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Abstract: With today’s ongoing integration of heterogeneous building automation
systems, increased comfort, energy efficiency, improved building management, sustain-
ability as well as advanced applications such as active & assisted living scenarios become
possible. These smart homes and buildings are implemented as decentralized systems,
where embedded devices are connected via networks to exchange their data.

Obviously, the demands – especially regarding security – increase: Secure communica-
tion becomes equally important as secure software being executed on the embedded
devices. While the former has been addressed by standardization committees, manu-
facturers and researchers, until now the problem of secure control applications in this
domain has not been addressed extensively. This leads to insecure and unprotected
software being executed on the embedded devices. Thus, adversaries are capable of
attacking building automation systems.

This paper introduces an architecture for distributed control applications in smart
homes and buildings, which tackles the problem on how to secure software running on
different device classes. The following novelties are contributed: an application model
capable of depicting control applications in a formal way, the concept of security at-
tributes, being able to formally specify a security policy, and a framework, which allows
the secure development and execution of control applications, and an enforcement of
the defined security policies.
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tomation, Smart Homes
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1 Introduction and Motivation

In order to provide secure Building Automation Systems (BASs), comprehensive

measures need to cover communication as well as device security. Mechanisms

tailored to the use in Building Automation Networks (BANs) that counteract

communication and network attacks are presented in [Granzer, 2010]. An overall
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device security needs to deal with software, side-channel, and physical attacks.

An extensive survey on the latter two and a short discussion of countermeasures

can be found in [Koeune and Standaert, 2004].

This paper focuses on software security for smart home and building devices

since the current state of the art lacks adequate security mechanisms. Irrespective

of the used technology, no sound protection against software attacks is deployed,

thus enabling adversaries to successfully attack those devices. Existing protection

techniques from other domains (e.g. the Information Technology (IT) domain)

are insufficient and not applicable to BASs due to different functional and non-

functional requirements.

The peculiarities in today’s BAS rely on its structure consisting of a control

network and a common backbone which together form the BAN. Sensor Actu-

ator and Controllers (SACs) are located at the control level. Representatives of

this device class interact directly with the physical environment and are respon-

sible for data acquisition and for controlling the behavior of the environment.

InterConnection Devices (ICDs) provide an interconnection between network

segments or remote access to foreign networks. Management Devices (MDs) are

used to configure and maintain a BAS. While the functionality of system com-

ponents (i.e. ICDs and MDs) is usually fixed, SACs are highly customizable and

manifold. Thus, in the BAS domain typically the approach exists to customize

generic “template” network nodes with application specific hardware. Univer-

sally designed base platforms consisting of MicroController Units (MCUs) and

network interfaces are used in conjunction with application specific components

(e.g. switches, temperature sensors) to form a particular system. Similarly, the

software is split into a generic Operating System (OS) or system software pro-

viding basic functionality and a customizable Control Application (CA) dealing

with the specific hardware. While the former is usually fixed and non replaceable,

the latter is implemented by the device manufacturer and may be downloaded

by the system integrator, even after installation of the device. Thus, a CA is

a configurable software being executed on a SAC with the purpose to control

a process at the control level. Distributed CAs communicate via the BAN and

implement a particular function of a BAS. A common way to model distributed

CAs and their application models is with the help of Function Blocks (FBs).

Sensor functions convert physical quantities to output information which in turn

serves as input to application or actuator functions. Actuator functions convert

input information obtained through the BAN to physical quantities. Application

functions represent the functionality to be achieved by means of automation and

control.

The paper is structured as follows. Section 2 covers CA security in current

building automation standards and technologies, a software security threat and

risk analysis and summarizes security requirements. Besides, existing software

1250 Praus F., Kastner W., Palensky P.: Secure Control Applications ...



protection techniques are briefly investigated and evaluated for BASs with re-

spect to their applicability and implied security gain. These sections are heavily

based on [Praus et al., 2016]. The major contribution of this paper is contained

in Section 3, which covers a comprehensive concept and process for secure and

distributed CAs, describing how to fulfill the demands for security-critical smart

homes and buildings. Section 4 describes the implementation and evaluation. Fi-

nally, future work is described in Section 5. The work behind this paper is based

on the dissertation of the author [Praus, 2015].

2 Control Application Security and Software Protection

Techniques

The ultimate goal of an adversary is to gain unauthorized access to control level

functions by manipulating the software being executed on BAS devices. Such

attacks can either be performed remotely via the network or locally, exploiting

threats in a device’s interface. First, an adversary may directly access SACs to

manipulate the behavior of the hosted CAs by changing configuration parame-

ters (e.g. setpoint), the control logic (e.g. algorithm), or the control data (e.g.

output value). Second, an adversary may attack the application running on the

ICD to get access to the data passing through the ICD. As ICDs may also pro-

vide an interconnection to foreign public networks (e.g. the Internet), an ICD

can also be misused as access point to launch further attacks via the BAN. Fi-

nally, an adversary may attack a MD by manipulating the operator software and

also impersonate a MD. The privileges of the compromised device can then be

misused to gain management access to SACs or ICDs.

