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Abstract: The spark-ignition (SI) engine dynamics is described as a severely nonlinear and fast 
process. A black-box model obtained by system identification approach is often valuable for 
the control and fault diagnosis application on such systems. Recurrent neural network (RNN) 
might be better suited for such dynamical system modelling due to its feedback back scheme if 
compared with feed-forward neural network. However, the computational load for RNN limits 
its practical application. In this paper, a diagonal recurrent neural network (DRNN) is 
investigated to model SI engine dynamics to achieve a balance between the modelling 
performance and computational burden. The data collection procedure and algorithms for 
training DRNN are presented too. Satisfactory results on modelling have been obtained with 
moderate cost on computation. 
 
Keywords: Diagonal Recurrent Neural Network, Dynamical System Modelling; Spark-Ignition 
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1 Introduction  

Internal combustion engines have been widely used in automotive industry for many 
years. However, due to the increasing requirement from governments to protect the 
global environment, the modelling and control on such system have become the most 
complex problems for control system engineers and university researchers, who have 
been striving to reduce substantially emissions and fuel consumption while 
maintaining the best engine performance [Balluchi, 00][ [Nicolao, 96]]. To satisfy 
these requirements, a variety of variables need to be controlled, such as engine speed, 
engine torque, spark ignition timing, fuel injection timing, air intake, air-fuel ratio 
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(AFR) and so on [Tan, 00] [Vinsonneau, 03]. These variables are complicatedly 
related to each other. Control methods that are based on dynamics models have been 
successfully implemented in many practical industrial applications.  

With the development of high speed micro-controller, more and more advanced 
modelling techniques can be introduced into the area of automotive engine control 
[Behrouz, 12]. Neural networks are powerful in their ability on representing both 
linear and nonlinear relationships and learning the relationships directly from the 
input-output data of dynamical systems. Recurrent neural networks (RNN) have 
important capabilities, which are not found in feed-forward networks, such as 
attractor dynamics and the ability to store information for later use. Of particular 
interest is their ability to deal with time varying input or output through their own 
natural temporal operation [Zhai, 10]. Thus, the RNN is a dynamic mapping and is 
better suited for dynamic systems modelling than the feed-forward networks. Many 
advanced researches have been done on neural modelling of engine systems in last 
two decades [Gertler, 95] [Krishnaswami, 95] [Nyberg, 97] [Hsu, 95] [Nyberg, 98] 
[Kim, 98]. More recently, ARSIE showed a procedure to enhance identification of 
recurrent neural networks for simulating air/fuel ratio dynamics in SI engines [Arsie, 
06]. However, due to the limitation of computational power, the practical applications 
of engine controllers using recurrent neural network are still very limited [Vigraham, 
06].  Therefore, considering the computation burden for fast dynamic system, the 
DRNN can be a suitable choice for the design of automotive engine management 
system, instead of fully connected recurrent neural networks (FRNN). DRNN has one 
hidden layer, and the hidden layer is comprised of self-recurrent neurons. Since there 
is no inter-links among neurons in the hidden layer, DRNN has considerably fewer 
weights than FRNN and the network is simplified considerably [Zhai, 09].  

In this paper, a DRNN structure and dynamic back-propagation training 
algorithm are introduced in for in Section 2. A mean value engine model used in this 
research is shown in Section 3. The modelling procedure and modelling results are 
provided in Section 4.  Based on the results obtained, a conclusion is given in Section 
5.  

2 DRNN Structure and Algorithms  

2.1 DRNN Structure 

The DRNN consists of one hidden layer of computation nodes. The basic DRNN 
structure is shown in Figure. 1,  
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Figure 1:  DRNN structure. 
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xi the ith node in the input layer, i=0, 1, …, 

n. 
hi output of the ith node in the hidden layer, 

i=0, 1, …, q. 
ŷi output of the ith node in the output  layer, 

i=0, 1, …, p. 
w hi,j weight linking the jth node in the input 

layer to the ith node in the hidden layer, 
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i=1, 2, …, q, and j=0, 1, …, n+1. 
w di,j recurrent weight linking the ith order time 

delay of the jth node in the hidden layer, 
i=1, 2, …, v, and j=0, 1, …, q. 

 w yi,j weight linking the jth node in the hidden 
layer to the ith node in the output layer, 
i=1, 2, …, p, and j=0, 1, …, q+1. 
 

