
A Simple Model Based on Web Services to Exchange
Context Information between Web Browsers and

Web Applications

Jordán Pascual Espada
(University of Oviedo, Spain)

pascualjordan@uniovi.es)

Oscar Sanjuán Martínez
(University Carlos III of Madrid, Spain)

oscar.sanjuan@uc3m.es)

B. Cristina Pelayo G-Bustelo
(University of Oviedo, Spain)

crispelayo@uniovi.es)

Juan Manuel Cueva Lovelle
(University of Oviedo, Spain)

cueva@uniovi.es)

Patricia Ordoñez de Pablos
(University of Oviedo, Spain)

patriop@uniovi.es)

Abstract: Nowadays mobile devices are equipped with sensors and hardware elements capable
of capturing many types of information from the real world, location, orientation, light level,
temperature, etc. This information is known in some areas as context information. For years
many mobile native applications use context information to support specific tasks. Most of the
applications developed with traditional technologies don’t have mechanisms to use most types
of context information. This paper presents a lightweight approach to use context information
in conventional web applications. The proposal defines a set of highly customizable XML tags,
and included web applications that can express specific requests for context information. A web
browser designed following the proposed specification is responsible for processing the XML
tags and send the context information to the web application using web services. In this paper
we present the proposed architecture, then develop and evaluate a GPS navigator application
based on this proposal.

Keywords: Web applications; Web services, Web browser, Mobile devices, smartphone
Categories: H.4.0, H.3.5, H.5.4

1 Introduction

At present the use of internet and web browsers has become popular in many
electronic devices of different types, such as video game consoles, TV, music players,
mobile phones, etc. Smart phones are positioned as one of the most popular devices

Journal of Universal Computer Science, vol. 18, no. 11 (2012), 1410-1431
submitted: 30/11/11, accepted: 15/5/12, appeared: 1/6/12 © J.UCS

for accessing to online applications and web applications. A significant percentage of
accesses to web sites are made from mobile phones, nearly 6 billion mobile phones
are connected to the internet worldwide, with a fast growing trend in recent years
[ITU, 11]. Several factors have increased this trend, the low cost of mobile devices,
high-speed wireless networks, and “unlimited-data” pricing plans and so on.

Commonly smart phones use native applications. These applications are specially
designed for the device or a group of specific devices. Currently there is a big variety
of mobile phone models with different specifications: screen size, memory,
processing capacity and operating systems (iOS, Android, WebOS, Windows Phone,
Symbian, etc). This heterogeneity between mobile devices makes the development of
a valid application for different platforms very expensive for developers, because it
requires deploy multiple programming languages and use the APIs and platform-
specific technologies.

To reduce the overhead caused by having to develop and maintain the same
application on different mobile platforms, many developers have decided to develop
web applications rather than native applications. This measure not only saves
development costs also ensures that their applications can be used by as many users as
possible since most of the mobile phones of today include a web browser [Hernandez,
09].

Web applications and native applications are very different technically. Native
applications running over the device's operating system, Web applications run on an
external server that sends various types of files (HTML, scripting languages, CSS,
etc.) to the mobile web browser, so that it can interpret these files. Depending on the
objectives and functionality of the application, it can be developed as a web
application, native or either. There are some limitations, native applications have
several features that are difficult to “imitate” by web applications, such as complex
3D graphics, the management of device hardware components such as sensors, GPS,
camera, and so on [Gossweiler, 11].

There are various definitions about what is the “context information” [Schmidt,
99]. We usually refer to the context information as information about the real world
captured by electronic devices, such as location, the light level, the device orientation,
temperature, etc. This information is usually obtained by a group of sensors and other
hardware elements.

Mobile phones are very conducive to the collection of context information; these
devices include various types of sensors, microphones, cameras, etc. The number of
mobile applications that use context information has grown considerably in recent
years. Today there are many applications that use real-world information to complete
its functionality [Kim, 09][Lahti, 06] such as: the GPS for location, the camera to read
bar codes, the microphones to capture voice commands, position sensors to interact
with the interfaces, and so on. The context information can be a key aspect of how
people interact with electronic devices, the integration of physical and digital world
can develop applications that were previously difficult or not possible [Chua, 11].

The ability to capture the context information is one of the weaknesses of web
applications in comparison to native mobile applications. The traditional mobile web
browsers (Chrome, Opera Mini, Firefox, Safari, etc) do not have any mechanism to
allow web applications to use the device sensors to capture context information and
send this information to the web server. The introduction of the context information in

1411Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

web applications provides new possibilities for development, giving the possibility of
implementing some features that were previously exclusive to native applications
[Gossweiler, 11].

There are several proposals that introduce the use of some types of context
information in web browsers and web applications [Coppola, 10] [Noltes, 08]. Many
of these proposals focus only on a few types of context information, such as location;
the location is perhaps one of the most useful context information types, but certainly
not the only one [Schmidt, 99]. Another feature that is common to most proposals is
the use of context information in the user background, the web browser and the web
application exchange context information without the user perceiving it, this approach
is commonly used to provide context-sensitive content or services, recommendation
systems, etc.

