
An Architecture for IoT Management Targeted to Context

Awareness of Ubiquitous Applications

Rodrigo Souza, João Lopes, Cláudio Geyer

(Federal University of Rio Grande do Sul, Porto Alegre - RS, Brazil

{rssouza, jlblopes, geyer}@inf.ufrgs.br)

Anderson Cardozo, Adenauer Yamin

(Federal University of Pelotas, Pelotas - RS, Brazil

kledac@gmail.com.br, adenauer@inf.ufpel.edu.br)

Jorge Barbosa

(University of the Vale do Rio dos Sinos, São Leopoldo - RS, Brazil

jbarbosa@unisinos.br)

Abstract: The recent advances in the Internet of Things (IoT), which has provided
increasing availability of networked sensors and actuators, have given context awareness
research in the UbiComp area a new perspective. In this sense, the main contribution
of this paper is the proposition of a distributed architecture for IoT, called CoIoT
(Context awareness in the Internet of Things). This architecture is designed to provide
proactive management of the interactions with the physical environment. To evaluate
the functionalities of the proposed architecture we implemented a case study in the
agricultural area, specifically in the monitoring of seed analysis laboratory.
Key Words: Ubiquitous Computing, Context Awareness, Internet of Things, Mid-
dleware
Category: L.7, C.2.4, J.7

1 Introduction

In Ubiquitous Computing (UbiComp), computational systems must be able

to react to changes in the state of different contextual variables of interest.

These contextual variables should be collected in highly distributed environ-

ments [Knappmeyer et al. 2013] [Li et al. 2015]. Meanwhile, scientific advances

and technological developments in the field of IoT have enabled the use of large-

scale sensors, which are sources of contextual information for context-aware ubiq-

uitous applications [Perera et al. 2014].

Several research challenges related to the use of IoT to obtain con-

textual information are associated with the differences between the high

level of ubiquitous applications requirements and the management tasks

for IoT devices, which are related to the electronic characteristics in-

volved [Gubbi et al. 2013] [Perera et al. 2014].

The main contribution of this paper is to fill this gap by proposing CoIoT

(Context awareness in the Internet of Things), an architecture integrated to

Journal of Universal Computer Science, vol. 24, no. 10 (2018), 1452-1471
submitted: 4/3/18, accepted: 27/6/18, appeared: 28/10/18 J.UCS

EXEHDA Middleware (Execution Environment for Highly Distributed Appli-

cations) [Lopes et al. 2014a], capable to provide support to the processing of

sensors and actuators. EXEHDA provides software architecture based on ser-

vices that aim to create and manage a ubiquitous environment as well as the

running applications on this environment.

CoIoT is an event-based architecture managed by rules, which provides a

distributed processing environment, being able to act proactively in the collec-

tion of contextual information of the physical environment as well as remotely

perform operations on it.

CoIoT differs from other architectures identified in the literature by integrat-

ing in the same architecture functionalities that treat context awareness as well

as manage the IoT infrastructures. In addition, CoIoT proposes a distributed ar-

chitecture for context processing that enable it to perform this processing near

where the contextual data are generated.

This article is organized as follows: Section 2 presents the modeling of CoIoT

detailing its architecture and features. In section 3, the prototype is presented

and the tests are carried out in the area of agriculture. Related work is presented

in section 4. Finally, the final considerations of this article are held in section 5.

2 Background

2.1 Internet of Things

The Internet of Things (IoT) is a computational approach that has been high-

lighted mainly due to the interest of technology companies. Because it is a new

area, it has many open research problems, stimulating the involvement of the

scientific community. IoT has also been considered as an approach to promote

the ubiquity of computing solutions in the real world, mainly to overcome the

lack of infrastructural aspects of UbiComp [Caceres and Friday 2012].

