided by

health workers, the application developer uses the framework FWADAPT,

instantiating classes and relationships of the ontology OntAdapt, with their

parameters and adaptation rules. The application is instantiated in the Appli-

cation class and its software components in the Component classes of OntAdapt

ontology. Furthermore, the components’ adapters are instantiated in the ontology

classes Adapter, Operation, Param_Type, Param_Value, and Sensor.

Figure 6 shows the values associated with the properties of the class

Application and the software components instantiated in the class Component.

The software component “Patient Monitoring (500)” can adapt to the

component “501” to “514”, depending on vital signs collected and the type of

device used by health worker. The software component “500” is associated with

adapters “Automatic Alert” and “Device Type”, as Figure 7. These adapters

are related to certain types of parameters, for example, the Figure 8 shows the

parameters related to the adapter “Automatic Alert”.

Listing 1 shows an instance of the class “Adapter”, in which the

rule for determining the adapter “Automatic Alert”is specified. This

rule uses information instantiated in the ontology “OntContext” by the

Context Recognition Service and in the ontology “OntAdapt” by the

framework FWADAPT. The module “Semantic Processor” handles this

rule using SPARQL (http://jena.apache.org/tutorials/sparql.html) and Jena

API (http://jena.apache.org), and the result corresponds to the adaptive soft-

1341Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Figure 6: Application Components

ware component relative to the alert level.

The devices considered in the adaptive process are smartphones and desktops.

Figure 9 shows the access to the “Alert History of the Patient”, one of the features

planned for the application both in smartphones and desktops.

Listing 1: Class “Adapter”
Adapter_Id = 1
Adapter_Desc = Automatic Aler t
Adapter_LogicalRule = (ROUND ((CN_ContextNotifiedSensor . CN_SensorTrad (CN_Sensor .

Sensor_Id = 100) ∗ ParamType_ParamValue . ParamValue_Utility (ParamType_ParamValue
. ParamType_Id = 001) + CN_ContextNotifiedSensor . CN_SensorTrad (CN_Sensor .
Sensor_Id = 101) ∗ ParamType_ParamValue . ParamValue_Utility (ParamType_ParamValue
. ParamType_Id = 002) + CN_ContextNotifiedSensor . CN_SensorTrad (CN_Sensor .
Sensor_Id = 102) ∗ ParamType_ParamValue . ParamValue_Utility (ParamType_ParamValue
. ParamType_Id = 003) + 0 ,9) + Context_Notif ied . CN_ComponentId

The automatic alert levels are defined by physicians for patients. The DA

Service runs the adaptation procedures using the following levels:

– “Automatic Alert” Level 1: normal signs. Application with identification and

patient vital signs: name, specialty, heart rate (HR), temperature (T), and

blood pressure (BP). Interface Level 1 (green);

1342 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Figure 7: Component Adapters

– “Automatic Alert” Level 2: some signs are outside normal range (HR or T).

Interface Level 2 (yellow);

– “Automatic Alert” Level 3: medium problem. Just BP is outside the normal

or HR and T outside the normal. Interface Level 3 (orange) and gtalk

message to nurse;

– “Automatic Alert” Level 4: maximum alert. BP is outside the normal, T

and/or HR are outside the normal. Interface Level 4 (red) with gtalk message

to nurse and message delivery option for physicians.

The adaptations of the application are chained: the decision of the adapter

“Device Type” uses the decision previously taken with the adapter “Alert Level”.

Figure 10 shows the Alert Level 4 for desktop and also smartphone.

6.2 Evaluation

In this section we present the experiment details and the results obtained with

the application’s evaluation. The main target is to assess the effective impact of

using dynamic adaptation in the application usability.

1343Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Figure 8: Adapter “Automatic Alert”

The evaluation regards the application acceptance, which involved São

Francisco Hospital (a hospital that belongs to the Catholic University of Pelotas,

Brazil) volunteer users, among physicians and nurses. These volunteers answered

a questionnaire, after they used the application.

For the study we considered 10 physicians and 20 nurses, who were selected

based on their activities in the hospital. Each participant used a mobile device

(smartphone) and a desktop, with the application installed. We performed a

basic training on the application operation beforehand. Participants were asked

to use the application and respond to an evaluation questionnaire regarding the

experience in the use of the system.