This proposal raises a system that makes possible for web applications to have
access to the greatest possible number of context information types, according to the
technical possibilities of the device (GPS, camera, sensors, etc). This approach is
based on the idea of context information being managed by the application user, in
this proposal, sending context information to a web application is conceptually similar
to the sending of any other information on the web; text in an input form, upload a
file, select an option in a checkbox, etc. This approach aims to provide a simple
system so the context information can be used by the business logic process of the
web application, not only as an element of personalization services and content
consumption.

The structure of the paper is as follows. Section 2 presents and analyzes some
proposals that establish a relationship between web browsers and the context
information. Section 3 presents the design considerations and design decisions of the
proposal. Section 4 provides a description of the proposed architecture. Section 5
presents a prototype of a web GPS navigator developed using the proposal. Section 6
presents an evaluation and analysis of the proposal in two different scenarios. Finally
sections 7 and 8 present the conclusions and future work.

2 Related Works

2.1 Context aware applications

More than fifteen years ago, the advantages of using context information in software
applications began to be visible [Schilit, 94]. From then until today, there were many
proposals that included the use of context information in the computer area. Many
proposals are specific applications or systems that use some type of context
information in a way or another. These proposals usually adapt the management of
context information to specific scenarios, such as social networks IYOUIT [Boehm,
08] CenceMe [Miluzzo, 08] and tourism [Lamsfus, 10].

Other proposals are aimed at developing applications that use context information.
Most of these proposals are mainly frameworks or architectures that support the
development of context-aware native applications [Johnson, 07] [Biegel, 04] [Raento,
05]. Some proposed frameworks combine the management of context information
with reasoning elements [De, 09]. In most cases the native applications are developed

1412 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

in different types of mobile computing devices (PDAs, smart phones, etc). These
devices have adequate technical features to capture context information [Chua, 11].

Some frameworks provide supports to simplify the development tasks and some
aspects of application functionality. For example the Context Toolkit [Dey, 01] offers
one solution for supporting context-aware application prototyping. Its design
separates context acquisition from use and supports context interpretation, distributed
communication, constant context availability, context storage, and resource discovery.
Several of these proposed frameworks include interesting features like rapid
development and reusability. Most of the proposals are useful for developing context
aware native applications, but these frameworks have not been conceived specifically
for developing web applications based on existing web technologies.

2.2 Context aware web applications and context-aware web browsers

Some authors propose to include the use of different types of context information in
web applications, some of these proposals modify the traditional web browsers to
make it context-aware [Challiol, 07], other proposals are based on the use of
additional applications or plugins to complete the process of managing the context
information [Noltes, 08]. Integration with the context information is useful not only in
web applications, also in other web technologies such as web services [Ennai, 08],
sometimes the context-aware web services can be used to build web applications
[Kapitsaki, 08].

SENSE-SATION system [Shirazi, 10], which facilitates the development of web
applications based on a community of mobile phones. The system consists on a
runtime environment that is installed on the phone and a web based application
platform. It is an extensible platform for integration that provides means to collect and
manage information available on phones and making it accessible. Context aware web
browser [Coppola, 10] uses the information provided by the surrounding environment
in order to carry out a more refined search of web contents.

A different approach to exchange context information with web applications is the
use of specific protocols. These protocols allow the management of few types of
context information, mainly the location. Several protocols have been specifically
designed to promote the exchange of context information between web applications
and web browsers. Some of these protocols are: Secure User Plane location [Goze,
08], Mobile Location Protocol [Mobile, 02], Presence Information Data Format
[Sugano, 04] and HTTP Enabled Location Delivery [Barnes, 08].

Web-Centric Application platforms are related in some respects with context-
aware web applications [Gossweiler, 11]. These platforms have been expanded since
the advent of HTML5 [Hickson, 11] and WebKit [WebKit, 11], like PhoneGap
[PhoneGap, 11] that allows the development of applications using web technologies
and specific libraries that access the device hardware API that can be used to capture
context information. Applications developed with this platform are exported to
various mobile systems: iOS, Android, WebOS, Windows Phone, and Symbian.

Most of the analyzed systems that supported the development of context-aware
web applications are very useful for developing applications in specific scenarios,
such as context-sensitive searches, recommendation systems, social networks,
tourism, etc. But these systems are not designed to provide normalized and simple

1413Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

mechanisms that allow web applications to request any type of context information
that can be captured by the device.

Many of the proposed systems only manage a small set of context information
types, such as location. To promote the integration of context information and the
independence of web applications that use it, the use of context information should
not be conditioned by specific libraries, components, or web technologies.

3 Considerations and design decisions

The main objective of the proposal is to allow web applications to use all the types of
context information that the device is able to capture.