IoT points to a scenario in which smart objects or things (such as sensors and

actuators) have the ability to communicate and transfer data over the Internet

with minimal human intervention. With this feature, IoT can be considered an

essential element to consolidate the integration between the computational sys-

tems and the physical environment, with the potential to produce large amounts

of contextual information [Atzori et al. 2010] [Perera et al. 2014].

In the Internet of Things, computational devices are widely distributed in the

environment, where they collect contextual information and generate actuations.

Applications that use the information produced need in many cases to make

decisions quickly and reliably.

One of the central features of the Things of Internet refers to the great hetero-

geneity of physical devices that may be present in the environment. This hetero-

1453Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

geneity concerns the different capabilities and technological resources available

in each device, whether software or hardware.

In the IoT the number of devices can be very high. Thus, it is not desirable

for ubiquitous application developers to engage in the treatment of low-level

technological aspects. Therefore, middleware solutions must treat heterogene-

ity and allow interoperability and integration of the devices and services that

are part of the environment. The challenge is to manage the low-level aspects

relevant to IoT devices, while meeting the high-level demands of UbiComp ap-

plications [Delicato et al. 2013].

2.2 Event Handling

In the Internet of Things, environmental events occur when there is a major

change in a context of interest, for example, a temperature reaching certain

value or the identification of a user entrance into a room and much more. These

events should be intercepted by the management system and notifications should

be sent to the applications so that they can provide the appropriate treatment

for those data [Perera et al. 2014].

IoT environments have the potential to generate many events that must

be managed by the underlying architecture. This management enables to

handle events when they happen, allowing a quick response whenever neces-

sary [Razzaque et al. 2016].

Events are frequently identified as primitives (discrete) or complex (compos-

ite). A primitive event refers to an instantaneous atomic occurrence of an event

of interest at a given time, while a complex event (also called composed event)

is the combination of primitive events in a given time interval [Terfloth 2009].

2.3 EXEHDA Middleware

The foundation of our proposal is the EXEHDA Software Architec-

ture [Yamin et al. 2005] [Lopes et al. 2014a], in which cells form a large-scale

computing environment. These cells are composed of several mobile and sta-

tionary physical resources. The components of the computing environment, such

as: data, codes, devices, services and resources, are ubiquitous and managed by

a middleware that provides continuous access to them.

The EXEHDA middleware software architecture, which is shown in Figure 1,

aims to provide an integrated solution to build and execute large-scale ubiqui-

tous applications. The execution of such applications is supported by EXEHDA

middleware.

EXEHDA architecture is divided into three layers, logically organized: (Up-

per) application layer; (Middle) support layer, and execution environment; and

(Lower) basic systems’ layer. The Upper Layer corresponds to the abstractions

1454 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

Figure 1: EXEHDA Middleware Software Architecture

provided to the application designer to ease the development of context-aware

application. This is mainly obtained by the provision of a Java Framework. In

this layer and the next, we also have the representation of context awareness.

The objective behind this is to underscore its importance in the architecture,

highlighting their presence in the design of many components.

The Middle Layer contains the support mechanisms for the implementation

of ubiquitous applications and adaptation strategies. This layer consists of two

levels: the first level consists of the application service modules, and the sec-

ond level is formed by the EXEHDA basic services. These basic services enable

features required for the upper level and cover various aspects, such as ubiq-

uitous access, communication, distributed execution, context recognition, and

adaptation.

Finally, the Lower Layer of the architecture is composed of native languages

and systems that integrate the execution in the physical infrastructure. For rea-

sons of portability, in this layer the platform for implementation is the Java Vir-

tual Machine, which is available for different operating systems. The architecture

assumes the existence of a network to support the execution of components and

services on a global scale.

EXEHDA is a service-oriented architecture that contributes in three per-

spectives: (i) it provides a management through services to control the physical

environment in which the processing will take place; (ii) it supports the execution

of applications, by providing the services and abstractions needed to implement

1455Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

the follow-me semantics; and (iii) offers an API (Application Programming In-

terface) to foster ubiquitous application development.