To identify the security threats in current installations, [Praus, 2015] tar-

geted the question, whether and how many BASs based on BACnet and KNX

are openly connected to the Internet and which security measures are cur-

rently implemented. A worldwide IPv4 address range scan for BACnet/IP and

KNXnet/IP services has been carried out in 2014 by the author. A total of

17.259 vulnerable BAS installations have been detected (cf. Figure 1a). The in-

stallations ranged from business parks and towers, high schools, shopping plazas,

water pollution control stations, fire stations, churches to smart homes with con-

trol of private saunas.

To be able to provide secure CAs in BASs, it is first necessary to iden-

tify the threats to CA software and analyze possible vulnerabilities. The Open

Web Application Security Project Top 101 provides such an analysis covering

over 500,000 vulnerabilities tailored to web application security. Although being

slightly different from the security of CAs, a categorization can nevertheless be

1 http://www.owasp.org/, Last access: 2016/02/02
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CountryBACnet Country KNX
US 8989 Germany 627
Canada 2296 Netherlands 522
Finland 282 Spain 332
Australia 271 France 244
Spain 231 Austria 220

Total 13964 Total 3295

(a) Vulnerable BACnet and KNX
Installations

(b) Vulnerabilities Breakdown 2010-03 – 2007

Figure 1: Control Application Security (Top 5 Countries and Categories) [Praus et al.,
2016]

derived, if it is assumed similar security flaws are present. Based on this catego-

rization, an analysis of the commonness of vulnerability types can be performed.

Figure 1b shows a breakdown of the top 5 vulnerabilities being openly available

at the US-CERT Vulnerability Notes Database2. All entries of the years 2007

to March 2010 (632 in total) have been analyzed, categorized and counted. Al-

though being rather outdated, the numbers still give an adequate overview of

the commonness of vulnerability types.

Due to the extreme broadness of threats and vulnerabilities to CAs, the soft-

ware attack model is defined as follows: Any (malicious) CA, irrelevant whether

it originates from trusted or non-trusted sources, being run on BAS devices may

exploit weaknesses in security schemes and system implementations, intention-

ally or unintentionally. Accidental programming flaws in CAs may be present

just like software being intentionally infected by trojans. Adversaries may use

these manifold possibilities to access control level functions they usually are not

allowed to.

Based on this attack model, security requirements dedicated to CAs are for-

mulated (cf. [Praus et al., 2016]). They are derived out of security research in

e.g. industrial communication systems [Dzung et al., 2005], embedded systems

[Ravi et al., 2004] or cyber-physical systems.

Functional Requirements (FRs) are directly related to the security consider-

ations for CAs. The utmost requirement is to prevent software attacks on CAs

and, if not possible, at least detect those attacks. The following FRs can be

derived to achieve this goal: FR–memory access (memory access must be con-

trolled), FR–low level functionality access (limit actions and allowed operations

a CA can perform), FR–protection of environment (CAs must not destruct hard-

ware or waste resources), FR–communication relationship (CAs have a defined

(static) communication relationship), FR–availability (Denial of Service (DoS)

attacks need to be handled).

2 http://www.kb.cert.org/vuls, Last access: 2010/04/03
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Organizational Requirements (ORs) cover the special environmental condi-

tions required for developing secure CAs in BAS: OR–limited resources (security

overhead needs to be small), OR–development (CA development has to be simple

and secure by design), OR–high level language support (high-level programming

languages need to be supported), OR–long lifetime (BASs have to be kept opera-

ble for decades), OR–scalability (scalability of security mechanisms is essential),

OR–network technology (mechanisms need to be geared towards the different re-

quirements in BANs), OR–compatibility (integration of a security extension into

an established BAS is preferable), OR–physical access (detect physical access to

devices and networks), OR–usability (provide usability).

The ideal software protection technique allows to fully prevent vulnerabilities

and hinders attacks to SACs, ICDs and MDs, no matter whether the attack pat-

tern is already known or not. To minimize performance overhead, it is applied

only during compile time, or at least does not have any performance overhead

during runtime. Besides, it does not require updates and scales well. Consider-

ing today’s available methods, it is however hardly possible to fulfill all these

requirements at the same time due to e.g. limited system resources.

Software assisted protection techniques can be split into static and dynamic

methods.

Static methods (e.g. Static Code Analysis (SCA) [Chess and McGraw, 2004],

Code-Signing (CS) [Pfleeger and Pfleeger, 2002], Proof-Carrying Code (PCC)

[Necula and Lee, 1998], Watermarking (WM) [Collberg and Thomborson, 2002])

are applied during compile or development time, respectively. Hence, they can

prevent attacks at a point in time, where appropriate countermeasures or bug

fixes can be applied without interfering with running software but for typical pro-

gramming languages fundamental questions are undecidable [Landi, 1992]. Dy-

namic methods (e.g. Signature based Intrusion Detection System (SIDS)

[McHugh, 2001], Anomaly based Intrusion Detection System (AIDS) [Hofmeyr

et al., 1998], Software Monitoring Techniques (SMT) [Goldberg et al., 1996], Self

Checking Code (SCC) [Aucsmith, 1996], Attack Specific Countermeasure (ASC)

[Wilander and Kamkar, 2003], Sandbox (SB) [Tanenbaum and van Steen, 2002],

OS [Science Applications International Corporation, 2008]) implicate a larger

performance overhead than static ones, since additional processing has to be

performed during runtime. In addition, special care has to be taken, that they

are not bypassed by an adversary. Hardware assisted methods (e.g. Co-Processor

(CP) [Arora et al., 2006], Physical Partitioning (PP) [Hiroaki et al., 2007], Har-

vard Architecture (HA) [Riley et al., 2007], CPU EXtension (CPUEX) [Suh

et al., 2004]) use dedicated hardware for security checks. Human assisted methods

(Inspection And Certification (IAC) [Holzmann, 2006], Formal Verification (FV)

[Kinder et al., 2010]) rely on human security expertise during CA development.

