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Abstract: We consider some issues concerning the role of Formal Logic in Software 
Engineering education, which lead us to promote the learning of formal proof through 
extensive, appropriately guided practice. To this end, we propose to adopt Natural Deduction as 
proof system and to make use of an adequate proof assistant to carry out formal proof on 
machine. We discuss some necessary characteristics of such proof assistant and subsequently 
present the design and implementation of our own version of it. This incorporates several novel 
features, such as the display and edition of derivations as trees, the use of meta-theorems 
(derived rules) as lemmas, and the possibility of maintaining a set of draft trees that can be 
inserted into the main derivation as needed. The assistant checks the validity of each edition 
operation as performed. So far, it has been implemented for propositional logic and (quite 
satisfactorily) put into practice in courses of Logic for Software Engineering and Information 
Systems programs. 
 
Keywords: educational software, teaching logic, formal proof 
Categories: L.3.0, L.3.1, L.3.6, L.3.8 

1 Context and Motivation 

1.1 Logic in Software Engineering Education 

It ought to be a dear aim in Software Engineering education that students be able to 
argue why their computer programs will work under all possible circumstances. The 
importance of such endeavour is best appreciated when we take into account that the 
discipline itself is still too much tied to practices in which programs’ conformance to 
their specifications comes up as just a (sometimes quite bold) conjecture and, 
consequently, software construction becomes essentially a trial-and-error process 
never to reach plain assurance. We can and must overcome this state of affairs and 
therefore turn it into a requirement that students of a Software Engineering program 
have the opportunity to learn and practice proof and, in particular, proof of 
correctness of computer programs. 

Proof is of course the mathematical activity of arriving at knowledge deductively, 
i.e. starting off from postulated, supposed or self-evident principles and performing 
successive inferences, each of which extracts a conclusion out of previously arrived at 
premises. In the application of this practice to programming we have among the first 
principles the semantics of programs, which allows to understand program code and 
thereby to know what each program actually computes. This makes it possible in 

Journal of Universal Computer Science, vol. 19, no. 11 (2013), 1570-1596
submitted: 15/12/12, accepted: 28/5/13, appeared: 1/6/13 © J.UCS



principle to deductively ascertain that the computations carried out by the program 
satisfy certain properties. Among these properties are input-output relations or 
patterns of behavior that constitute a precise formulation of the so-called functional 
specification of the program or system at hand. 

Formal Logic, on the other hand, is the theory of the activity of proving. As such 
it has, since the very beginning, striven to put forward the rules that govern such 
activity, i.e. the rules of correct reasoning. And, in its contemporary mathematical 
variety, it has formulated several artificial languages into which to frame the 
(deductive) practice of Mathematics. According to such scientific programme, there 
should be a language for expressing every conceivable mathematical proposition and 
also a language (or, as it has been called, proof system) for expressing proofs, so that a 
proposition is provable in the proof system if and only if it is actually true. This latter 
good property of the proof system is called its correctness.  

This kind of research was initiated by Frege [see  Frege 1967] with the purpose of 
making it undisputable whether a proposition was or not correctly proven. Indeed, the 
whole point of making the aforementioned languages artificial was to make it possible 
to automatically check whether a proposition or a proof was correctly written in the 
corresponding language. In particular, the proofs accepted were to be so on purely 
syntactic (i.e. formal) grounds which, given the good property of correctness of the 
proof system, would be enough to ensure the truth of the asserted propositions. 
Frege’s own system turned out to be not correct and, for that reason mainly, shortly 
after its failure was discovered, mathematical logic received a different direction –
namely metamathematics, i.e. the study of the languages and systems of logic as 
mathematical objects in order to prove their correctness by elementary means. Now, 
the paramount result of such research came as a shocking blow to the whole 
programme as conceived by Frege and onwards, as Gödel [Gödel 1931] proved that 
no sound formal proof system could capture (i.e. prove) all the propositions actually 
true in school arithmetic or any more complex mathematical theory. 