The answers should be within a range of five points

(http://psycnet.apa.org/psycinfo/1933-01885-001), ranging from 1 point

(totally disagree) to 5 points (totally agree). To evaluate the model acceptability,

checking the system usability, the questionnaire were defined based on the

Technology Acceptance Model [Yoon and Kim 2007]. The TAM model considers

the following main themes for application acceptance: (i) Ease of Use: means

the degree in which users evaluating the application may reduce their effort;

(ii) Usefulness: means the degree in which users evaluating the application may

1344 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Figure 9: Alert History (smartphone and desktop versions)

improve their performance.

Figure 10: Automatic Alert Level 4 (Smartphone and Desktop)

Table 1 and Table 2 contain the questionnaire applied to users, and answers

obtained. The questions were designed in order to be simple, short and direct.

Table 1 presents the questionnaire with answers regarding Ease of Use with the

following guidance: “Regarding the ease of use of the application, tell us in which

1345Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

degree you agree with the following statements”. The table presents the question

at the first column and the percentage obtained with the number of users in

brackets following from “Totally Disagree” to “Totally Agree”. The last column

shows the consolidation average percentage score obtained by the responses,

which varied between zero and five.

Table 1: Ease of Use Evaluation

Question Totally
Disagree

Partially
Disagree

Neutral Partially
Agree

Totally
Agree

Average

1. The application is
easy to understand.

0,0%(0) 0,0%(0) 0,0%(0) 30,0%(9) 70,0%(21) 4,7

2. The application is
easy to use.

0,0%(0) 0,0%(0) 0,0%(0) 30,0%(9) 70,0%(21) 4,7

3. With little effort I
can make the dynamic
capture of patients’ vital
signs.

0,0%(0) 0,0%(0) 0,0%(0) 20,0%(6) 80,0%(24) 4,8

4. With little effort I can
access the history of pa-
tients’ alerts.

0,0%(0) 0,0%(0) 0,0%(0) 20,0%(6) 80,0%(24) 4,8

5. The application inter-
face is properly adapted
to the device (mobile or
desktop).

0,0%(0) 0,0%(0) 10,0%(3) 20,0%(6) 70,0%(21) 4,6

Analyzing the results we can observe that approvals were higher regarding

ease of use. In general most people approved the application for this requirement,

since average grades were high, up to four (4.5), which means approval of more

than ninety percent (90%).

Table 2 presents the questionnaire with the user’s answers on the subject

usefulness, with the following guidance: “Regarding the application usefulness,

tell us in which degree you agree with the following statements”. The last two

questions were posed in order to determine the true intent of the evaluator in

using the application. We could verify that the approval was also high (over

eighty percent), but with values slightly lower than the previous questions. This

assessment is probably not due to usability issues, since they have high grades,

but because of other users concerns such as security and privacy, regarding the

use in a hospital. In that sense, security and privacy are being addressed in the

software architecture trough a support for the data be transferred in encrypted

way. So, the unauthorized access to data is avoided.

Considering the relevance of this issue for the applications’ domain like

medical area, others ongoing work in our research group are specifically dealing

with security and privacy and must improve these aspects in the software

architecture [Machado 2013] [Almeida 2013].

Finally, analyzing all the results we can see that in general the users found

1346 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

the application easy to use. Regarding the perception that these users had about

the application usefulness, they also considered that application would be useful

for health workers at a hospital.

7 Related Work

CARE [Agostini et al. 2009] is a middleware to support context adaptation.

CARE uses policies expressed through rules to define how context data should

be derived, indicating the reasoning that could be used. CARE has a narrower

focus, including the adaptation of usual services of Internet in the context of

mobile computing. In turn, EXEHDA has a comprehensive focus, handling

the functional and non-funcional adaptation of mobile, context-aware, and

ubiquitous applications. Differently from CARE, EXEHDA employs utility

functions, besides rules, to select the best adaptation.