The operational requirements in a highly heterogeneous environment, in

which hardware capabilities and software availability on each device may vary,

have motivated the use of pluggable services. In this approach, the middle-

ware minimum core extends its functionalities according to the availability of

resources. The loading of these pluggable services is done on-demand and, more-

over, is context adaptive. In this way, we are able to employ implementations of

services that are better tuned to each device and also reduce resource consump-

tion by only loading services that are effectively used. Such scheme is possible

because services are defined by their semantics and interface rather than by a

specific implementation.

EXEHDA is composed of several integrated services. These services are con-

ceptually organized in subsystems: data and code ubiquitous access, uncoupled

spatial and temporal communication, large-scale distribution, context recogni-

tion and adaptation.

Regarding the management of context information, EXEHDA provides the

following services that constitute context recognition and adaptation subsystem.

The Monitor Service implements a monitoring scheme based on sensors,

which employs indexes to describe specific aspects of the environment. These

sensors can be customized through parameters. The whole set of sensors in-

stalled on a node is part of the node description information registered in the

CIB Service. The data generated by each sensor is gathered by the Monitor Ser-

vice, which typically runs on the same node in which sensors are installed. The

gathered data are published by the Monitor Service to a Collector Service, which

typically runs on the base-node.

Both the gathering of data by the sensors and the publication to the Collec-

tor Service by the Monitor occur in discrete multiples of a per-node configured

quantum. The quantum parameter allows the resource owner to control, exter-

nally to the middleware, the degree of intrusion of the monitoring mechanism in

the host. After a quantum of time expires, the Monitor Service executes a pool-

ing operation over the active sensors in the node. Then, it applies the publishing

criteria specified for the sensor data, determining, or not, the generation of a

publishing event for that sensor. Thus, the events generated after a quantum

expiration are grouped into a single message, reducing the amount of data that

the Monitor has to transmit to the Collector.

The Collector Service aggregates information from several monitors in the

cell and forwards them to the registered consumers. Among such consumers

are other middleware services like the Context Manager. The Context Manager

service is responsible for the processing of the raw information obtained by the

monitoring, producing abstract information concerning the contexts of interest.

1456 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

3 CoIoT: Design and Modeling

The architecture of CoIoT was proposed in order to enable the EXEHDA to

continue providing context awareness in view of the challenges of the IoT, where

the acquisition of context information is done from a large number of heteroge-

neous devices, dynamically distributed and restricted capacity, it was proposed

the architecture of CoIoT1.

Considering this motivation, CoIoT proposes a computational environment

composed of executing cells, in which computing devices are distributed (see

Figure 2). Each cell consists of the following components:

– EXEHDAbase, the central element of the cell, being responsible for all basic

services and constituting a reference for the other elements.

– EXEHDAnode, which corresponds to computing devices, responsible for run-

ning the applications.

– EXEHDAnode mobile, a subcase of EXEHDAnode, corresponding to typical

mobile devices that can move between cells of the ubiquitous environment,

such as laptops, tablets or smartphones.

– EXEHDAedge, responsible for the interoperability between the middleware

services and various types of gateways.

– EXEHDAgateway, which is the element responsible for sectoring the data

collection points and/or distributed operations available in the physical en-

vironment, performing their interaction of these with the other middleware

components.

The approach to context treatment proposed on CoIoT has its functionality

distributed between two types of servers: Context Server (EXEHDAbase) and

Edge Server (EXEHDAedge). The Edge Server is designed to work primarily on

the management of interactions with the physical environment. Meanwhile, the

Context Server operates in the storage and processing of contextual informa-

tion [Lopes et al. 2014b].

In the CoIoT proposal the premise is that the sensors and/or actuators are

incorporated into the Edge Server through gateways. Gateways are then used to

treat both hardware and software heterogeneity, typical to sensing and/or acting

devices, performing protocol conversion and management of devices in addition

to providing these communication capabilities via Internet.