The overall outcome is nevertheless very expedient from a Software Engineering 
viewpoint. Computing Science has developed technology that enables fast electronic 
computers to perform the automatic checking of the well-formation of strings of 
symbols with respect to the rules of formal languages --in particular, of course, of the 
formal languages and systems of logic. Moreover, the actual composition of correct 
expressions in a formal language can be aided by appropriate software, which we 
know how to construct. When the formal language in question is a proof system, this 
latter facility amounts to semi-automatic theorem proving. All this makes a huge 
difference as to the actual usability of the languages and systems of logic. It is true 
that Frege himself, as well as Russell and Whitehead [Whitehead and Russell 1913] , 
wrote down by hand extensive mathematical tracts in their own formalisms, but those 
stand up until today as gigantic tours-de-force not to be repeated. Computers and 
Computing Science have made it possible to use formal  languages and systems of 
logic as actual, day-to-day, engineering tools. Indeed, a piece of software that is able 
to check the correctness of proofs of propositions that express the conformance of 
given programs to given specifications provides certainty about the logical 
(functional) correctness of those programs and has appropriately been named a 
verifying compiler [Hoare 2003]. It fulfills a kind of dream that could be summed up 
in a motto like: if it compiles, it works. On the other hand, the practical usability of 
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these systems is not affected by their incompleteness, i.e. by the fact that not every 
true proposition will be provable. The systems are generally perfectly expressive from 
an engineering perspective and are reliable, i.e. they do not accept defective proofs.  

All these advances allow us to define a discipline within Software Engineering, 
namely Formal Methods, as the one consisting in the use of formal languages and 
systems and related tools for expressing specifications and carrying out proofs of 
correctness of programs. These proofs are, at minimum, automatically checked as 
explained above so that their correctness is ensured. Further, the automatic tools can 
offer facilities to help developing the proofs. 

This adds a new dimension to the significance of Logic in Software Engineering 
education. On the one hand, it promotes, by virtue of its theoretical nature, reflection 
on the otherwise natural and spontaneous activity of reasoning, thereby providing 
foundation, reassurance and further intellectual tools. But also, because of its role as a 
foundation of the formal methods of software construction, it becomes a framework 
within which quite concrete computerized tools and methods, very relevant for the 
professional practice, are formulated and understood. 

1.2 Use of Natural Deduction 

At our university we teach a course of Formal Logic for the Software Engineering and 
the Information Systems programs, based on the above described premises. The 
course takes place in the second semester of the program of studies, which is 5 years 
long for Software Engineering and 4 years long for Information Systems. The 
students have previously taken courses on (Object Oriented) Programming and 
Computer Organisation, plus, in the case of Software Engineering, Integral and 
Differential Calculus and Linear Algebra. 

The Logic course is 16 weeks long, with 5 hours of lecture and exercises each 
week. It starts with the study of Induction and Recursion, which comprises the 
inductive definition of sets and the corresponding principles of proof by induction and 
of definition of functions by recursion. This allows on the one hand to establish a 
basis for the treatment of languages of which the languages and systems of Logic are 
particular cases, so that we can later employ already known principles for proving 
properties or defining transformations on the logical systems at hand. On the other 
hand, we study very general recursive data structures (sequences and trees) and do 
quite a bit of recursive (functional) programming and informal proof of program 
correctness. 

Next comes the classical contents of a Mathematical Logic course, i.e. 
Propositional and First-Order Logic, each with its corresponding syntax, semantics 
and proof system. The latter topic introduces of course the idea of formal proof, i.e. of 
proof carried out within a system of rules. We insist in the actual practice of formal 
proof, much more than in the metamathematical study of the systems. We stress on 
the resemblance between a formal system of proof and a programming language, 
especially as to the restrictions imposed on the concrete forms of expression that are 
allowed. Mainly because of our preference for actual use over metamathematical 
analysis, we employ the Calculus of Natural Deduction [Gentzen 1935]. This system 
was devised with the aim of closely mimicking common practice in informal (i.e. 
natural language) mathematical proof, which is achieved essentially by allowing rules 
that make use of temporary additional assumptions. For instance, to prove a formula 
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that states an implication AB it is possible to use a rule that allows to assume A in 
order to prove B from it, just as in common practice. Specifically, this rule states that 
if one possesses a proof of B which depends on the assumption of A, then one can 
infer that AB (i.e. that A implies B), thereby obtaining a proof which does not 
anymore depend on the aforementioned assumption. This assumption is said to be 
discharged, i.e.dispensed with in the newly formed proof. 