Hybrid methods (e.g. [Sekar et al., 2003]) try to combine the advantages of dif-
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ferent software protection techniques. Thus, they can provide more powerful

protection and overcome limitations of the software, hardware and human as-

sisted methods mentioned before.

−: not applicable, ∼: applicable with restrictions, +: applicable
p: prevent, d: detect
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S
A
C

IC
D

M
D

static SCA − − ∼ − − + ∼ + − − + ∼ − − ∼ + −
software CS − − − − − + ∼ + + + + ∼ − − + + +
methods WM − − − − − + − + − + + ∼ − − + + +

PCC − − ∼ − − + − + + − + ∼ − − − ∼ ∼
SIDS − − d d − ∼ ∼ + − − + + − − + + ∼
AIDS − − d d d − + + + + + + + ∼ + + ∼

dynamic SMT − − ∼ − − ∼ − + − − + ∼ − − ∼ + −
software SB p p p p − ∼ + + + + + ∼ − + + ∼ +
methods SCC − − − − − ∼ − + − − ∼ ∼ − − − + −

ASC − − − − − ∼ − + − − + ∼ − ∼ ∼ + +
OS p p p p − − + + + + + ∼ − + − − +

CP − ∼ − ∼ − + − + − − + ∼ + − − − +
hardware PP p p − − − + + + − − + ∼ + − − − +
supported HA − − − − − + + + − + + ∼ − + + + +

CPUEX − − − − − + + − − + + ∼ − + + + +

human IAC ∼ − p − − + − + − − + ∼ − − − ∼ −
FV − − p − − + − + − − + ∼ − − − ∼ −

Table 1: Comparison of Software Protection Techniques with Respect to Security Re-
quirements and Applicability to Sensors, Actuators and Controller Devices, Intercon-
nection Devices, and Management Devices [Praus et al., 2016]

Until now however, no reliable and secure approach for BASs is available. It is

not clear, which combinations of software protection techniques seem reasonable

and fulfill the security requirements. Summarizing, the presented software pro-

tection techniques have several aspects in common, which hinder their seamless

use in BASs.

– First, they are not able to offer full protection against the discussed threats

discussed. A hybrid approach, however, seems promising to provide an overall

security.
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– Second, they are designed for general purpose and do not cover the specialties

concerning security for BASs, SACs and their CAs, ICDs or MDs in any way.

A detailed discussion on the current state of the art is presented in [Praus

et al., 2016]. The summary is shown in Table 1 to demonstrate that current

methods do not provide an extensive protection with respect to the requirements

in BAS.

3 Secure Control Application Architecture

A secure architecture being adaptable to all common BAS standards needs to

cover BAS specific constraints and be capable of detecting possible attacks. Thus,

only hybrid software protection mechanisms can provide an overall CA security.

3.1 Generic Application Model

The first step towards secure CAs within the heterogeneous open BAS standards

is to define distributed applications in a general and abstract way and provide a

unified system view. This is achieved by the definition of an abstract model (e.g.

the abstract BAS device description) and concrete instances therefrom (e.g. a

BAS device instance representing a particular technology with specific param-

eters). Additionally, protocol-specific and domain-specific knowledge (e.g. BAS

specific vocabulary, security attributes) are part of the model. All configuration

and management tasks and definition of a security policy can now be performed

directly on the abstracted representation and be automatically distributed to

the different underlying technologies.

Process

D
om

ain
D

om
ain

SAC 1
Control Application A

PDP

MDP

SAC 2

CA B

SAC 3

CA C

SAC n

CA N

Communication Network

PDP

Function-
block a

has
Input

Datapoint

FB d

FB eFB b

FB c

has
Parameter

has
Output

Internal 
communication 

connection

External 
communication 

connection

Security Attribute

has
Input

(D.14)

(D.15)

(D.16)

(D.17) (D.18)

(D.19)

DP : < p, . . . > (D.1)

FB : {dpi|dpi ∈ DP, i ∈ N} (D.2)

CA : {fbi|fbi ∈ FB, i ∈ N} (D.3)

SAC : {CA} (D.4)

DOMAIN : {saci|saci ∈ SAC, i ∈ N}
(D.5)

PROCESS : {domaini|domaini

∈ DOMAIN, i ∈ N} (D.6)

Figure 2: Generic Application Model [Praus, 2015]

This generic application model is expressive enough to be able to model all

different types of distributed CAs typically found in the building automation
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domain. The nomenclature is based on the one used in IEC 61499 [IEC, 2011],

but modifications were made with respect to the building automation domain

vocabulary. It is specified using a formal way accompanied by a textual repre-

sentation.

The application model [Praus and Kastner, 2010] (cf. Figure 2) consists of

SACs which are linked by a communication network and interact with a process

(i.e. a building) under control. The BAS controls this process which can be split

into various control domains (cf. Definition (D.6)). A control domain can logi-

cally be seen as a grouping of distributed BAS nodes (i.e. SACs), which realize

a common functionality (e.g. Heating, cooling, Ventilation, and Air Condition-

ing (HVAC), lighting). It consists of at least one SAC, which itself may arbitrarily

belong to multiple other domains and which interacts with the environment (cf.