CoIoT enables the identification and automatic discovery of sensing devices

and/or actions from gateways integrated into the architecture through the UPnP

(Universal Plug and Play) [UPnP 2016] communication protocol.

1 CoIoT-EXEHDA Source Code: http:amplus.ufpel.edu.br/coiot

1457Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

Figure 2: Ubiquitous Environment

The discovery features and auto-configuration of devices explores the UPnP

protocol. This protocol is a facilitator when the addition and/or removal of de-

vices in scalable and dynamic environments. Coupled with the fact that is pos-

sible it’s use with consolidated protocols and Internet standards such as HTTP,

SOAP and XML, makes UPnP widely used in the setting of IoT devices.

The CoIoT provides support for primitive and complex events, which can

be used to trigger ECA (event-condition-action) [Terfloth 2009] rules. The event

handling model proposed for CoIoT considers a set of primitive events generated

from (i) changes of state of the contexts of interest collected through sensors;

(ii) activation/deactivation of actuators; and (iii) changes in the infrastructure of

the computing environment. These events are shown in Table 1. CoIoT supports

complex events through event composition using conditional logic treated by

ECA rules and processed by the Context Processors.

3.1 Architectural Model

The proposed architecture for CoIoT, shown in Figure 3, has been designed

with the objective to manage different IoT devices, e.g. heterogeneous sensors

1458 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

Table 1: Primitive Events

Event Level Description

Publication Gateway/ Edge
Server

Occurs when a contextual data is sent to the Edge
Server or the Context Server

Actuation Gateway Occurs when the actuator is activated

NewDevice Gateway Occurs when a new sensor/actuator is connected

DeviceDisconect Gateway Occurs when a sensor/actuator is disconected

NewGateway Edge Server Occurs when a new gateway is conected

GatewayDisconect Edge Server Occurs when a new gateway is disconected

and actuators. This architecture is premised upon acting autonomously both

in the collection and processing of contextual information as on acting over

the physical environment, as these activities continue to be performed even in

periods in which applications interested in its use are inoperative.

The context processing in the CoIoT is performed in a distributed manner

between the Edge Servers and the Context Server. The Rule Engine module

(Edge Server) is the first processing level, while the Context Processor (Context

Server) is the second level.

The rules submitted to the Rules Engine should be developed to serve, pri-

marily, critical events; the treatment should be performed in the shortest possible

time and with minimal faults. This is due to the fact that the Edge Server is

usually allocated physically close to the monitored environment, allowing for

acting (warning, activation/deactivation of electromechanical equipment, etc.)

regardless of a possible loss of communication with the Context Server in result

of a network failure [Cardozo et al. 2016]. On the other hand, rules that require

dealing with the treatment of historical information, access data collected from

other Edge Servers, or needing a different model of contextual processing must

be processed in the Context Server.

Both context-processing modules are designed based on the model ECA

which can be triggered from events produced by the environment. Although the

ECA model is the basic mechanism of contextual treatment being used, both

the condition being treated and the action to be performed by the rule admit

other processing models that can be invoked by the rule, which are due to the

type of domain application to be served by CoIoT.

The Contexts Repository module uses a relational model for the representa-

tion of contextual information, which provides a historical record of those data.

The structure of the Context Repository reflects the architectural organization

of the Middleware EXEHDA thus contemplating the relationship between appli-

cations, components, sensors, environments and contexts of interest. The repos-

itory also stores the architecture configuration data and publications of existing

sensors in the ubiquitous environment. These data are used by the Context pro-

cessor module to trigger the appropriate actions depending on the contextual

1459Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

Figure 3: CoIoT Architecture

information.

Given the inherently distributed characteristic of ubiquitous applications, In-

teroperation Modules of CoIoT have been designed to promote interoperability

between the Edge Servers and Context Server, as well as with other middle-

ware services. The design of this module was based on the REST architectural

style [Fielding 2000].