Further, the rules of inference (with possibly one exception) are organized around 
the logical constants (connectives and quantifiers) and are of one of two classes in 
each case, i.e. a rule is either: 
 
 An introduction rule stating how a formula having the logical constant in question 

as principal operator can be derived in a direct, canonical manner, or  

 An elimination rule, stating how such a formula can be employed to derive further 
consequences from it.  

For instance, the rule described above is the introduction rule for the implication . 
The elimination rule for this connective is 

AB A 

B 

which states that from AB one can infer B provided A is also proven. 

Rules have in general several premises and always one conclusion and therefore 
the formal proofs (technically called derivations) are naturally arranged as trees. It is 
natural to read inference as proceeding from the premises above to the conclusion 
below, and therefore the trees are written with the root, which is the conclusion of the 
theorem, at the bottom, and the initial assumptions at the leaves on the top. The use of 
the rules inside a tree follows a quite characteristic pattern: Reading the tree from the 
top, one first applies elimination rules to obtain information from the given premises in 
a phase that could be called of analysis. At some level during the derivation one starts 
a synthesis forming new conclusions from the data obtained, by employing the 
introduction rules. We refer to [van Dalen 2008] for a full presentation of the system. 

1.3 Use of Computerized Assistant 

It is for us just natural, given the analysis exposed above in 1.1 that the students have at 
disposal a computerized assistant for carrying out their formal proofs, just as they use 
an implementation of a programming language to learn and do their programming. 

Indeed, formal proofs constructed on paper tend to be burdensome, there is no 
linearity and it is difficult for the students to adapt. They have to erase various steps in 
order to turn back on what was being done and write on different parts of the sheet in 
order to make annotations or sub-proofs. Aesthetic factors make it difficult to 
visualize the entire proof. Also, the students are less motivated to work on paper than 
on machine, especially at the early stages of their professional education which is 
when they take this course. They hope to work frequently with computers, which is 
certainly one of the main reasons that drove them to choose the computing programs. 
And, finally, the fact that the assistant will check the derivations for correctness 
provides reassurance and motivates the students to work on their own. 
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We believe this last point is very important, because extensive practice is 
necessary for the students to make progress in the process of learning formal proof, 
particularly with the Natural Deduction system. They usually start at a stage in which 
they tend to apply the rules as if they were pieces of a puzzle without having a real 
idea of the state and direction of the proof. It is expected that the mere plugging of the 
inference rules will eventually converge to a complete proof. That is to say, they view 
the rules as bare formal transformations without really apprehending their logical 
meaning. It is practice - at first accompanied by adequate guide, but stepwise growing 
autonomous - which eventually provides sense and discipline to the formal 
manipulation. 

In virtue of what has been said, we set ourselves to incorporate a computerized 
tool to assist in the practice of formal proof using Natural Deduction in our Logic 
course. We identified a set of requirements for such a tool, which we explain in Section 
2. Given that we could not find these requirements implemented in any of the various 
tools available elsewhere, we decided to design and implement an assistant of our own, 
which we describe in Section 3. In Section 4, we survey the current state of the art of 
similar systems, and finally, in Sections 5 and 6 we expose conclusions and further 
work. 

2 Requirements 

2.1 Tree-like Representation of the Proof 

The graphical representation of the proof must match the way it is presented in the 
course, namely the natural representation as tree which has already been explained. 
[Fig. 1] displays one such tree. We write on the top, above the tree, the judgement that 
is being proven. Notice the marking of discharged temporary assumptions. 
 

