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Abstract: Poor road conditions like cracks and potholes can cause inconvenience to passengers, 
damage to vehicles, and accidents. Detecting those obstacles has become relevant due to the 
rise of the autonomous vehicle. Although previous studies used various sensors and applied 
different image processing techniques, performance is still significantly lacking, especially 
when compared to the tremendous leaps in performance with computer vision and deep 
learning. This research addresses this issue with the help of deep learning–based techniques. 
We applied the You Only Look Once version 2 (YOLOv2) detector and propose a deep 
convolutional neural network (CNN) based on YOLOv2 with a different architecture and two 
models. Despite a limited amount of learning data and the challenging nature of pothole images, 
our proposed architecture is able to obtain a significant increase in performance over YOLOv2 
(from 60.14% to 82.43% average precision). 
 
Keywords: pothole detection, computer vision, machine learning, deep convolutional neural 
network, real time 
Categories: I.2.0, I.2.10, I.4.0 

1 Introduction 

The quality of road infrastructure is crucial to people who drive. In some areas, 
drivers need to be cautious because potholes have been proven to cause catastrophes, 
especially during the rainy season. Detecting potholes would allow vehicles to issue 
warnings so drivers can slow down and avoid them (or the vehicle itself can adjust 
settings to avoid them), minimize the impact, and make the ride smooth. Pothole 
detection is about sensing the road ahead of an autonomous vehicle. Nonetheless, 
studies and research on road-surface damage are still relatively few. Several of them 
(if not all) use traditional methods, with sensors and expensive equipment to label 
images in a classification task, but not to detect damage coordinates. Recently, object 
detection using end-to-end deep learning has been reported to outperform traditional 
methods. Costly sensors, battery life, computation power, and the complexity of data 
integration have been reduced by simply relying on imagery input to detect objects. In 
this study, we train and evaluate object detection with You Only Look Once version 2 
(YOLOv2) that has a state-of-the-art convolutional neural network (CNN) at its core. 
In addition, we develop a new architecture based on YOLOv2 but integrated with two 
different models. To the best of our knowledge, since there is no public dataset that 
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presents the real nature of potholes in roads, we created learning data of pothole 
images in a wide variety of weather conditions and illumination levels.  

2 Related Work 

2.1 Traditional Approach 

Several techniques are applied to detect potholes and monitor the road and traffic 
conditions, such as the use of several sensor boards and a global positioning system as 
a hardware platform [De Zoysa et al. 2007], a mobile sensor network [Eriksson et al. 
2008], a smartphone as hardware and software [Mohan et al. 2008], and data mining 
[Hautakangas et al. 2011]. Yu and Salari presented a laser-imaging technique for 
pothole detection and severity estimation to gather road-related information. The 
information was used to feed a neural network algorithm to detect potholes and cracks 
[Yu & Salari 2011]. However, the weakness in this approach is that it requires more 
equipment and extensive computation power to collect laser images. 

2.2 Deep CNN-based Object Detection 

In recent years, deep learning has become best known for its ability to learn from 
experience, and is used in complex problems. Noticeably, deep convolutional neural 
networks (CNNs) have made tremendous progress in large-scale object recognition 
[He et al. 2016], [Krizheysky et al. 2012], [Szegedy et al. 2015], and in detection 
problems [Ren et al. 2015], [Liu et al. 2016], [Redmon & Farhadi 2017].  

CNNs were also proposed for identifying road surface damage using deep 
learning [Maeda et al. 2016], [Zhang et al. 2016]. The former used 256 x 256 pixel 
images to identify road surface damage [Maeda et al. 2016]. The latter identified 
damage using a 99 x 99 pixel image patch generated from a 3264 x 2448 pixel image 
[Zhang et al. 2016]. However, the methodologies used in these studies focus on the 
classification task—whether there is damage or a crack present in the picture—but did 
not detect the location of the damage within the image. 

In the attempt to achieve a fully autonomous vehicle, many researchers have 
applied a deep CNN to extract information about the road and to understand the 
environment surrounding the vehicle, ranging from detecting pedestrians [Angelova 
et al. 2015], cars [Zhou et al. 2016], and bicycles, to detecting road signs [Jonh et al. 
2014] and obstacles [Hadsell et al. 2009]. However, the number of researchers using a 
deep CNN to detect potholes is relatively small. A recent study presented the great 
potential of deep CNNs in detecting cracks [Cha et al. 2017]. A deep CNN was 
developed to detect cracks with the help of sliding window techniques to scan 256 x 
256 pixel images. The proposed method was able to achieve a high level of accuracy 
in finding cracks in realistic concrete environments. The dataset, however, comprised 
images of small line-shaped cracks, and the actual locations of the cracks were not 
identified in that work. 