There are many different mobile platforms, the architecture of context-aware web
browser must be independent to be able to be applied to any platform (iOS, Android,
WebOS, Windows Phone, and Symbian, etc). The implementation of some
architecture elements that have access to the hardware APIs will have to be partially
dependent on the platform.

The context information is personal and private; the user has to approve the
communication context of context information to the application.

The types of Context information that devices can capture may increase in the near
future; the proposal must have a structure that allows adding support for new context
information types.

Web applications are developed using many different technologies, the use of
context information should not be conditioned by any particular technology. The use
of context information should be a simple and easy way for developers to base their
processes on common web technologies such as HTML, XML, HTTP, etc, without
having to use particular libraries or specific components.

4 Proposed system

4.1 Model

On one hand, the proposal defines an open group of context information XML tags
that define the context information required. These tags can be included in the
presentation layer of web applications.

On the other hand is the context-aware web browser, which is responsible for
processing the context information XML tags and notifies the user that requires a
specific type of context information. If the user gives permission to send the context
information the browser runs the context information scheduled task linked to the
active context information XML tag, this task captures the context information,
processes it and sends it to the web application (Fig.1).

1414 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

Figure 1: Sequence diagram of a simple context information request.

4.2 Request the context information: Context Information XML Tags

This proposal defines an open group of XML tags that correspond to many of the
different types of context information that current mobile devices can capture. This
group is open because the number of XML tags can grow in the future. Each XML tag
notifies the context-aware web browser to request a specific type of context
information.

The XML tags are included in the presentation layer of the web application, for
example in the HTML code. The use of these tags is fully compatible with traditional
web browsers that do not implement this specification and simply ignore the unknown
tags.

Currently the specification defines the following context information tags.
 Position:

 The three position sensors type most commons are: <magneticfield/>,
<proximity/> and <orientation/>. These tags request the current value of the
corresponding sensor, this value is usually a number or a set of numbers, for
example the orientation sensor “<orientation/>” measurement is composed of
three values; rotation around the Z, X and Y axis.
Motion:

 The most popular motion sensor is the accelerometer ‘<accelerometer/>’ request
the acceleration value in the three axes. There are others motion sensors such as
<gravity/> or <gyroscope/> but are still rare.
Environment:

 <light/>, <temperature/>: these sensors get the value of an environmental
parameter, usually the measurement of these sensors is recorded as a number.
Multimedia:

 <camera/>: takes a photo using the camera. Optionally, this tag can contain an
attribute to specify the quality of the image.

1415Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

 <audiocapture/>: activates the device microphone to capture the audio. By
default, the audio recording ends when the user presses the button again. This
XML tag may contain optional attributes to specify the recording time and the
audio file format. One of the most commonly uses of the audio capture is the
speech detection, the <audiocapture/> tag includes 'speech' and ‘language’
attributes that allows the execution of a speech detection process, as a result the
web browser sends the text string instead of the audio file. There are several
popular procedures to process some types of context information, as in this case
the speech detection. Popular procedures (based on context information) included
in the web browser functionality can reduce the complexity of the web
applications and avoid code duplication.
Location:

 The <location/> tag requests the device current location. An optional attribute is
the source from which it obtains the location: GPS or Wi-Fi.

Sometimes a context information type can be captured in different ways, so some
XML tags define several optional attributes that customize the behavior of the task
that captures and sends the context information requested. Optionally, each of the
context information XML tags can be combined with several attributes.

Common attributes:
 ‘timeinterval’ allows a request for context information to run in a loop, for

example every 3 seconds.
 ‘id’ identifies a particular context information XML tag, the value of this

attribute is sent with the context information to the web service. When a web
application includes more than one tag of the same type it may include the
optional attribute ‘id’, used to identify which specific XML tag corresponds the
information that the web service receives.

 ‘group’ usually sending the context information is made individually, ie, each
request for information of context generates a call to a Web service.

 ‘receiver’ specifies the URL of the web service to send the captured context
information. If this attribute is not specified all context information XML tags are
assigned a default value. For example < orientation /> is equal to: <orientation
receiver=’baseurl/orientation’/>

Below are some combinations of context information XML tags and attributes:

<!-- Get location with default parameters, the response is sent to
'baseURL/location'-->
<location/>

<!-- Get location using GPS every 60s, the response is sent to
'baseURL/location'-->
<location
 method="GPS" timeinterval="60"/>

<!-- Get two camera picture with ids 'before' and 'after', the response
is sent to 'cameraServlet' -->
<camera
 id="before" receiver="cameraServlet"/>
<camera
 id="after" receiver="cameraServlet"/>

1416 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

<!-- Get the light and temperature sensor value, the responses are sent
together to 'env.php' -->
<light
 id="light-1" group="env" receiver="env.php"/>
<temperature
 id="temp-1" group="env" receiver="env.php"/>

Generic attributes can be used by any context information XML tag. Several
context information XML tags can use unique attributes. For example, only
"<location/>" tag can be combined with "method" attribute. Some of this unique
attributes can only take constant values. In the case of "method" attribute that can
only take the values GPS or Wi-Fi. These restrictions may result in errors. To allow
developers to validate the XML code that defines the context information XML tags
we describe the structure of the tags in a group of XML Schemas.