 

Figure 1: Tree-like representation of a proof 

 
This point turned out to be of great importance, since similar systems already 

available offered representations mostly based on Fitch diagrams, which basically 
consist on the construction of embedded rectangles to represent sub-proofs. More 
information about Fitch diagrams can be found in [Huth and Ryan 2004].  

We prefer trees because they arise as the natural way of composing rules of 
inference as these are usually presented, i.e. with the premises on top of a bar which 
represents the act of inference of the conclusion appearing below. 

In addition to adjust to the course and facilitate its acceptance by teachers and 
students, the representation becomes a differentiating factor compared to other 
programs, and one that we appraise as advantageous.  

1574 Pais J., Tasistro A.: Proof Assistant ...



2.2 Use of Meta-variables 

Formulas handled by the system may contain both plain (object level) propositional 
variables and variables that range over the logical formulas, i.e. meta-variables. 
 (α → β → γ) → (α → β) → α → γ		with	α, β, γ	ϵ	    (1) 
 

For example, in (1) Form represents the set of the formulas of propositional logic, 
and α, β and γ represent arbitrary formulas of Form, therefore they are meta-variables. 

The use of meta-variables will, as explained below, allow using completed proofs 
(lemmas) as justification of steps in other proofs. 

2.3 Lemma Instantiation 

A lemma is defined as a completed proof. In general, one is interested in theorem-
schemata which stand for infinite families of concrete theorems and can be expressed 
by employing meta-variables. One simple example is the following: 
 ¬ 	 ⊢ 	 → 	 . 
 

The symbol ⊢ separates assumptions (hypotheses) from conclusion (thesis) 
and therefore the above expression can be read: From ¬  it can be derived in 
Natural Deduction that	 	 → 	 . Now this holds for any formulas α and β 
whatsoever, and hence we are in presence of an infinite family of concrete 
theorems or, as said before, a theorem-schema. For example, given the 
assignment 
 							 	 = 	 	 ∧ 	 	, 	 = 	 	 → 	 			, 
 
the result of accordingly instantiating the previous lemma is the concrete theorem: 
 ¬( 	 ∧ 	 ) ⊢ 	 ( 	 ∧ 	 ) → ( 	 → 	 )	. 
 

Lemmas can be used during the construction of any other proof as if they were 
new inference rules. (They are in fact derived rules.) We require that the system 
supports this feature and generates an appropriate instance of the lemma to be 
employed, based on the current status of the proof wherein it is to be applied and 
minimizing the information to be supplied by the student. The student is of course 
expected to evaluate a priori whether the instantiation of the lemma is possible in the 
context at hand, although without needing to give an explicit correspondence between 
meta-variables and formulas. 

There should be a repository of lemmas, from which the student can easily select 
any one to be used during the development of a proof. Lemmas can be saved in a way 
such that the student can recover their proofs as originally constructed. 

1575Pais J., Tasistro A.: Proof Assistant ...



2.4 Simulate Paper-and-Pencil Construction Experience 

By itself the experience of building proof trees is rather complex for the students: they 
are at the same time dealing with a specific problem and a new instrument. Some 
important points arise: 
 
 When working on paper, the student uses a large area to draw the proof tree, 

makes annotations, constructs different sub-proofs that could fit into the desired 
one, does a lot of editing and deleting. 

 Paper has its drawbacks. A priori it is not known what the size of the proof tree 
will be. In general it is necessary to delete some parts of the tree because they 
correspond to wrong paths or, as several sub-proofs were generated, they must be 
joined together or rewritten to fit into the original proof. 

If the objective is to help the students focus on the construction of the proof, the 
assistant should start presenting an interface similar to a sheet of paper and just 
improve over its disadvantages. Otherwise learning to use the program will be more 
difficult than learning the natural deduction calculus. 

2.5 Assistant, not Automatic Prover 

The tool should assist the student in the construction of the proofs, not complete them 
for him. This concept manifests itself in the following ways: 
 
 In as much as the proof is incomplete, the system will indicate which sub-proofs 

have yet to be completed. At the beginning, the desired conclusion and the 
assumptions are shown and the indication is that the whole proof is missing.  