The Notifier Module has the function of generating notifications from the

1460 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

context processing results carried out by the Context Processor. This module

uses a notification strategy based on the model publisher/subscriber, which re-

ceives subscriptions for all services and/or applications that require notifications

regarding changes in the states of context.

All the settings required for the operation of CoIoT are managed through

a web interface provided by the Configurator Module. Among the features of-

fered we have: the configuration of sensors and actuators (adding, removing and

changing), the management of device drivers, management of contextual process-

ing rules, configuration of access to Context Server and Edge Server, Gateways

management, among others.

The Publisher module has the function of request of sending contextual in-

formation to the other layers of the middleware, interoperating with Context

Server via the Interoperation Module. The publications are organized in a FIFO

system and are processed according to network availability. Considering the pos-

sible miscommunications between the Edge Server and the Context Server, a

Local Persistence Module for Edge Server has been designed to perform tempo-

rary storage queue of contextual information until these are propagated to the

context server.

With the purpose of ensuring interoperability with market technologies, and

also enhance the distribution of gathering initiatives and/or acting, two types of

gateways were used: (i) Proprietary Gateway, which has heterogeneous features

varying according to their manufacturers; and (ii) Native Gateway, whose fea-

tures are integrated into the CoIoT architecture. The Virtual Gateway module

acts as a virtualization of the Native Gateways and implements two basic types

of modules: Drivers and Triggers. Drivers are architectural modules responsible

to promote the access to the the sensors, as well as for the execution of commands

sent to the actuators. Drivers encapsulate and control the sensors and actuators

in an individualized manner, preventing operational differences of these devices

to propagate to other components of the architecture. Triggers manage the read-

ing sensors through events and have been designed to handle the two main types

of events to be treated in the IoT: temporal events and environmental events.

The Communication Module and the Resource Manager have been designed

to manage aspects associated with communication between the gateways and

the Edge Server. The Communication Module manages the communications via

REST API as the Resource Manager provides a discovery engine that manages

the connection and disconnection of devices on the network, typical occurrences

of IoT.

The Collector Module has the function of directing the gathering requests to

the respective gateways in accordance with instructions from the Rules Engine,

the Context Server, or applications. The Supervisor module brings together the

actuation commands, receiving the control parameters and resolving any con-

1461Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

flicts between the requests from different sources. The Actuator module has a

similar function to the Collector Module, receiving the actuation commands and

the operating parameters (length, activation energy...) and forwarding then to

the appropriate gateways for further processing.

4 CoIoT: Prototyping and Testing

This section summarizes the main aspects of prototyping and testing by the

AMPLUS project (Automatic Programmable Monitoring and Logging Ubiqui-

tous System), which was used to evaluate the functionality of CoIoT. The case

study includes tasks related to the sensing, collecting, processing and notifica-

tion of events detected in the physical environment. In this case study a tool was

developed to assess the main features of the proposed architecture.

The AMPLUS project is designed to provide mobile services, context aware

services that allow the storage of contextual conditions that characterize the

equipments of the Didactic Laboratory Seed Analysis - Federal University of

Pelotas (LDAS-UFPel - http://amplus.ufpel.edu.br/ldas) as well as the gener-

ation of notifications and autonomous actions when necessary. LDAS has been

used mainly by PhD students of the agriculture area.

4.1 Hardware Infrastructure

To evaluate the features of CoIoT, a set of devices that consists of a native

Gateway, 15 sensors and one actuator were used in the LDAS. The sensors

selected for this case study are based on the 1-Wire technology 2. This technology

is characterized as a data transmission network based on addressable electronic

devices, and stands out for its versatility and ease of implementation.

The kind of temperature sensor used can be seen in Figure 4 (D). This sensor

is wrapped in an aluminum casing for give greater strength and isolation from

moisture. The Native Gateway (Figure 4 (A)) was developed using NodeMCU.