Below is a snippet of code from the xsd file that defines the <location/> tag
structure.

<xsd:element name="location">
 <xsd:complexType>

 . . .

 <xsd:attribute
 name="timeinterval" type="xsd:nonNegativeInteger"
 use="optional" />
 <xsd:attribute
 name="accuacy" type="xsd:nonNegativeInteger"
 use="optional" />
 <xsd:attribute
 name="sensitive" type="xsd:boolean"
 use="optional" />
 <xsd:attribute name="method" use="optional" >
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="GPS"/>
 <xsd:enumeration value="Wi-Fi"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

4.3 Context information exchange

When the web application user presses a button that corresponds to a context
information XML tag, the context aware web browser captures the required context
information and then sends it to the web application. The context information is
usually plain text or a file, this information is encapsulated in a POST request and
sent to the URL specified on the context information XML tag. To receive the
information sent by the context-aware web browser the application must include
appropriate mechanisms to be able to process the POST request; RESTful [Yong, 08]
[Fielding, 00] web services, php pages, jsp pages, java servlets, and so on.

In addition to the context information the POST request always contains the
session identifier of the device (DSK) header; this parameter is used by the web

1417Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

application to identify the sender of the request and the session. The value of the DSK
is the same for any request sent by the context-aware web browser in a session with a
device. Besides the DSK the request headers can contain other parameters: ‘id’,
‘group’ and ‘members’.

In the most simple communication scheme the context-aware web browser sends a
POST request for each context-information XML tag. The use of ‘groups’ is the
proposed mechanism to reduce the number of request and improve the application
efficiency. When the context information of all XML tags in the same group has been
captured the web browser sends the information together using a single POST request
(Fig.2).

Figure 2: Context information XML tags communication schemes. (A) Simple scheme.
(B) Using ‘id’ attribute to identify the context information XML tags. (C) Using
‘group’ attribute to reduce the number of requests.

4.4 Context-aware web browser

The context aware web browser is a type of web browser that is designed to meet the
context information requirements expressed by the context information XML tags.

1418 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

The specification of this browser is platform independent so it can be implemented
using multiple platforms: iOS, Android, WebOS, Windows Phone, Symbian, etc. The
context aware web browser main functions are:
 Interpreting the web pages based on web standards and conventional languages.

In the same way as other classic web browsers.
 Notifying user requests for context information, if a website contains a context

information XML tag the browser should display a specific button that lets the
user decide whether to send that context information or not.

 When the user gives permission to share the context information, the web
browser must run the corresponding context information scheduled task. These
tasks are independent code modules contained in the context-aware web browser
that capture context information using the operating system device API and then
send that information to the web application.

The architecture of proposed context aware web browser is composed of three
layers (Fig. 3) (1) standard web browser, (2) context tag manager and (3) the context
information scheduled task manager.

Figure 3: Diagram of the context-aware web browser architecture. The context-
aware web browser is composed by tree layers, (1) standard web browser, (2) context
tag manager and (3) the context information scheduled task manager.

Standard Web browser. The objective of the first layer is to interpret and
visualize the web standards code. This layer has the same functionality as a
conventional mobile web browser, such as: Dolphin HD, Opera Mini, Mozilla
Fennec, Safari, etc.

Context Tag Manager. The second layer is responsible for the management of
context information XML tags. First, the browser parses the web response looking for
XML tags that correspond to the context information XML tags that the device can
process. If the device has technical resources to capture the context information the
context-aware web browser adds a new button in a graphical layer above the HTML.

1419Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

Each context information XML tag is represented by button that has a different icon
depending on its category or function. All mobile devices do not include the same
sensors; some buttons may be disabled if the device does not include the necessary
hardware to capture the context information defined in the context information XML
tag.

Context Information scheduled Task Manager. This layer contains and manages
the context information scheduled tasks. Generally these tasks capture context
information using sensors or other hardware element, depending on the task. Each
context information schedule task has a specific purpose, such as obtaining the GPS
location, the light level, etc. This proposal defines a concrete specification for each
context information scheduled task. Each specification defines the processes involved
in the task in a generic and platform independent way: the receiver parameters,
constraints, data returns, etc. The implementation of a context information schedule
tasks is a native code module, as well as the implementation of the rest of the context-
aware web browser that would develop for a specific mobile platform (Android, iOs,
Symbian, etc.), however some modules such as the standard web browser and Context
tag manager could be developed using cross-platform technologies. The code of the
tasks uses the API system to manage the hardware elements of the device that capture
the context information. Regardless of the implementation language and mobile
platform, a task will have exactly the same functionality and will return the same
result (Fig. 4).