Definition (D.5)). Each SAC hosts exactly one CA3 (cf. Definition (D.4)). CAs

implement at least one FB, which contributes its particular part to functional-

ity of the CA (cf. Definition (D.3)). A FB is a data structure with algorithms,

internal variables and an arbitrary combination of the binary input and output

relations hasInput, hasParameter and hasOutput. These relations link a single

FB to a single DP (cf. Definition (D.2)). A communication connection between

FBs, however, is established, if two different relations link to exactly the same

DP. This sometimes is also referred to as binding and can e.g. be seen between

FB a and FB b in Figure 2. Physical or Process Datapoints (PDPs), Manage-

ment Datapoints (MDPs) as well as DPs of external communication connections

are located outside any particular SAC for modeling. It is clear, that PDPs and

MDPs are assigned to their corresponding FBs when implementing a SAC and

processing (e.g. memory allocation) takes place there. Likewise, a DP of an ex-

ternal communication connection needs to be split since on the one hand the

sending node needs to process it and on the other hand the receiving node as

well. A machine readable listing of the generic application model can be found

in [Praus, 2015].

3.2 Software Security Policy

The second step is to define a security policy, which states whether the condition

of a BAS is security critical and violates some defined constraints or not. For

executing this policy it can be split down to involved present values pi of DPs

DPi, where security requirements for the conditions derived from the policy can

be defined, formulated and finally evaluated.
The generic application model is enriched with so called security attributes. A

security attribute s is a tuple consisting of a present value p, conditions of (pos-
sibly other) present values cond1 . . . condn and boolean operations •1 . . . •n−1

3 Since SACs typically are low end embedded nodes with limited resources, they are
not considered to be multiprocess capable.
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which relate to these conditions:

security attribute s :< p, cond1, . . . , condn, •1, . . . , •n−1 > (D.7)

A condition is formulated using a function on a present value at some instant
f(pα(t)), a function on a second present value at some point in time g(pβ(t))
and a third function ◦ relating them (A,B,C being the value range of present
values, f, g, ◦ targeting the relation of the present values).

cond(f(pα(t)), g(pβ(t)), ◦) |

pα(t) ∈ A, pβ(t) ∈ B,

f : A → C, g : B → C,

◦ : f × g → {true, false} (D.8)

Note, that for many use cases only the current present value is relevant and
so p(t) reduces to p. It is further defined:

cond(check access(pα(t)), {read},=)

= check access(pα(t)) = {read}

=

{
true if pα(t) is readable

false otherwise

cond(check access(pα(t)), {write},=)

= check access(pα(t)) = {write}

=

{
true if pα(t) is writeable

false otherwise
(D.9)

cond(check value(pα(t)), g(pβ(t)), ◦)

= ◦(pα(t), g(pβ(t))) (D.10)

cond(check history(pα(t)), g(pβ(t)), ◦)

= ◦(p
′

α(t), g(p
′

β(t))) (D.11)

cond(check accesstime(pα(t)), g(pβ(t)), ◦)

= ◦(check accesstime(pα(t)), constant)

=

{
true if check accesstime(pα(t)) ◦ constant

false otherwise
(D.12)

The condition of p can thus be controlled with respect to:

– Access rights: (D.9) enforces a basic access restriction policy but can also be

used to limit the communication relationship of a CA to the desired commu-

nication partners. The required information can be automatically generated

from the binding relationship present within the application model.

– Value range: (D.10) limits the values of p. To e.g. define, that p has to be

larger than a minimum value, define g(pβ(t)) = {min} to be constant and

the relation as ◦ = {≥}. To e.g. define, that p shall be twice as large as the

present value pβ define g(pβ(t)) : 2 ∗ pβ and the relation as ◦ : {=}.

– Historical data: pmay depend on past values and so minimum and maximum

difference per time unit may be limited. (D.11)

– Time dependencies: Finally the access frequency of p may be limited. A

minimum frequency declares how often a CA has to update a DP (e.g.
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periodic transmission of alarm sensor values), and a maximum frequency

limits the required resources (e.g. malicious exhaust of network bandwidth

in case of too frequent DP updates). (D.12)
Finally, a security attribute is evaluated by checking all involved conditions:

eval(s) =

{
true if cond1, . . . , condn = true

false otherwise
(D.13)

The evaluation function returns true if the present value p satisfies the policy

with all conditions, and is false otherwise.
Six conceptual locations can be identified, where security attributes have to

be located (cf. Figure 2):

sec attrDP : s | {∀pi ∈ DP ∧ pi = p, ∀i = 1, . . . , n} (D.14)

sec attrFB : s | {∀pi ∈ FB} (D.15)

sec attrCA : s | {∀pi ∈ CA} (D.16)

sec attrSAC : {security attributesystemcalls} (D.17)

sec attrDOMAIN : s | {∀pi ∈ DOMAIN} (D.18)

sec attrPROCESS : s | {∀pi ∈ PROCESS} (D.19)

– Security attributes at the DP level cover only local constraints of the present

value p. (D.14)