NodeMCU can be connected to up to seven devices 1-wire. NodeMCU 3 is an

open source platform for the development of IoT devices (Figure 4 (B)). To

explore the reactive characteristic of the architecture, an actuator (warning light)

based on the 1-wire technology was also used. This actuator is triggered when

the attention of laboratory workers is required with some equipment.

4.2 Software Infrastructure: Main Characteristics

The majority of the CoIoT Edge Server prototype was written in Python using

a Raspbian operating system. The hardware used on the Edge Server is a Rasp-

2 http://www.maximintegrated.com
3 http://nodemcu.com/

1462 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

Figure 4: (A) Native Gateway; (B) NodeMCU; (C) Raspberry PI; (D) Temper-

ature sensor DS18B20

berry Pi 4 (see Figure 4 (C)). The Context Server is installed on a computer

with an Intel dual-core E3400-2.6GHz processor with 4GB of memory, with a

Linux Ubuntu Server operating system. We used Drools5 to implement the Rules

Engine and the Context Processor.

The reading of the sensors is accomplished through specific drivers that per-

form an individualized treatment of devices according to the technical character-

istics of each one, thus abstracting the technological differences between them.

The Interoperation Module was developed using Sails.js 6, an MVC framework

(Model-View-Controller) directed to the Node.js programming language 7. The

developed REST API provides resources to deal with the sensors and actuators,

as well as to carry out the publication of the data collected. Data sent through

the REST operations are structured in JSON data model.

4.3 Software Infrastructure: Solutions Developed for the LDAS

CoIoT supports the operation of the evaluation scenario through triggers that fire

read requests for the sensors, and a set of contextual processing rules. Triggers are

used to manage the temperature sensors reads of BODs Incubators (Biochemical

oxygen demand) in two situations: (i) at regular time intervals; and (ii) when the

value is outside a specified range. The BODs Incubators are used in LDAS to

conduct seed germination tests, which require precision regarding specific limits

for temperature variation.

The rules used for the context processing were organized between Edge

Servers and the Context Server in order to attend the proposed scenario. The

criteria used for the distribution rules are: (i) to minimizing the data stream;

4 http://www.raspberrypi.org
5 http://www.drools.org/
6 http://sailsjs.org/
7 https://nodejs.org

1463Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

and (ii) to continue monitoring even in times of loss of communication between

servers.

The rules used are shown in Tables 2 and 3.

Table 2: Edge Server Rules

Rule Name Event Condition Action

Read Temperature ReadSensor If value outside a specified
range

Triggers warning light

Publish Temperature Publication - Publishes temperature to the
Context Server

Table 3: Context Server Rules

Rule Name Event Condition Action

Read Temperature ReadSensor If value outside a specified
range

Notifies user (SMS/e-mail)

Persists Temperature Publication - Persists temperature in the
Context Repository

We used distributed ECA rules to operationalize this evaluation scenario.

Figure 5 shows the form of processing of these rules, using a BPMN notation.

The developed tool enables the selection of the context of interest to be

displayed, which can be in the form of a text report or through graphical mode.

Through the LDAS tool, a researcher can have access to the visualization of

changes in temperature and humidity values occurred in BODs Incubators during

periods of analysis, which directly influence the results of the germination process

of the seeds.

The management application developed for the Context Server is responsible

for performing the four basic operations used in relational databases (CRUD -

Create, Read, Update and Delete), that is, it is able to register, read, update,

and remove data from the Context Information Directory.

The registration or removal by the application of devices for sensing and

actuation can be performed either automatically, in the case of devices that

support the UPnP protocol, or manually. It is worth remembering that the

automatic registration will only be finalized through authentication by the user,

thus avoiding the registration of unrecognized devices.

Access to the management application only happens through login, and each

user can have a different level of access to the menus according to his permission.