Figure 4: Different implementations of the context-aware web browser developed
according to the specification gets the same results when the user visits a web
application that contains context information XML tags. In both cases the web
browser functionality is equivalent, each context information scheduled task uses the
platform system API to access the hardware elements.

The information obtained in the context information scheduled task is encapsulated
in a POST request and sent to the default URL or the URL defined in the “receiver”
attribute of the context information XML tag. The POST request is always completed

1420 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

by the header DSK and depending on the attributes of the context information XML
tag attributes with the headers: ‘id’, ‘group’, and ‘members’.

The context information scheduled tasks have four common states: (1) Ready, (2)
Processing, (3) Completed and (4) Error. When tasks change their state they will
notify to context tag manager layer. The task receives as input parameters the context
information XML tag attributes. The attributes define important properties of the task
behavior. Depending on the attribute values, the task may be finish automatically after
sending the context information to the web application, unless it has been defined as a
loop using the "timeInterval" attribute, in this case the task will keep running until the
user decides to finish it or to close the web application.

5 Prototype: web Application GPS Navigator

Context information XML tags allow the developing of web applications with
features that would be very difficult to imitate using common web technologies.
There are many different web applications that could be developed to illustrate the use
of this proposal. As a prototype application, we decided to implement a car/walking
navigator based on Google Map API.

We have considered developing a GPS navigator for two reasons: 1) this
application type requires the use of two hardware elements; a GPS location chip and
magnetic field sensor, although this sensor would not be absolutely necessary and 2)
there are several GPS navigators, which offer a good opportunity to compare some
features with those of the applications developed using context information XML
tags.

The web application included two context information XML tags on the index.php
page. The first tag requests the location of the device, the second tag requests the
value of the magnetic field sensor; this sensor type can be used in some scenarios to
simulate a compass.

In this application the <location/> includes several attributes that are used to
configure the behavior of the associated location task. The application needs to
confirm the location of the device every three seconds (timeinterval=”3”). We also
use other attributes (accuacy=”10”, sensitive=”true”) similar to those included in the
native GPS APIs to optimize the task performance and to avoid unnecessary
delivery of information. The location is sent to the web service URL specified in the
attribute tag.

In a very similar way to the <location/> context information XML tag used the
<magneticfield/>, every three seconds the device sends the value obtained by the
magnetic field sensor. Below is the index.php snippet of code:

…
 <div id="map_canvas"
 style="width:100%; height:100%"></div>
 <location
 timeinterval="3" method="GPS"
 sensitive="true" accuacy="10"
 receiver="/services/location" />

 <magneticfield

1421Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

 timeinterval="3"
 sensitive="true" accuacy="10"
 receiver="/services/magneticfield" />
…

To interpret this context-aware web application we have developed a context-
aware web browser by following the proposed specification. This version of the
context-aware web browser has been developed as an Android application using the
Android SDK. This context aware web browser contains an Android implementation
of several context information scheduler tasks, including those associated with the
<location/> and <magneticfield/> context information XML tags.

The context-aware web browser represents the context information XML tags as
buttons (Fig.4). These tags will not be visible in a common web browser. When the
user clicks on a button the browser will start executing the associated context
information scheduler task.

When the user clicks on the location or magneticfield button the device starts a
loop task, these tasks obtain the context information required and send the data
encapsulated in a POST request to the web service URL, the process is repeated every
three seconds. The button style changes to notify that the task is running (Fig.5).

Figure 5: (1) Buttons notify the user all the requests for context information.(2)
Location and magneticfield buttons indicate that the task is running.

The web application will have to implement the "/services/location" and
"/services/magneticfield" web services, in this prototype we have implemented two
PHP services that get the context information sent in the in the POST requests and
stored in a server cookie. Each request contains the DSK header, that attribute is used
to identify the device and the session. This application uses the Google Maps API, the
index.php page contains a rich client based on html and javascript code. Commonly,
web applications with rich clients call web services to obtain the necessary
information to run their processes and update their graphical interfaces. In this case
we have implemented two very simple web services that send the corresponding
information stored in the server cookie (Fig.6).

1422 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

Figure 6: Functional GPS web navigator diagram. (1) The context-aware web
browser loads the main page. (2) The page contains XML tags that execute a Context
information task; this task invokes a web service that saves the context information in
a cookie. (3) The index.php script calls a web service to update client information,
location and orientation.

When the user initiates the context information tasks the web GPS navigator starts
working, the location and orientation of the marker is updated every three seconds.
The context information buttons are in a different interface layer to HTML so context-
aware web browser can be configured to hide them (Fig.7).

Figure 7: Screenshot of the web GPS navigator running.

1423Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

6 Proposal evaluation

This section presents two evaluation processes: the first process involves the
evaluation of a real application for it using the application developed in the previous
section. The second process evaluates the network traffic generated by the use of
context information XML tags in an individually scenario.

The web GPS navigator application has been developed using context information
XML tags in this section we compare its performance with one of the most popular
GPS navigators; the Google navigator for android.