– A FB may consist of multiple relations to DPs. Security relevant dependen-

cies between these entities can be modeled and expressed within security

attributes. The security of a present value p1 of DP1 can be evaluated under

the condition of the present value p2 of a second DP DP2. (D.15)

– Similar to dependencies between relations within a FB, dependencies be-

tween DPs DP1 and DP2 of different FBs within a CA can be modeled and

expressed in security attributes. Consider a single-room control CA, which

is used to cool or heat a room. A security attribute can be formulated which

prohibits the simultaneous activation of the cooling function via DP1 with

p1 and the heating appliance via DP2 with p2. (D.16)

– Since only a single CA is executed on SACs, no dependencies between CAs

are formulated. Assuming more powerful devices being able to execute CAs

in parallel, traditional OS (security) mechanisms have to be applied (e.g.

memory protection, interprocess communication). This is, however, not in

the scope of this work. Nevertheless security attributes can be engaged at

device level to provide additional protection for e.g. the device’s hardware.

No DP is associated with these attributes, they can rather be seen as limits

to system calls within the CA software. Such attributes may e.g. prevent a

wearout of the devices flash memory or a flooding of its storage space due

to a malicious CA. (D.17)

– Security attributes dedicated to dependencies between SACs can be attached

to the control domain. As an example, consider the security system domain,
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when a central close door locks functionality is requested. It has to be guar-

anteed, that all involved doors really close their locks and an adversary does

not bypass the request. (D.18)

– Finally, security attributes can be generated for the whole process. Within

the building, a security system can be a typical use case. Upon detecting

an alarm condition, all lights of the house shall be turned on to banish a

possible pick lock. In this case, an information flow from the alarm sensor to

the light actuator needs to take place. This information flow, however, must

not be abused by malicious CAs. (D.19)

The mightiness of the established security attributes depends on the location

where they are attached. Security attributes attached to DPs are rather limited

with respect to providing overall BAS security. They simply can be used to en-

force local conditions. However, the expressiveness of security attributes rises the

more manifold the set of the involved present values is, opening the possibility to

define global security conditions. To put it differently, the expressiveness follows

the relation DP ⊆ FB ⊆ CA ⊆ SAC ⊆ DOMAIN ⊆ PROCESS.

To be able to evaluate the presented security attributes, a concept is needed

which is able to monitor and enforce them at runtime and must not be bypassed

[Praus and Kastner, 2010]. The basic idea behind security attributes is that each

entity is able to evaluate upon reading or writing a present value if it satisfies all

conditions. It is obvious, that this entity also needs to have access to all involved

present values. Process or control domain security attributes, however, may affect

multiple devices or CAs, which are not necessarily linked via communication

connections. Therefore, the enforcement of such global properties may not be

possible for a single CA. Nevertheless, these security attributes can be used as

inputs for additional security devices or mechanisms, such as Intrusion Detection

Systems (IDSs) [Li et al., 2005]: Although any violation of a process or control

domain security attribute can not be recognized by a single CA, it can very well

be monitored by an IDS being connected to the network and having a global view

of the exchanged process data. Further actions such as alarming the operator

can then be taken.

3.3 Secure Software Environment

To ease the development of secure CAs, a secure software environment is needed

[Praus et al., 2009]. The idea is to separate the system software running on

the device from the CA as well as the node configuration (cf. Figure 3). Each

component imposes an additional security barrier to the overall security and

limits possible security threats.

A simple, tight and secure system software provides controlled access to sys-

tem resources. It consists of various layers and intends to provide building blocks

which can be mixed and matched to support different hardware configurations.
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Figure 3: Architecture of Sensor Actuator and Controllers [Praus, 2015]

To access the hardware in an independent and modular way at the lowest level,

a Hardware Abstraction Layer (HAL) hides the peculiarities of basic Input/Out-

put (I/O) handling and on-chip peripherals. It allows to easily deploy the devel-

oped software to other MCU architectures allowing flexibility in design and to

fulfill the differing resource requirements. (Secure) network protocol stacks can

be integrated according to the requirements of a particular application, which

handle the mapping of technology specific application models to the generic ap-

plication objects. Further system components (e.g. for controlling peripherals)

are also located on top of the HAL. Besides, the system software runs the SB

and manages its required memory. To provide security, the system software is

analyzed using human being based IAC, code reviews as well as SCA using au-

tomated tools. This long lasting process has to be done very thoroughly since

mistakes in this stage may easily squash any later efforts in developing a secure

platform. However, this (extra) effort is not for nothing since such an estab-

lished common system software for a particular architecture/processor, may –

once considered to be secure – serve as a common code base for SACs.

The enhanced application layer stores the application objects, their data

point mappings as well as the security policy for the CA. Any network plugin or

system component exclusively interacts with the CA via these shared objects.

The security policy defines the normal behavior of the CA. Any abnormal be-

havior can be detected using an AIDS. Thus, limits to e.g. network or processing

resources may be defined, which are enforced at runtime. The user Application

Programming Interface (API) provides various services to access the application

objects (e.g. network access, access to on-chip peripherals such as timers, process

interaction) and allows to control the possibilities of a CA. The management API

interfaces with a management tool, which pre-processes the binary of a CA as

well as its corresponding configuration and allows access to the system software

to support the total replacement and download of CAs.
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A SB executes the CA. Its behavior can be monitored and controlled and

mechanisms to provide memory protection can be integrated. Additionally, the

execution of CAs can be limited to those being signed and containing valid cryp-

tographic signatures to provide support for Digital Rights Management (DRM).