1245Suong L.K., Jangwoo K.: Detection of Potholes ...



 

 

3 Methodology 

3.1 YOLO Object Detection 

YOLO takes an approach different from other networks that use a region proposal or 
a sliding window; instead, it reframes object detection as a single regression problem. 
YOLO looks at the input image just once, and divides it into a grid of S x S cells. 
Each grid cell predicts B bounding boxes, a confidence score representing the 
intersection over union (IOU) with the ground truth bounding box, and the probability 
that the predicted bounding box contains some objects: 
	݂݁ܿ݊݁݀݅݊݋ܥ  = (ݐ݆ܾܿ݁݋)ݎܲ	 	∗ 	  ௣௥௘ௗ௧௥௨௧௛ (1)ܷܱܫ
 ௣௥௘ௗ௧௥௨௧௛ denotes intersection over union between the predicted box and groundܷܱܫ 
truth. Each cell also predicts C conditional class probabilities, Pr(object). Both 
confidence score and class prediction will output one final score telling us the 
probability that this bounding box contains a specific type of object. 

3.2 YOLOv2 Architecture (F1) 

There were two different model architectures used in conducting our training. The 
first model is based on the Darknet architecture of YOLOv2 [see Table 1]. It contains 
31 layers in which 23 are convolutional layers with a batch normalization layer before 
leaky rectified linear unit (ReLu) activation, and a maxpool layer at the 1st, 3rd, 7th, 
11th, and 17th layers. In order to train our own dataset, we needed to reinitialize the 
final convolutional layer so it outputs a tensor with a 13 x 13 x 30 shape, where 30 = 
5 bounding boxes x (4 coordinates + 1 confidence value + 1 class probability). 

3.3 Our Proposed Architecture (F2) 

We proposed the second model (F2 architecture), as seen in Table 2. F2 is a modified 
version of the F1 architecture in an attempt to reduce the computational costs and 
model size of the neural network. F1 requires roughly 48 million parameters. On the 
other hand, F2 needs only 18 million parameters with just 27 layers. The final result 
shows that the average precision and recall score of the F2 architecture is better than 
the F1 architecture while being smaller in size and faster in computation speed. 
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Layer Type Filters Size/Pad/Stride Output 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Convolutional 
Maxpool 

Convolutional 
Maxpool 

Convolutional 
Convolutional 
Convolutional 

Maxpool 
Convolutional 
Convolutional 
Convolutional 

Maxpool 
Convolutional 
Convolutional 
Convolutional 
Convolutional 
Convolutional 

Maxpool 
Convolutional 
Convolutional 
Convolutional 
Convolutional 
Convolutional 
Convolutional 
Convolutional 

Route [16]1 
Convolutional 

Reorganize 
Route [27] [24]2 
Convolutional 
Convolutional 

32 
- 

64 
- 

128 
64 

128 
- 

256 
128 
256 

- 
512 
256 
512 
256 
512 

- 
1024 
512 

1024 
512 

1024 
1024 
1024 
512 
64 

256 
1280 
1024 

30 

3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
3 x 3 / 1 / 1 
3 x 3 / 1 / 1 

- 
1 x 1 / 0 / 1 
2 x 2 / 0 / 2 

- 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 

416 x 416 
208 x 208 
208 x 208 
104 x 104 
104 x 104 
104 x 104 
104 x 104 
52 x 52 
52 x 52 
52 x 52 
52 x 52 
26 x 26 
26 x 26 
26 x 26 
26 x 26 
26 x 26 
26 x 26 
13 x 13 
13 x 13 
13 x 13 
13 x 13 
13 x 13 
13 x 13 
13 x 13 
13 x 13 
26 x 26 
26 x 26 
13 x 13 
13 x 13 
13 x 13 
13 x 13 

Table 1: F1 Architecture adapted from YOLO9000 [Redmon & Farhadi 2017] 

3.3.1 Anchor Box Model  

In object detection techniques, normally each of the grid cells can detect only one 
object. The problem arises when there is more than one object in each cell, so we can 
handle this situation using the idea of anchor boxes. Instead of predicting a one-
dimensional 5 + num_of_class, it instead predicts (5 + num_of_class) × 

                                                 
1 Route to layer 16th  
2 Route to layer 27th and 24th  
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num_of_anchorboxes. Each anchor box is designed for detecting objects of different 
aspect ratios and sizes. For example, box 1 can detect objects that are wide but short, 
whereas box 2 detects objects with a rectangular shape.  