For this testing process, we have used a HTC Aria Smartphones with the following
features: Processor 600 MHz 384 MB RAM, 512 MB ROM, WiFi, Android OS 2.3.
To obtain performance parameters in the simulations we have used three analysis
tools: Traffic Monitor, Advance Task Manager, and TrafficStarts App / Task
Manager.

For this simulation process a walking route (about 11 minutes) has been
established. We have walked the same route using the two GPS navigation systems:
1) Web application: GPS navigator that uses context tags and 2) Native application:
Google navigator. This procedure was done with each of the navigators 5 times.
During the simulations we obtained some important parameters for the device
performance: system memory usage (Fig.8), CPU usage (Fig.8), network traffic
(Fig.9).

Figure 8: (1) Graphic representation of system memory usage during the execution of
evaluated applications. (2) Graphic representation of CPU usage during the
execution of evaluated applications.

1424 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

The device performance expressed in memory usage gives similar values in two
navigators. The native application Google navigator has a significantly lower memory
usage to the web application navigator; however there is a big difference in the use of
the device CPU. In this case, the functional complexity of the native application is
greater than the web application, which may partially explain the difference in CPU
usage. It is quite possible that the native application running multiple operations using
the device's CPU and that some of these same operations are running on the web
server for the web application.

The network traffic statistics generated by the two navigators are quite different
even though the systems use the same maps. As expected, the web application has a
high network traffic compared to the native application. The difference about sent and
received data is around 50%, the main cause of this divergence is the constant
exchange of data between the web application and the web server. Although it seems
a big difference, the network traffic of the application is less than 1MB sent and
0.4MB received in 12 minutes of use, these values are probably lower than those
generated by the use of the web browser in the same period of time.

Figure 9: Graphic representation of network traffic received/sent during the

execution of evaluated applications.

Comparing the resulting set obtained in the simulations, we can conclude that in
the evaluated scenario the web application that use XML tags generates more traffic
network, but instead it can run on many different platforms because it uses little CPU
resources and runs on a context-aware web browser.

Previously we compared the performance of a native application with a web
application developed using context information XML tags, in this simulation we
analyze the performance of context information XML tags and compared it with the
traditional data sending mechanism on the web: the form.

In this evaluation we have analyzed two important issues 1) the network traffic
generated with the sending of data (Fig.10) and 2) the time spent since the
information is sent until the user perceives the application response (Fig.10). For
these comparisons we use twenty-five web applications divided into three types. Each
of the web applications types sends to the web server the same data fields using: a
HTML form, a group of context information XML tags and a variable number of

1425Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

individual (no group) context information XML tags. The number of sent data fields
is increasing progressively from 1 to 5. For example when n=3, the first application
contains a HTML consisting on 3 input fields, the second application it’s a HTML
that contains 3 context information XML tags (<audiocapture speech=’true’
group=’info’/>) from the same group and the last application it’s a HTML that
contains 3 individual context information XML tags (<audiocapture speech=’true’
/>).

Figure 10: (1) The graph shows the volume of data transferred when the user sends
data using three different approaches for sending data from the web browser to the
server. (2) The graph shows the waiting times since the data is sent until the user
perceives the response using three different approaches for sending data from the
web browser to the server

Comparing the results obtained in the simulations we can conclude that in some
scenarios the use of context information XML tags generates less network traffic and
is a faster form the user perspective than traditional HTML forms. It appears from the
analysis that the proposal is more efficient in scenarios that use one or two groups of
context information XML tags for each HTML form. It should be noted that in some
cases a context information XML tag could replace many form input fields as for

1426 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

example some web applications can use the GPS coordinates of the current location
<location/> to infer the country, state and street.

The use of context information in web applications can improve the user
experience in many scenarios. In general, mobile devices have several limitations in
their interfaces: digital keyboard, small screens, the necessity to scroll to center the
view on the page elements, etc. All the information that can be sent to the web
application simply and without forcing the user to interact with the device interface is
a step towards improving the user experience. The functionality of the application
developed in section 6 could also have been implemented without the use of this
proposal, but context information XML tags significantly reduce the number of user
interactions with the device's interface. Therefore the application can be handled more
quickly, decreasing the chances of the user causing errors and increasing the usability.

The following evaluation has analyzed the behavior of nineteen regular smartphone
users. Users first used a traditional web application and secondly they used a web
application that included two context information XML tags. The two web
applications had exactly the same functionality (Fig.11). The use of context
information XML tags allowed the second web application to capture the context
information and prevent the user from having to introduce part of the required
information manually.

Figure 11: The graph shows the average time-consuming by users to complete the
same assignment in a traditional web application and a web application that uses
context-information XML tags.

In this scenario the context information has been used to re-implement the
functionality of an existing web application. This web application allowed users to
search for a product in nearby supermarkets, so this application was very appropriate
to use context information. The result of this evaluation shows that in some cases the
proposal may significantly improve user interaction times even up to 50% .This
proposal may contribute to significantly improve the user experience in some web
applications.