Besides, a SB may also be designed to support the rapid development of CAs.

A MD is used to configure the parameters of the system software and en-

hanced application layer (even during runtime) and securely deploy the CA

into the SB. Communication takes part via the well-defined management API.

Since BASs typically consist of a large amount of SACs, management access

to them should be possible over the BAN. The configuration is based on a

generic application model, that hosts the technology specific application models

(i.e. BACnet objects, KNX standardized FBs, LonWorks Standard Functional

Profile Templates (SFPTs), ZigBee objects) as well as a definition of generic

application objects. Besides, it provides a mapping of the technology datapoints

to the generic datapoints. This way a device specific configuration can reference

this knowledge base and provide the necessary additional information such as

network address(es) for actually implementing a SAC. In addition, the configu-

ration contains the security policy, which defines the normal behavior of a CA.

Any abnormal behavior or attacks can thus be detected by the system software

and limits to e.g. network or processing resources may be defined, which are

enforced during runtime. It is important to note, that the configuration forms a

major part regarding security since it allows to enforce complex security policies

if properly designed. With its help additional valuable information can be sup-

plied to the SB which otherwise could never be gained from methods described

in Section 2. Consider e.g. the intended frequency of traffic a CA is about to

generate on the network. A temperature sensor may once a minute want to trans-

mit the temperature. The according configuration could thus supply exactly this

information to the SB, which on its part may enforce this limit. Obviously, a

CA designer has to provide reasonable values along with a CA and the user has

to inspect these values. However, it is always possible for the user to deny the

execution of a CA if the configuration does not fulfill the demands (e.g. supplies

“limits=none”). Besides, it is possible for a wide range of SACs to define generic

device profiles, which may be shared among applications of the same purpose.

In such a way, the device class of sensors may share a single profile with generic

limits and the CA designer does not have to provide an individual configuration

which eases and speeds up the development of CAs and increases their security.

In fact, standardization within the BAS domain already provides a generic view

with valuable information regarding CA behavior. This information solely has

to be provided to the security system.
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implements the function blocks FB Light actuator and FB Light control. It

is thus responsible for switching the physical output according to the present

value contained in MDP PAR OFFD and the present value contained in PDP L MAN.

The CA Actuate light is responsible for reading a physical switch and setting

the PDP L MAN appropriately.

Process

Lighting D
om

ain

SAC actuator
Control Application Light 

actuator

SAC switch
Control Application 

Actuate light

Communication Network

FB Actuate 
light

has
Output

FB Light 
actuator

FB Light 
control

has
Parameter

PAR_OFFD

has
Input

L_SET
has

Output

has
Input

L_MAN

MDP PAR OFFD : < p, . . . > (D.20)

PDP L MAN : < p, . . . >

PDP L SET : < p, . . . >

FB Actuate light : {DP L MAN}

FB Light control : {DP PAR OFFD,

DP L MAN, DP L SET}

FB Light actuator : {DP L SET}

CA Actuate light : {FB Actuate light}

CA Light actuator : {FB Light control,

FB Light actuator}

SAC switch : {CA Actuate light}

SAC actuator : {CA Light actuator}

LIGHTING DOMAIN : {SAC switch, SAC actuator}

PROCESS : {Lighting}

Figure 5: Generic Application Model: Example for Use Case
⊗

[Praus, 2015]

Figure 6 shows an example a software security policy again for use case
⊗

.

The formal specification is illustrated in Definitions D.21–D.23. A security at-

tribute on DP level is shown in Definition D.21. The present value of the MDP

needs to be within a certain range. Thus, it needs to be greater than a defined

minimum and smaller than a defined maximum. Definition D.22 describes a secu-

rity attribute on SAC level. To prevent damage, the physical output of the SAC

must not exceed a maximum switching frequency. Finally, a security attribute on

domain level is shown in Definition D.23. The present value of PDP L MAN shared

between two SACs needs to be zero or one. Since L SET is a DP of an internal

communication connection, no security attribute needs to be formulated.

4.2 Enabling Security in Existing Installations

To validate that the presented CA architecture can be used to enhance security

in current technologies and installations, additional case studies demonstrate

that such attacks can be prevented or at least be detected. The case studies

are selected based on the following criteria: Case study 1 covers BACnet/IP and

KNXnet/IP since more than 17.000 installations are connected to the Internet

unprotectedly. Case study 2 and Case study 4 deal with today’s most common
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cond1pPAR OFFD
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cond2pPAR OFFD
: cond(pPAR OFFD,minimum,≥)

sSAC actuator :< systemcall switchoutput, (D.22)
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sLighting DOMAIN :< pL MAN , condpL MAN
> (D.23)

condpL MAN
: cond(pL MAN , {0, 1},=)

Figure 6: Software Security Policy for Use Case
⊗

[Praus, 2015]

software vulnerabilities (cf. Figure 1b). Case study 3 has been selected, since

KNX seems to be one of the most spread technologies today4.