In addition to enabling operations in the database, the application is responsible

for creating an intuitive interface so that the user can manage their resources in

1464 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

1465Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

1466 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

1467Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

1468 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

Table 4: Ease of Use Evaluation

Question Totally
Disagree

Partially
Disagree

Neutral Partially
Agree

Totally
Agree

Average

1. The application easy to under-
stand.

0,0%(0) 0,0%(0) 0,0%(0) 40,0%(4) 60,0%(6) 4,6

2. The application is easy to use. 0,0%(0) 0,0%(0) 0,0%(0) 30,0%(3) 70,0%(7) 4,7

3. The option are clear and ob-
jectives

0,0%(0) 0,0%(0) 10,0%(1) 20,0%(2) 70,0%(7) 4,6

4. With little effort I can select a
context of interest.

0,0%(0) 0,0%(0) 0,0%(0) 20,0%(2) 80,0%(8) 4,8

5. The application interface is
properly adapted to the devices.

0,0%(0) 0,0%(0) 0,0%(0) 30,0%(3) 70,0%(7) 4,7

Table 5: Usefulness Evaluation

Question Totally
Disagree

Partially
Disagree

Neutral Partially
Agree

Totally
Agree

Average

1. The options presented are rel-
evant.

0,0%(0) 0,0%(0) 0,0%(0) 30,0%(3) 70,0%(7) 4,7

2. The application makes it easy
to obtain contextual data from
multiple sensors.

0,0%(0) 0,0%(0) 0,0%(0) 40,0%(4) 60,0%(6) 4,6

3. The application facilitates im-
mediate action from the issuance
of an alert or message.

0,0%(0) 0,0%(0) 30,0%(3) 30,0%(3) 40,0%(4) 4,1

4. I would use this application in
my work?

0,0%(0) 0,0%(0) 30,0%(3) 20,0%(2) 50,0%(5) 4,2

perform the collection and processing of contextual data in a distributed manner

through a rules management, as well as through methods for performing actions

on the physical environment.

All related researches present triggers strategies to manage the data flow

transmitted between the different devices involved. A smaller data flow has ben-

efits, especially with regard to scalability and power consumption. However,

Xively and Carriots do not offer triggers associated with gathering. In CoIoT

the triggers approach is designed to allow the customization of data collection

through events considering the physical variability characteristics of each moni-

tored variable, which provides a minimization of data flow between the gateways

and the Edge Server.

Event handling is supported by all the selected related works, but only Car-

riots uses rules in this treatment. In addition, the distributed management rules

between Context and Edge Servers are a differential in relation to other projects.

This connection processing functionality in all related works is usually restricted

to a single device.

1469Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

7 Conclusion

This article summarizes the research efforts associated with the design of CoIoT.

CoIoT is an architecture for the Internet of Things, integrated with middleware

EXEHDA, which manages the collection and pre-processing of contextual infor-

mation, supporting the operations in the environment.

The main contribution of this work is to designing an architecture for IoT di-

rected to context awareness. The proposal is an event oriented architecture, rules

based and able to manage the collection and processing of contextual informa-

tion in a distributed infrastructure. The strategy adopted for CoIoT expanded

the scope of use of Middleware EXEHDA, allowing its use in the autonomous

management of IoT resources, which minimizes the user interference.

The following aspects should be considered in future works of the research:

(i) expanding the use of CoIoT in LDAS, enabling the monitoring of other lab-

oratory equipment and, consequently, incorporating other types of sensors and

actuators; and (ii) continuing the integration procedures of CoIoT with the dif-

ferent services and features of Middleware EXEHDA.

References

[Atzori et al. 2010] Atzori, L., Iera, A., and Morabito, G. (2010). The internet of
things: A survey. Computer Networks, 54(15):2787 – 2805.

[Caceres and Friday 2012] Caceres, R. and Friday, A. (2012). Ubicomp systems at 20:
Progress, opportunities, and challenges. Pervasive Computing, IEEE, 11(1):14–21.