Table 2: Usefulness Evaluation

Question Totally
Disagree

Partially
Disagree

Neutral Partially
Agree

Totally
Agree

Average

1. The options presented
are relevant.

0,0%(0) 0,0%(0) 0,0%(0) 40,0%(12) 60,0%(18) 4,6

2. The application makes
it easy to do the dy-
namic capture of pa-
tients’ vital signs.

0,0%(0) 0,0%(0) 0,0%(0) 40,0%(12) 60,0%(18) 4,6

3. The application makes
it easy to access the his-
tory of patients’ alerts.

0,0%(0) 0,0%(0) 0,0%(0) 30,0%(9) 70,0%(21) 4,7

4. The application is use-
ful for a hospital.

0,0%(0) 0,0%(0) 20,0%(6) 30,0%(9) 50,0%(15) 4,3

5. I would use this ap-
plication in my work at
hospital.

0,0%(0) 0,0%(0) 30,0%(9) 20,0%(6) 50,0%(15) 4,2

WComp [Ferry et al. 2013] is a middleware for ubiquitous computing, based

on a software infrastructure, an architecture for service composition, and a

mechanism for adaptation. The proposal has some limitations in dealing with

context adaptation. The main constraint is not to define an expressive model

for the representation of contextual information. In turn, EXEHDA defines

a semantic model, based on ontologies, which improves the expressiveness of

contextual information for the context adaptation process.

Rainbow [Garlan et al. 2009] consists of a framework, a language and an

incremental process engineering of self-adaptation. The adaptation approach,

proposed in Rainbow, is similar to that used in EXEHDA, regarding the

separation of the adaptation from the logical application. However, Rainbow

1347Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

does not focus on the requirements relevant to environments with mobile devices.

Moreover, the strategies for adaptation are based on situation-action rules, which

specify exactly what to do in certain situations. EXEHDA, on the other hand,

uses the extended objectives policy expressed as utility functions, which is a

higher-level specification for adaptation strategies.

Madam [Geihs et al. 2009] is a European research project with partners in

industry and universities. Madam, in addition to a middleware, includes a

methodology for model-driven development, based on adaptation models and

the corresponding changes model-to-code. EXEHDA does not focus on software

development tools, but rather in the provision of support for adaptations that

can be used by components of the applications. Another consideration is that

Madam does not use semantic modeling for adaptation policy application. The

proposal does not explicate whether adaptation policies can be reused for further

adaptations or other software components.

Proteus [Toninelli et al. 2009] employs a semantic model in the adaptation

management of the users’ access. Proteus executes adaptations in the access

policies to resources, used by applications. In the management of the adaptive

process, similar to EXEHDA, Proteus contemplates the use of a semantic

model. However, EXEHDA provides a wider range of adaptations. Different

functionalities of the applications, with different natures, are involved in the

adaptive process.

SECAS [Chaari et al. 2009] is a project that deals with the context adapta-

tion, considering the preferences of the user, environment, and devices involved.

SECAS covers only the functional adaptations for healthcare applications.

The proposal uses logical expressions to context settings for adapters. Unlike

EXEHDA, SECAS does not use semantic modeling for adaptation rules.

However, SECAS employs a formalism based on Petri networks.

Table 3 resumes the comparison among the proposals. The features con-

sidered in the comparison correspond to functionalities used in the modeling

of the EXEHDA’s Dynamic Adaptation Control Service: (i) functional adap-

tation of the application and/or middleware, (ii) non-functional adaptation,

(iii) external control of adaptation, (iv) semantic modeling for the adaptation

policy, (v) mobile devices, (vi) reuse policies from a catalog, (vii) autonomic

rule-based treatment of the adaptation, (viii) utility function.

We consider that using utility functions provide greater adaptive capabilities

to user needs. This feature distinguishes EXEHDA from most of the related

work. Moreover, EXEHDA distinguishes from most of the researched projects,

because it provides a semantic model that increases the expressiveness of

context representation, as well as addressing both functional and non-functional

adaptations.

EXEHDA allows, at any time, that the application developer includes new

1348 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

Table 3: Comparison among the proposals

CARE WComp Rainbow Madam Proteus SECAS
Functional adaptation of the ap-
plication and/or middleware

yes yes yes yes yes yes

Non-functional adaptation yes yes no yes no no
External control of adaptation yes yes yes yes yes yes
Semantic modeling for the
adaptation policy

yes no no no yes no

Mobile devices yes yes no yes no yes
Reuse policies from a catalog no no yes no no no
Autonomic rule-based
treatment of the adaptation

yes yes yes yes yes yes

Utility function no no no yes no no

instances of classes in the adaptation policy ontology, such as new adapters, and

new rules. This is due to the fact that application policy can be maintained

externally, describing the configuration of the profiles of the applications,

through the rules, parameters and operations of its adaptation policy.