Case study 1 Prevent attacks on current installations

The analysis in Section 2 relied on the fact, that SACs have been directly con-

nected to the Internet and no secure ICDs have been deployed, which check

the communication relationships. In fact, attack prevention is easy, since only a

single ICD with firewall needs to be installed at the interconnection point be-

tween the Internet and the BAN. Also, attack detection is possible, if an IDS is

installed in the BAN. The required security policy can simply be gained out of

the Engineering Tool Software (ETS) for KNX based BAS or the corresponding

configuration tool for BACnet based BAS.

4 http://knx.org/knx-en/knx/technology/introduction/index.php, Last access:
2015/09/29
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pushed onto the stack. Then the function is called, which copies 2 bytes of data

into the array. Since the array grows towards the higher memory addresses,

the general-purpose registers are being overwritten, which might cause memory

corruption or in the worst case direct access to control functions, if an I/O

register is hit.

Such an attack can be prevented by the use of a secure SAC. The SB con-

trols the execution of the CA. Thus, also memory access can be limited. In the

case of the secure SAC actuator mentioned before, an ArrayIndexOutOfBounds-

Exception will be thrown by the SB and the CA will not have direct access to

the control functions.

Case study 3 Prevent attacks on KNX based BASs using secure ICDs

Using the KNX technology, couplers are used to interconnect different physical

lines. They already allow to filter telegrams based on group addresses and also

to prohibit physical addressing. Configuration for the devices is automatically

generated out of the ETS when they are being programmed and can also be

extracted when showing the filter table of a coupler. Thus, only simple security

policies can be monitored by those couplers. No mechanisms are present in todays

devices, which allow context-based filtering. Using the presented secure ICDs,

however, complex policies can be defined and be implemented an enforced by

ICDs.

Case study 4 Prevent Attacks on LonWorks based SACs

Listing 2 shows an implementation of the SAC light actuator of use case
⊗

on a standard LonWorks device using Neuron C. The Neuron Chip implements

an event driven scheduler, which executes code blocks when a given condition

becomes TRUE. When an update of the PDP L MAN is received, the condition

nv update occurs stores its value in a flag. The condition in line 6 is then trig-

gered to switch the lamp on. Unfortunately, an General logic error vulnerability

is present in this line. An assignment is performed instead of a comparison. Thus,

this condition always evaluates to TRUE and the I/O is switched as often as the

scheduler checks the condition.
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1 // NV input: pdp L_MAN
2 network input SNVT_switch nviLampValue;
3 // lamp is connected to I/O 0 pin 0
4 IO_O output bit io_lamp_control = 0;
5 // if flag is equal to TRUE
6 when (flag=TRUE) {
7 // switch lamp on
8 io_out(io_lamp_control , 1);
9 flag = FALSE;

10 }
11 // if flag is equal to FALSE
12 when (flag==FALSE) {
13 // handle switch off light after PAR_OFFD
14 }
15 // when new value of L_MAN is received
16 when (nv_update_occurs(nviLampValue)) {
17 // store value in flag
18 i f (nviLampValue == 1) {
19 flag = TRUE;
20 }
21 else {
22 flag = FALSE;
23 }
24 }

Listing 2: Implementation of Use Case
⊗

on a LonWorks Device using Neuron C

Such an attack can be prevented by the use of a secure SAC with appropriate

security policy (cf. D.22), since the SB controls the execution of the CA and the

policy specifies a maximum execution rate of the switchoutput function of 1Hz.

4.3 Security Guidelines

When deployed to SACs, ICDs and MDs, the presented architecture allows the

development, upload, and execution of arbitrary, non-inspected and uncertified

(and possibly erroneous or malicious) CAs without compromising the overall

BAS security. Not only attacks evolving from accidental software faults can be

prevented and detected, but also attacks resulting from intentional malicious

software. In the following, the strengths and limits of the architecture – with re-

spect to which requirements for secure CAs are fulfilled, and which requirements

need additional research or organizational attention – will be discussed (cf Table

2 and Table 3).

FR–memory access: To fulfill this FR, a secure software environment is required.

The system software and enhanced application layer together with the ex-

ecution of the CA in the SB guarantee, that memory areas (i.e. code and

working memory) between system software and CA are separated. CAs can

only access defined memory locations. This way it is possible to store in-

formation invisible and unaccessible to the CA on the system and provide

content security and secure resource access. Vulnerabilities in the code of

system software or SB caused by incalculable side effects can be minimized

by the use of SCA, IAC and FV.

FR–low level functionality access and FR–protection of environment : Attacks

targeting these requirements can be prevented by providing the SB together
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with the security policy. Since memory areas on the SACs are separated,

CAs have no access to low level functions. CAs can only issue a defined set

of operations and may not interfere with the system software. Additionally,

the actions a CA intends to perform can be limited (e.g. in terms of issuing

frequency) and a malicious CA is not able to e.g. waste resources.

FR–communication relationship: To prevent and detect attacks targeting the

communication relationship, various security measures need to be provided

on the different device classes. As presented, a CA communicates with other

CAs by accessing DPs in an abstracted, object oriented way. No explicit

telegrams need to be sent and no destination addresses need to be considered

by a CA. The communication relationship is contained in the configuration,

and thus the SB is able to limit it. Using the same configuration/policy, it

is possible for an ICD to detect and prevent attacks to other CAs within a

reasonable time. To be able to monitor CA communication within the whole

BAN, IDSs are required. Using an SIDS configured by the security policy, it

can detect known attacks. Using AIDS, IDSs can be used to learn the normal

CA behavior of a BAS and later on detect attacks. Monitoring MDPs can

be achieved using a MD.