1427Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

7 Conclusions

This proposal includes a normalized and extensible mechanism for web applications
that can use most of the context information that mobile devices are capable of
capturing. The use of this context information allows the implementation of features
that were not possible before. Besides some types of context information can be
useful to improve the functionality and user experience of some of the current web
applications.

The proposed system has several interesting features:
From the point of view of developers, it is a simple and lightweight mechanism

based on general purpose technologies (XML/HTML, and HTTP). The mechanism to
request context information is easy to integrate into new web developments and into
already developed web applications, without altering the application structure or
conditioning their development using specific technologies, libraries, plugins or other
components. The use of context information XML tags can be combined with
traditional controls such as HTML forms, allowing the user to choose between using
context-aware controls or traditional controls, a traditional web browser simply
ignores the context information XML. The proposal also offers flexibility for web
applications to collect context information; it only requires an element that is able to
process POST requests. Context information XML tags simplify the part of the web
application implementation that requests the context information, it only requires the
use of a XML tag, while in most native applications (Android, iOS, Windows mobile,
etc) is not so simple. This proposal has some aspects that could be improved. The
development of web applications can be complicated if they use many types of
context information, as it would be necessary to implement a web service for
collecting each of the context information types.

This proposal introduces an uncommon approach in the context-aware web
browsers and context-aware web applications: the system gives the user control over
their context information. The requests and sending of context information are
conceptually similar to any other information on the web; text in an input form,
upload a file, select an option in a checkbox, etc. When a web application requests
context information the user must decide whether to accept the request or not.

The proposal is not as efficient as native applications, due to the increased use of
device resources and the generation of more network traffic, but the proposal brings
other advantages over native applications. Web applications have not been developed
for a specific mobile platform, which greatly simplifies the development process of
context-aware applications that can run on different mobile platforms.

The system includes mechanisms to obtain performance and user experience that
are very similar to traditional web applications that do not use context information,
but could be even more effective in many scenarios from the point of view of data
traffic and response times.

8 Future work

Some areas of future investigation:

1428 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

 Conduct a study on political and commercial interest to focus innovation in
native applications and how this affects distributed applications.

 Design tools or processes that offer support for the development of received
context information systems, such as automatic deployment of web services that
store the received context information in the session, cookies or databases.

 Development tools for the automatic creation of web services responsible for
receiving context information.

 Additional proposal evaluations focusing on the impact on technological and
commercial sectors

 Expanding the context information types that the tasks are able to capture,
including support for external hardware components and other accessories can be
connected to the devices, such as: external RFID readers, fingerprint readers, etc.

 Consider including new context information XML tags and context information
scheduler tasks that use other types of context information.

 Improving the architecture of the context-aware web browser for a better
performance and optimize the data traffic.

References

[Barnes, 08] Barnes, M.: HTTP Enabled Location Delivery (HELD), 2008,
http://tools.ietf.org/html/draft-ietf-geopriv-http-location-delivery-08/ 2008.

[Biegel, 04] Biegel, G., Cahill, V.: A framework for developing mobile, context-aware
applications. Paper presented at the Pervasive Computing and Communications, 2004. PerCom
2004. Proceedings of the Second IEEE Annual Conference on, 2004, 14-17 March 2004.

[Boehm, 08] Boehm, S., Koolwaaij, J., Luther, M., Souville, B., Wagner, M., Wibbels, M.:
Introducing IYOUIT. In A. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin & K.
Thirunarayan (Eds.), The Semantic Web - ISWC 2008 Vol. 5318, pp 804-817: Springer Berlin /
Heidelberg, 2008.

[Challiol, 07] Challiol, C., Fortier, A., Gordillo, S., Rossi, G.: A Flexible Architecture for
Context-Aware Physical Hypermedia. Paper presented at the Database and Expert Systems
Applications, 2007. DEXA '07. 18th International Workshop on, 2007, 3-7 Sept. 2007.

[Chua, 11] Chua, A. Y. K., Balkunje, R. S., & Dion Hoe-Lian, G.: The Influence of User-
Context on Mobile Information Needs. Paper presented at the Advanced Information
Networking and Applications (WAINA), 2011 IEEE Workshops of International Conference
on, 22-25 March 2011.

[Coppola, 10] Coppola, P., Della Mea, V., Di Gaspero, L., Menegon, D., Mischis, D., Mizzaro,
S., Vassena, L.: The Context-Aware Browser. Intelligent Systems, IEEE, 25(1), pp 38-47,
2010.

[De, 09] De, S., Moessner, K.: A framework for mobile, context-aware applications. Paper
presented at the Telecommunications, 2009. ICT '09. International Conference on. 25-27 May
2009.

[Dey, 01] Dey, A. K., Abowd, G. D., Salber, D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Hum.-Comput. Interact., 16(2),
pp 97-166, 2001.