            
The recurrent structure in the hidden layer node is feedback to the hidden neuron 

itself with time delay after activation function. 
In mathematical terms, the DRNN with q hidden layer nodes is governed by the 

following equations. 
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where  f  is the non-linear activation function in hidden layer. The typical hidden 

layer activation functions used in DRNN are sigmoid and hyperbolic tangent function. 
In the investigation of process modelling with DRNN, only sigmoid activation 
function is chosen as the non-linear transfer function in DRNN. 

2.2 DRNN Training using Dynamic Back-Propagation Algorithm  

Let  ky  and  kŷ  be the actual responses of the plant and the output of the DRNN 

model, then an error function for a training cycle for DRNN can be defined as 

    2ˆ
2

1
kykyEm                                              (8) 
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The gradient of error simply becomes  
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where      kykykem ˆ  is the output error between the plant and the DRNN. 

 
Given the DRNN shown in Figure 1 and described by the equations (1)-(7), the output 
gradients with respect to output, recurrent and input weights, respectively, are given 
by 
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The weights can now be adjusted following a gradient method, i.e., the update rule of 
the weights becomes 
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where ][ ydh    is the learning rate. The equations (8)-(15) define the 

dynamic back-propagation algorithm (DBP) for DRNN.  
The update rule call for a proper choice of the learning rate  . If we let h , d , 

and y  be the learning rate for DRNN weights hW , dW , and yW  respectively, then, 

the DBP algorithm converges if vjW d
j ,2,1,10   and the learning 

rate are chosen as:  
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Here q  is the number of recurrent neurons in the hidden layer, n  is the number of 

inputs to the DRNN,  kWW y
k

y max:max  ,  kxx kmax:max   and   is the sup-

norm. 

3 SI Engine Dynamics 

In both industrial practice and scientific research, it has been more popular to use 
engine simulation models to make engine system analysis and design because it is 
much more economical than using a real engine test bed. The engine model adopted 
in this paper is referred to as the mean value engine model (MVEM) developed by 
Hendricks [Zhai, 09], which is a widely used benchmark for engine modeling and 
control. The three distinct subsystems of this model are the fuel injection, manifold 
filling and the crankshaft speed dynamics and those systems are modeled 
independently. Since this MVEM can achieve a steady state accuracy of about  2% 
over the entire operating range of the engine, it is extremely useful for validation of 
control strategies using simulation. A full description of the MVEM can be found in 
[Zhai, 09].  

3.1 Manifold Filling Dynamics 

The intake manifold filling dynamics are analyzed from the viewpoint of the air mass 
conservation inside the intake manifold. It includes two nonlinear differential 
equations, one for the manifold pressure and the other for the manifold temperature. 
The manifold pressure is mainly a function of the air mass flow past throttle plate, the 
air mass flow into the intake port, the exhaust gas re-circulation (EGR) mass flow, the 
EGR temperature and the manifold temperature. It is described as  
 

       EGREGRaatiap
i

i TmTmTm
V

R
p  

                                (19)   

 
The manifold temperature dynamics are described by the following differential 
equation  
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In equation (1) and (2), the air mass flow dynamics in the intake manifold can be 

described as follows. The air mass flow past throttle plate atm  is related with the 

throttle position and the manifold pressure. The air mass flow into the intake port 

apm  is represented by a well-known speed-density equation:  
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and catat pumm ,,, 010 ,  are constants. Additionally, instead of directly model the 

volumetric efficiency i , it is easier to generate the quantity ii p  which is called 

normalized air charge. The normalized air charge can be obtained by the steady state 
engine test and is approximated with the polynomial equation (8)  
 