In YOLOv2, an image is divided into a 13 x 13 grid, and the bounding box and 
class predictions are made for each anchor box located there. The appropriate 
bounding box is selected as the bounding box with the highest IOU between the 
ground truth box and the anchor box. The anchor boxes provided by YOLOv2 are for 
general objects in the Visual Object Classes (VOC) dataset, not pothole shapes and 
sizes; for this reason, we ran a k-means clustering technique on our training set to 
generate five different anchor boxes tailored more towards our dataset objects. 

 
Anchor Box Set Width Height 

Set 1 1.834849 0.697362 
Set 2 3.690766 2.024326 
Set 3 6.013811 6.493899 
Set 4 7.706391 3.544638 
Set 5 10.78841 8.534208 

Table 2: Five anchor box sets generated by k-means clustering on a pothole training 
set 

 

Figure 1: Visualization of the five predicted anchor boxes with respect to the grid cell 

We made a few modifications to F1 to build the F2 architecture.  

1. After calculations, each 23rd and 24th layer consumes more than nine 
million parameters. Layer 29 alone requires more than 11 million parameters. 
Removing these three convolutional layers can remove about 30 million 
parameters.  

2. We make F2’s 23rd layer have a filter size of 2048 by modifying F1’s 26th 
convolutional layer from 64 filters to 256 filters.  

3. The reorganized 25th layer has a depth of 1024 by reorganizing the 24th 
layer from 26 x 26 x 256 to 13 x 13 x 1024.  
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4. Route layer 26 and route layer 25 (13 x 13 x 1024) with the 22nd 
convolutional layer (13 x 13 x 1024) output 13 x 13 x 2048. 

5. We created the F2-Anchor by modifying the width and height of F1’s anchor 
boxes. 

 

Layer Type Filters Size/Pad/Stride Output 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Convolutional 
Maxpool 

Convolutional 
Maxpool 

Convolutional 
Convolutional 
Convolutional 

Maxpool 
Convolutional 
Convolutional 
Convolutional 

Maxpool 
Convolutional 
Convolutional 
Convolutional 
Convolutional 
Convolutional 

Maxpool 
Convolutional 
Convolutional 
Convolutional 
Convolutional 
Convolutional 

Route [16]3 
Convolutional 

Reorganize 
Route [25] [22]4 
Convolutional 

32 
- 

64 
- 

128 
64 

128 
- 

256 
128 
256 

- 
512 
256 
512 
256 
512 

- 
1024 
512 

1024 
512 

1024 
512 
256 

1024 
2048 

30 

3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
2 x 2 / 0 / 2 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 
1 x 1 / 0 / 1 
3 x 3 / 1 / 1 

 
1 x 1 / 0 / 1 
2 x 2 / 0 / 2 

 
1 x 1 / 0 / 1 

416 x 416 
208 x 208 
208 x 208 
104 x 104 
104 x 104 
104 x 104 
104 x 104 

52 x 52 
52 x 52 
52 x 52 
52 x 52 
26 x 26 
26 x 26 
26 x 26 
26 x 26 
26 x 26 
26 x 26 
13 x 13 
13 x 13 
13 x 13 
13 x 13 
13 x 13 
13 x 13 
26 x 26 
26 x 26 
13 x 13 
13 x 13 
13 x 13 

Table 3: F2 architecture. Table adapted from YOLO9000 [Redmon & Farhadi 2017] 

3.3.2 Denser Grid Model: 

The YOLOv2 network operates at a network resolution of 416 x 416, and after its 
convolutional layers downsample the images by a factor of 32, the grid cell (output 
feature map) is 13 x 13 [see Fig. 2]. Unlike the desired square input resolution of the 

                                                 
3 Route to layer 16th  
4 Route to layer 25th and 22nd  
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inspired model (F1), our dataset comes with various resolutions. After the calculations, 
we decided to use an input resolution of 832 x 672 because it is the average resolution 
of our dataset, which will produce a 26 x 21 grid after downsampling [see Fig. 3]. We 
developed the Den-F2-Anchor model, which is the combination of the F2 architecture 
with the denser grid model and the anchor box model. 
 

 

Figure 2: 13x13 grid cell of YOLOv2 

 

 

Figure 3: 26x21 grid cell of Den-F2-Anchor 

4 Experiments 

4.1 Data Collection and Processing 

The pothole images we collected present extensively varying real-world situations, 
such as random-bump potholes, various conditions (strong light spots, shadow 
changes), occlusions, close-ups, and very different shapes and sizes. Our research sets 
out to detect potholes of various forms and sizes on roads within different areas of the 
city and countryside [see Figs. 7 and 8]. Nonetheless, we could not find this kind of 
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dataset freely available to use in our experiment. That is why we resolved to collect 
images from public database sites such as Flickr, Google Images, and Pixabay. 