[Cardozo et al. 2016] Cardozo, A., Yamin, A., Xavier, L., Souza, R., Lopes, J., and
Geyer, C. (2016). An architecture proposal to distributed sensing in internet of
things. In 2016 1st International Symposium on Instrumentation Systems, Circuits
and Transducers (INSCIT), pages 67–72.

[Carriots 2016] Carriots (2016). Carriots iot platform. Accessed on January 2016.
[Delicato et al. 2013] Delicato, F. C., Pires, P. F., and Batista, T. V. (2013). Mid-
dleware Solutions for the Internet of Things. Springer Briefs in Computer Science.
Springer.

[Fielding 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-
based Software Architectures. Phd thesis, University of California, California-USA.

[Gubbi et al. 2013] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013).
Internet of things (iot): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29(7):1645–1660.

[Knappmeyer et al. 2013] Knappmeyer, M., Kiani, S., Reetz, E., Baker, N., and Tonjes,
R. (2013). Survey of context provisioning middleware. Communications Surveys
Tutorials, IEEE, 15(3):1492–1519.

[Kostelnik et al. 2011] Kostelnik, P., Sarnovsky, M., and Furdik, K. (2011). The se-
mantic middleware for networked embedded systems applied in the internet of things
and services domain. Scalable Computing: Practice and Experience, 12(3).

[Li et al. 2015] Li, X., Eckert, M., Martinez, J.-F., and Rubio, G. (2015). Context
aware middleware architectures: Survey and challenges. Sensors, 15(8):20570.

[Lopes et al. 2014a] Lopes, J., Souza, R., Geyer, C., Costa, C., Barbosa, J., Pernas,
A., and Yamin, A. (2014a). A middleware architecture for dynamic adaptation in
ubiquitous computing. Journal of Universal Computer Science, 20(9):1327–1351.

1470 Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

[Lopes et al. 2014b] Lopes, J., Souza, R., Pernas, A., Yamin, A., and Geyer, C.
(2014b). A distributed architecture for supporting context-aware applications in ubi-
comp. In Advanced Information Networking and Applications (AINA), 2014 IEEE
28th International Conference on, pages 584–590.

[Perera et al. 2014] Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D.
(2014). Context aware computing for the internet of things: A survey. IEEE Com-
munications Surveys and Tutorials, 16(1):414 – 454.

[Pires et al. 2014] Pires, P. F., Cavalcante, E., Barros, T., Delicato, F. C., Batista, T.,
and Costa, B. (2014). A platform for integrating physical devices in the internet
of things. Proceedings of the 12th IEEE International Conference on Embedded and
Ubiquitous Computing, pages 234–241.

[Razzaque et al. 2016] Razzaque, M. A., Milojevic-Jevric, M., Palade, A., and Clarke,
S. (2016). Middleware for internet of things: a survey. Internet of Things Journal,
IEEE, 3(1):70–95.

[Terfloth 2009] Terfloth, K. (2009). A Rule-Based Programming Model for Wireless
Sensor Networks. Phd thesis, Freie Universita, Berlin-Germany.

[UPnP 2016] UPnP (2016). Upnp resources. Accessed on January 2016.
[Xively 2016] Xively (2016). Xively iot application platform. Accessed on January
2016.

[Yamin et al. 2005] Yamin, A. C., Augustin, I., Barbosa, J., da Silva, L. C., Real,
R. A., Filho, A. S., and Geyer, C. F. R. (2005). Exehda: Adaptive middleware for
building a pervasive grid environment. Frontiers in Artificial Intelligence and Appli-
cations - Self-Organization and Autonomic Informatics, 135:203–219.

[Yoon and Kim 2007] Yoon, C. and Kim, S. (2007). Convenience and TAM in a ubiq-
uitous computing environment: The case of wireless LAN. Electronic Commerce
Research and Applications, 6(1):102–112.

1471Souza R., Lopes J., Geyer C., Cardozo A., Yamin A., Barbosa J. ...