)()( nypnsp iiiii                                            (26) 

 
where )(nsi  and )(nyi  are positive, weak functions of the crankshaft speed and 

ii sy    

3.2 Crankshaft Speed Dynamics  

The crankshaft speed is derived based on the conservation of the rotational energy on 
the crankshaft  
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Both the friction power fP  and the pumping power pP  are related with the 

manifold pressure ip  and the crankshaft speed n . The load power bP  is a function of 

the crankshaft speed n  only. The indicated efficiency i  is a function of the manifold 

pressure ip , the crankshaft speed n  and the air fuel ratio  .  
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3.3 Fuel Injection Dynamics   

According to Hendrick’s identification experiments with SI engine, the fuel flow 
dynamics could be described as following equations [Gertler, 95]  
 

 fifff
f

ff mXmm  

1

                                         (28) 

  fiffv mXm   1                                                          (29) 

fffvf mmm                                                                (30) 

 
where the model is based on keeping track of the fuel mass flow. The parameters in 
the model are the time constant for fuel evaporation, f , and the proportion fX  of 

the fuel which is deposited on the intake manifold, ffm , or close to the intake valves, 

fvm . These parameters are operating point dependent and thus the model is nonlinear 

in spite of its linear form, which could be approximately expressed in terms of the 
states of the model as  
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4 SI Engine Modelling by DRNN 

4.1 Data Collection   

In order to analyze the modeling performance of DRNN  in practical driving 
conditions, two sets of random amplitude signals (RAS) were designed for throttle 
angle bounded between 20 and 70 degree, and the fuel injection between 0.0014 
kg/sec and 0.0079 kg/sec, which are shown in Figure 2 and Figure 3. These two sets 
of data were introduced into the mean value engine model described in Section 3. 
Then, from the model output, the intake manifold pressure, temperature, engine 
speed, air fuel ratio can be obtained with the same size of data as input data.  
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Figure 2: RAS for Throttle Angle 
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Figure 3: RAS for  

The sample time in the simulation was set to 0.1s.The simulated engine model 
MVEM was run for 500s with a set of 5000 data samples collected for all input and 
output variables. These data were divided into two groups. The first 4000 samples 
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were used for DRNN training and the other 1000 samples for testing the modelling 
performance. 

4.2 Engine Modelling   

In this section, a multi-input and multi-output engine model by DRNN is constructed.  
From the engine simulation mentioned in last section, four variables were chosen to 
be the network inputs: fuel injection , throttle angle u, air-fuel ratio y, and engine 
speed n. Since there is no systematical way to identify the optimal order of input data 
and the best network size, different orders of the plant input/output and numbers of 
hidden nodes have been tried in the experiments and a second-order structure with 15 
hidden nodes given minimum prediction error is selected. Therefore, the DRNN 
structure can be shown in Figure 4, which constructs a second-order engine model 
with 8 inputs and two outputs. 

 
 
 

 

Figure 4: The structure of the DRNN engine models 

The DBP algorithms mentioned were used for training the DRNN. The modeling 
results are shown in Figure 5 and Figure 6.  
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Figure 5: Engine speed modeling result 
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Figure 6: Air fuel ratio modeling result 
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The mean absolute error (MAE) as shown in equation 33, is adopted to evaluate the 
modeling performance.  
 

                                     (33) 

 
The MAE for engine speed modeling is 0.0224, and the MAE for air fuel ratio 

modeling is 0.0035. It can be seen that, with the small size of DRNN, the SI engine 
dynamics could be accurately represented by the MIMO DRNN model.   

5 Conclusions 

1) A DRNN as a type of recurrent network can catch the fast and nonlinear dynamics 
of automotive engine accurately. A proper engine model structure based on DRNN 
has been obtained and tested on MVEM. 
 
2) The modelling result obtained in this paper has shown that DRNN can be a suitable 
model for the control and fault diagnosis in product ECU in next generation.   
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