FR–availability : Availability attacks are always hard to handle. In fact, they

cannot be prevented in general. Using the secure architecture and the secu-

rity policy, however, it is at least possible to detect these attacks (e.g. high

bus load or abnormal telegram telegram rates)-

OR–limited resources: The deployment of dynamic security measures being ex-

ecuted during runtime clearly imposes a performance overhead. Depending

on the application, a suitable balance between required level of security and

tolerable overhead needs to be found. For CAs in BAS, it has been shown

in the prototype implementations, that such a balance can be achieved on

SACs.

OR–development : The SB approach eases the development of secure CAs by pro-

viding a limited but controllable programming interface to secure SACs. CA

development is simplified, since the application programmer does not have

to cope with details concerning the network protocol, the system software

or hardware specific code and thus can focus on the CA itself.

OR–high level language support : The architecture supports the use of high-level

languages, e.g. Java. Standard Java toolchains can be used for development,

offering object oriented development on SACs.

OR–long lifetime: Due to the SB approach, CAs can be downloaded into a SAC.

Thus, also updates to CAs are possible. Whether an update of the system

software is possible depends on the deployed hardware.

OR–scalability : The presented architecture relies on security measures being dis-

tributed to the different devices within a BAS. Thus, also the implied over-
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head is being distributed among the SACs. Additionally, it does not require

any hardware modifications. This makes the architecture scale well with re-

spect to performance and costs of the single devices.

OR–network technology : The secure CA architecture is geared towards the small

amount of control data in the BAS domain. In fact, the mechanisms only

target the monitoring of the present value being exchanged between CAs.

No overhead is generated on the network, except when active MDs are used.

OR–compatibility : The presented architecture relies on a security policy, defin-

ing the normal and abnormal behavior of a BAS. Since control data exchange

via the BAN is not affected, an easy and compatible integration into existing

BASs becomes possible by changing or adding single devices. If legacy de-

vices are still used in an installation, at least attack detection by additional

security devices (i.e. ICDs, MDs) becomes possible using the security policy.

OR–physical access: Detecting physical manipulations of SACs, requires special

treatment in hardware. Alarming of intrusions, however, can be performed

by e.g. an IDS, monitoring other security related issues.

OR–usability : Providing usability of security measures seems to be hardest task,

when they are being put into practice. As shown in Section 2, thousands of

installations are directly connected to the Internet. No encryption or pass-

words are set. It can be assumed, that additional security mechanisms, which

are not usable, will not be enabled in practice. Regarding the presented ar-

chitecture, it is essential that the security policy is defined in a sound way.

Therefore, typical configurations need to be provided by standards and man-

ufacturers and integrators need to enable the security features.

5 Summary and Future Work

This work concentrates on the problems of secure CAs in BAS and contributes

the following novelties. The application models of today’s BAS technologies and

contained background knowledge have been analyzed and a formalism to express

this knowledge has been described. The developed application model is the first

to cover BAS software security at all. Its expressiveness allows to describe any

desired CA, which can be formulated using FBs. As has been shown in this pa-

per, the available domain knowledge can then be utilized to formulate a security

policy and to provide an overall security. A framework allows the secure devel-

opment and execution of CAs and enforcement of the defined security policy.

Finally, evaluation prototypes describe the experimental results of an integra-

tion of all components into a common secure BAS and validate the presented

secure CA architecture.

Additional work, however, is required to formulate generic security policies.

In fact, it has been shown, that security attributes can be mapped onto today’s
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Table 3: Security Evaluation of Organizational Requirements [Praus, 2015]

open BAS technologies. A generic policy being ready to deploy on real installa-

tions, however, is missing. Besides, the security of the security measures needs

to be considered, when the devices are installed in practice. The security of the

system software needs to be provided, likewise as the secure implementation of

an ICD or MD. Otherwise, adversaries will first attack or disable those devices

and circumvent the security measures. An overall device security also needs to

include side channel and physical attacks. Without providing protection against

these attacks, adversaries also can be assumed to bypass software protection

techniques.
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Acronyms

AIDS Anomaly based Intrusion Detection System
API Application Programming Interface
ASC Attack Specific Countermeasure
BAN Building Automation Network
BAS Building Automation System
BIM Bus Interface Module
CA Control Application
CP Co-Processor
CPUEX CPU EXtension
CS Code-Signing
DoS Denial of Service
DP Datapoint
DRM Digital Rights Management
ETS Engineering Tool Software
FB Function Block
FR Functional Requirement
FV Formal Verification
HA Harvard Architecture
HAL Hardware Abstraction Layer
HVAC Heating, cooling, Ventilation, and Air Conditioning
IAC Inspection And Certification
ICD InterConnection Device
IDS Intrusion Detection System
I/O Input/Output
IT Information Technology
MCU MicroController Unit
MD Management Device
MDP Management Datapoint
OR Organizational Requirement
OS Operating System
PCC Proof-Carrying Code
PDP Physical or Process Datapoint
PP Physical Partitioning
SAC Sensor Actuator and Controller
SB Sandbox
SCA Static Code Analysis
SCC Self Checking Code
SFPT Standard Functional Profile Template
SIDS Signature based Intrusion Detection System
SMT Software Monitoring Techniques
WM Watermarking
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