8 Conclusion

In this article we presented the EXEHDA middleware, highlighting the Dynamic

Adaptation Control Service (DA Service). This service enables the instantiation

of adaptation policy, externally to the application code, using a framework.

The proposal eases the development and the inclusion of new adaptations, new

contexts of interest, new rules, and operating parameters.

The semantic model introduces aspects related to formalism, expressiveness,

possibility of dynamic relationships, and inference between information that

allow the definition of an adaptation policy model in high level. Furthermore,

this model allows the maintenance, reuse, standardization, and sharing of

information maintained in the ontological model among the various services of

the middleware.

The proposed adaptation model can be used at runtime by applications

and by the middleware. Unlike most of related work, which deal only with

one type of dynamic adaptation, EXEHDA model supports both functional and

non-functional adaptations. The adaptation management is proactive, because it

can be started at any time and without user intervention in response to changes

in context.

Adaptation policies are expressed using utility functions and promote an

adaptation, which may be composed by several others (compositional way),

targeted to the components of the application software. We consider that the

utility functions can provide a better tuning in the adaptation process, better

1349Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

addressing users’ needs. This aspect also distinguishes our proposal from the

related works.

Among others, the following aspects should be considered in future works:

(i) to implement adaptation rules that modify the parameters of other rules,

characterizing a context adaptation of their own middleware; and (ii) to consider

the historical context and the history of adaptations in the adaptive decision.

References

[Agostini et al. 2009] Agostini, A., Bettini, C., and Riboni, D. (2009). Hybrid
reasoning in the care middleware for context awareness. Int. J. Web Eng. Technol.,
5(1):3–23.

[Almeida 2013] Almeida, R. (2013). Segurança da informação e gerenciamento de
eventos: Uma abordagem explorando consciência de situação. Trabalho acadêmico,
Bacharelado em Ciência da Computação - Universidade Federal de Pelotas.

[Augustin et al. 2005] Augustin, I., Yamin, A., and Geyer, C. F. R. (2005). Managing
the follow-me semantics to build large-scale pervasive applications. In Proceedings of
the 3rd international workshop on Middleware for pervasive and ad-hoc computing,
MPAC ’05, pages 1–8, New York, NY, USA. ACM.

[Augustin et al. 2008] Augustin, I., Yamin, A. C., and Silva, L. C. d. (2008). Building
a smart environment at large-scale with a pervasive grid middleware. In Wong,
J., editor, Grid Computing Research Progress, volume 1, chapter 10, pages 323–344.
Nova Science, New York, NY, USA.

[Baldauf et al. 2007] Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A survey on
context-aware systems. Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277.

[Bellavista et al. 2012] Bellavista, P., Corradi, A., Fanelli, M., and Foschini, L. (2012).
A survey of context data distribution for mobile ubiquitous systems. ACM Comput.
Surv., 44(4):24:1–24:45.

[Bettini et al. 2010] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas,
D., Ranganathan, A., and Riboni, D. (2010). A survey of context modelling and
reasoning techniques. Pervasive Mob. Comput., 6(2):161–180.

[Caceres and Friday 2012] Caceres, R. and Friday, A. (2012). Ubicomp systems at 20:
Progress, opportunities, and challenges. Pervasive Computing, IEEE, 11(1):14–21.

[Chaari et al. 2009] Chaari, T., Zouari, M., and Laforest, F. (2009). Ontology based
context-aware adaptation approach. In Stojanovico, D., editor, Context-Aware
Mobile and Ubiquitous Computing for Enhanced Usability: Adaptive Technologies and
Applications, volume 1, chapter 2, pages 26–58. IGI Publishing.

[Costa et al. 2010] Costa, C. A., Silva, L. C. d., Barbosa, J. L. V., Yamin, A. C., and
Geyer, C. F. R. (2010). A primer of ubiquitous computing challenges and trends. In
Neto, F. M. M. and Neto, P. F. R., editors, Designing Solutions-Based Ubiquitous and
Pervasive Computing: New Issues and Trends, volume 1, chapter 15, pages 282–303.
IGI Global Publishing, Hershey.