1429Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

[Ennai, 08] Ennai, A., Bose, S.:MobileSOA: A Service Oriented Web 2.0 Framework for
Context-Aware, Lightweight and Flexible Mobile Applications. Paper presented at the
Enterprise Distributed Object Computing Conference Workshops, 2008 12th, 16 Sept. 2008

[Fielding, 00] Fielding, R.: Architectural Styles and the Design of Network-based Software
Architectures. Dissertation for Doctor of Philosophy, University of California Irvine,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm/, 2000.

[Gossweiler, 11] Gossweiler, R., McDonough, C., Lin, J., Want, R.: Argos: Building a Web-
Centric Application Platform on Top of Android. Pervasive Computing, IEEE, 10(4), pp 10-14,
2011.

[Goze, 08] Goze, T., Bayrak, O., Barut, M., Sunay, M. O.: Secure User-Plane Location (SUPL)
Architecture For Assisted GPS (A-GPS). Paper presented at the Advanced Satellite Mobile
Systems, 2008. ASMS 2008. 4th, 26-28 Aug. 2008.

[Hernandez, 09] Hernandez, E. A.: War of the Mobile Browsers. Pervasive Computing, IEEE,
8(1), pp 82-85, 2009.

[Hickson, 11] HTML 5 W3C working draft, 2011, http://www.w3.org/TR/html5

[ITU, 11] The world in 2011 ITC Facts and figures, 2011, http://www.itu.int/ITU-
D/ict/facts/2011/material/ICTFactsFigures2011.pdf/

[Johnson, 07] Johnson, S.: A framework for mobile context-aware applications. BT Technology
Journal, 25(2), pp 106-111, 2007.

[Kapitsaki, 08] Kapitsaki, G. M., Kateros, D. A., Venieris, I. S.: Architecture for provision of
context-aware web applications based on web services. Paper presented at the Personal, Indoor
and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium
on, pp 15-18 Sept. 2008.

[Kim, 09] Kim, N., Lee, H. S., Oh, K. J., Choi, J. Y.: Context-aware mobile service for routing
the fastest subway path. Expert Systems with Applications, 36(2, Part 2), pp 3319-3326, 2009.

[Lahti, 06] Lahti, J., Palola, M., Korva, J., Westermann, U., Pentikousis, K., Pietarila, P.: A
mobile phone-based context-aware video management application. Paper presented at the
Multimedia on Mobile Devices II. Edited by Creutzburg, Reiner; Takala, Jarmo H.; Chen,
Chang Wen. Proceedings of the SPIE, Volume 6074, pp. 204-215, 2006.

[Lamsfus, 10] Lamsfus, C., Alzua-Sorzabal, A., Martin, D., Lopez de Ipiña, D.: Digital
broadcasting for context-aware services in tourism. Paper presented at the Telecommunications
Conference (HISTELCON), 2010 Second IEEE Region 8 Conference on the History of, pp 3-5
Nov. 2010.

[Miluzzo, 08] Miluzzo, E., Lane, N. D., Kristóf, F., Peterson, R., Campbell, A. T: Sensing
meets mobile social networks: the design, implementation and evaluation of the CenceMe
application. Paper presented at the Proceedings of the 6th ACM conference on Embedded
network sensor systems, Raleigh, NC, USA, 2008.

[Mobile, 02] Mobile Location protocol Specification, 2002,
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html/

[Noltes, 08] Noltes, J.: An Architecture For Context-aware Mobile Web Browsing , 9TH
TSCONIT, university of twente, 2008.

[PhoneGap, 11] PhoneGap, 2001, http://phonegap.com/.

1430 Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

[Raento, 05] Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone: a prototyping
platform for context-aware mobile applications. Pervasive Computing, IEEE, 4(2), pp 51-59,
2005.

[Schilit, 94] Schilit, B. N., & Theimer, M. M.: Disseminating active map information to mobile
hosts. Network, IEEE, 8(5), pp 22-32. 2004.

[Schmidt, 99] Schmidt, A.: There is more to context than location. Computers &
Graphics, 23(6), pp 893-901, 1999.

[Shirazi, 10] Shirazi, A. S., Winkler, C. Schmidt, A.: SENSE-SATION: An extensible platform
for integration of phones into the Web. 2010 Internet of Things IOT, pp 1-8, 2010.

[Sugano, 04] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., Peterson, J.:
Presence information data format (PIDF). Internet Engineering Task Force, 2004.

[Webkit, 11] Webkit, 2011, http://www.webkit.org/

[Yong, 08] Yong, L., Connelly, K.: Realizing an Open Ubiquitous Environment in a RESTful
Way. Paper presented at the Web Services, 2008. ICWS '08. IEEE International Conference on,
pp 23-26 Sept. 2008.

1431Pascual Espada J., Sanjuan Martinez O., Pelayo G-Bustelo B.C., Cueva Lovelle J.M. ...