In each image, we labelled and annotated the bounding box representing the size 
and location of the pothole. We did this by ourselves using Labellmg [Tzutalin 2015], 
a graphical image annotation tool freely available on GitHub. In total, there are 996 
training images containing 1796 potholes, and there are 203 testing images. 

4.2 Training 

Our implementation on F1, F2-Anchor, and Den-F2-Anchor architectures is based on 
an open source YOLO framework called Darkflow [Thtrieu 2016]. We trained all 
three models from the ground up without using pre-trained weights on PASCAL VOC 
and/or Microsoft Common Objects in Context (MS COCO) because we found that 
more of the F2 and Den-F2’s layers had to be re-initialized, and our pothole dataset is 
not in the general purpose object detectors. 

Training was performed on a GeForce GTX 1080 with 10 GB RAM. In all our 
training sessions, we used the Adam optimizer because of its tendency for expedient 
convergence. 

Training the F1 model started with a learning rate of 1e - 5 to quickly reduce loss. 
After training for 100 epochs, we changed the learning rate to 1e - 6 for finer 
granularity for another 200 epochs. At this point, we validated the training with test 
images that the model had never seen; the performance was not good, with a number 
of false positive and false negative bounding boxes. Finally, we trained the network 
for another 300 epochs, and the result was promising. 

We trained the F2-Anchor and Den-F2-Anchor models at the same learning rate 
of 1e - 5 and 1e - 6 for 100 epochs and 500 epochs, respectively. As far as the 
validation process goes, we had Den-F2-Anchor train for another 100 epochs at the 1e 
- 6 learning rate. However, the model’s performance got slightly worse from 
overfitting, so we reverted to the previous checkpoint. Training for the three models 
was done in about four days. Figs. 4, 5, and 6 show all three models’ training loss. 

 

 

Figure 4: F1 model’s loss value 
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Figure 5: F2-Anchor model’s loss value 

 

 

Figure 6: Den-F2-Anchor model’s loss value 

5 Results 

We evaluated the performance of the networks using precision and recall scores with 
the following formulas: 
݊݋݅ݏ݅ܿ݁ݎܲ	݁݃ܽݎ݁ݒܣ  = 	 ∑ ்௉/(்௉ାி௉)೙೔సభ ௡   (2) 

 
 ܴ݈݈݁ܿܽ = 	 ∑ ்௉/(்௉ାிே)೙೔సభ ௡     (3) 

TP, FP, and FN denote true positive, false positive, and false negative, 
respectively, with n representing the total number of testing images.  
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In the testing phase, we tested the model against 203 pothole images. We also 
made sure that the challenging real-world scenario of potholes with different forms 
and sizes that we cited in the dataset section were present in the testing set. 

The F1 model obtained scores of 60.14% average precision and 65.61% recall, 
while the F2-Anchor model obtained 67.74% average precision and 74.93% recall. 
Den-F2-Anchor produced the highest relative average precision at 82.43% and the 
highest recall at 83.72%. 

F2-Anchor processed the images the fastest at 0.032s (32 FPS). F1 came second, 
running at 0.023s (23 FPS), while Den-F2-Anchor came last at 0.021s (21 FPS). F2-
Anchor can be employed in a real-time camera to detect potholes. 

The results show that our proposed F2-Anchor and Den-F2-Anchor models 
achieved better results, with a large reduction in computational complexity and model 
size. 
 

Model 
Average 
Precision 

Recall Parameters 
Frames Per 

Second 

F1 (YOLOv2) 60.14 65.61 48 million 23 

F2-Anchor 
(Ours) 

67.74 74.93 18 million 32 

Den-F2-Anchor 
(Ours) 

82.43 83.72 18 million 21 

Table 4: Results of F1 and F2 models’ performance 
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Figure 7: Examples of correct detection of potholes 
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Figure 8: Examples of false detection of pothole 

6 Conclusion and Future Work 

We presented a deep-learning architecture designed to detect potholes. The model 
shrinks the number of parameters by a large margin, with a notable increase in 
performance. We showed that a deep CNN can indeed be applied to detecting 
potholes with promising results in accuracy and speed, even considering the much 
smaller size of real-world, labeled pothole data. We believe that with more training 
data, the results will substantially improve beyond those reported here. In addition, 
running at 32 FPS, the F2-Anchor model can be integrated with a car’s camera to 
execute a real-time pothole detection task. 
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