[Costa et al. 2008] Costa, C. A., Yamin, A. C., and Geyer, C. F. R. (2008). Toward
a general software infrastructure for ubiquitous computing. IEEE Pervasive
Computing, 7(1):64–73.

[Da et al. 2011] Da, K., Dalmau, M., and Roose, P. (2011). A survey of adaptation
systems. International Journal on Internet and Distributed Computing Systems,
2(1):1–18.

[Ferry et al. 2013] Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Riveill, M., and Tigli,
J.-Y. (2013). Wcomp, middleware for ubiquitous computing and system focused
adaptation. In Calvary, G., Delot, T., Sedes, F., and Tigli, J.-Y., editors, Computer
Science and Ambient Intelligence, volume 1, chapter 6, pages 89–120. ISTE Ltd and
Wiley Sons Inc.

1350 Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

[Fujii and Suda 2009] Fujii, K. and Suda, T. (2009). Semantics-based context-aware
dynamic service composition. ACM Trans. Auton. Adapt. Syst., 4:12:1–12:31.

[Garlan et al. 2009] Garlan, D., Schmerl, B., and Cheng, S.-W. (2009). Software
architecture-based self-adaptation. In Zhang, Y., Yang, L. T., and Denko, M. K.,
editors, Autonomic Computing and Networking, pages 31–55. Springer US.

[Geihs et al. 2009] Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjørven, E.,
Hallsteinsen, S., Horn, G., Khan, M. U., Mamelli, A., Papadopoulos, G. A., Paspallis,
N., Reichle, R., and Stav, E. (2009). A comprehensive solution for application-level
adaptation. Software Practice & Experience, 39(4):385–422.

[Kakousis et al. 2010] Kakousis, K., Paspallis, N., and Papadopoulos, G. A. (2010).
A survey of software adaptation in mobile and ubiquitous computing. Enterprise
Information Systems, 4(4):355–389.

[Knappmeyer et al. 2013] Knappmeyer, M., Kiani, S., Reetz, E., Baker, N., and Tonjes,
R. (2013). Survey of context provisioning middleware. Communications Surveys
Tutorials, IEEE, 15(3):1492–1519.

[Lopes et al. 2007] Lopes, J. L. B., Pilla, M. L., and Yamin, A. C. (2007). Exehda:
a middleware for complex, heterogeneous and distributed applications. Iberian-
American Conference on Technology Innovation and Strategic Areas.

[Machado 2013] Machado, R. (2013). Loga-dm: uma abordagem de análise dinâmica
de log com base em mineração de dados. Trabalho acadêmico, Bacharelado em
Ciência da Computação - Universidade Federal de Pelotas.

[Toninelli et al. 2009] Toninelli, A., Corradi, A., and Montanari, R. (2009). A
quality of context-aware approach to access control in pervasive environments.
In Stojanovico, D., editor, MobileWireless Middleware, Operating Systems, and
Applications, volume 7, chapter 18, pages 236–251. Springer Berlin Heidelberg.

[Warken et al. 2010] Warken, N., Venecian, L., Rodrigues, S., Dilli, R., Lopes, J. L. B.,
and Yamin, A. (2010). A model of autonomous control of the adaptation to the
context in ubicomp. 11th Symposium on Computing Systems - WSCAD-SSC - IEEE
Computer Society, 0:104–111.

[Yamin et al. 2005a] Yamin, A. C., Augustin, I., Barbosa, J., da Silva, L. C., Real,
R. A., Filho, A. S., and Geyer, C. F. R. (2005a). Exehda: Adaptive middleware
for building a pervasive grid environment. Frontiers in Artificial Intelligence and
Applications - Self-Organization and Autonomic Informatics, 135:203–219.

[Yamin et al. 2005b] Yamin, A. C., Augustin, I., da Silva, L. C., and Geyer, C. F. R.
(2005b). Exehda middleware: Aspects to manage the isam pervasive environment.
XXV International Conference of the Chilean Computer Science Society.

[Yoon and Kim 2007] Yoon, C. and Kim, S. (2007). Convenience and tam in a
ubiquitous computing environment: The case of wireless lan. Electron. Commer.
Rec. Appl., 6(1):102–112.

1351Lopes J., Souza R., Geyer C., Costa C., Barbosa J., Pernas A., Yamin A. ...