 Then a mechanism for constructing the proof backwards should be available, i.e. 
one that allows to select a yet-to-be-proven conclusion and an inference rule and 
educe an appropriate set of premises that lead to the desired conclusion via the rule 
selected. These premises become in turn new conclusions to be proven. 

 The system will check the local validity of the application of each inference rule.  

 The system does not check that the path or general strategy chosen to build the 
proof is valid in any sense. 

 There should be a way to construct derivations in a forward manner, i.e. working 
from assumptions to conclusions. 

 And, corresponding to this and to the use of lemmas, there must be a way to insert 
completed proofs in place of any pending sub-proof of another tree. 

The possibility of working both in the backwards and forward manners reflects 
the fact that it is rather natural in this system to proceed in the following manner: 
 
 At first, one goes backwards from conclusion to new conclusions-to-be-proven, 

generally by selecting appropriate introduction rules. This is carried out until no 
further rules of this kind can be applied or they would lead to conclusions which 
are not sensible to try. 
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 At such point one starts combining the available hypotheses in a forward manner, 
i.e. going from known premises to further inferred conclusions, trying to obtain 
the pending results. This is done by applying elimination rules. 

Hence the tree is generally constructed first from the root and upwards, until some 
point which roughly corresponds to the completion of the synthetic part of the proof as 
depicted above in 1.2. Then one proceeds from the leaves and downwards, 
constructing the analytic part of the proof. Such order of proceeding looks indeed 
opposite to the one suggested by the analytic-synthetic structure of the proofs that has 
been called upon. But then one must keep in mind that the way a proof is presented is 
generally different from the way it is conceived. And also that the strategy just 
explained is not claimed to be the only one appropriate to employ but just a generally 
useful one, especially to start finding one’s way about carrying out this kind of 
constructions. The requirement just exposed is to the effect that such strategy can be 
naturally executed in the assistant. 

3 ANDY: Assistant for Natural Deduction 

Not having found the above described features in any tool publicly available [Bornat 
and Sufrin 1997] [Dyckhoff 1987] [McGuire 2007][Halvorsen 2007], we decided to 
carry out a detailed design and implementation of (yet another, but still new) proof 
assistant for natural deduction. Our first version deals only with propositional logic. It 
is called ANDY (version 0.) 

3.1 Features 

3.1.1 Proofs as Trees 

An important feature of the system is the graphical representation of the proofs as 
trees. Each node of the tree is a logical formula. Particularly, the root is the 
conclusion of the proof and the leaves are the hypotheses. On the latter there is an 
important distinction: First, there are hypotheses that appear in the statement of the 
judgement to be proven and are available throughout the construction of the entire 
proof; we call these theorem hypotheses. Secondly, there are temporary hypotheses, 
which are assumptions that emerge from the process of construction and have 
restricted validity within the branch where they are generated. Temporary 
assumptions are allowed by certain inference rules. For example the introduction rule 
of implication is written as follows: 

→		 [ ]|→  

 
As already explained, a temporary hypothesis consisting in the formula A is 

allowed for use in the tree standing above the rule. If one looks only at that tree, then 
one sees that the conclusion is B and that among the leaves, there are (generally) some 
labeled A. However, in the complete tree obtained after applying the rule, the 
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conclusion is AB and the leaves labelled A are marked as discharged, i.e. dispensed 
with. A substantial difference between the two types of hypothesis is that in the leaves 
of a complete proof there must be only theorem hypothesis or discharged temporary 
hypothesis, i.e. each and every used temporary hypothesis has to be discharged in 
order to complete the proof. The discharge of a temporary hypothesis involves linking 
it to the rule that generated it. This functionality is not automatic; the student has to 
make explicit the link between the temporary hypothesis and the rule. Practice renders 
evident that it is difficult for students to understand the mechanism of discharge so we 
decided not to automate this. So the system acts in these cases only as a validator, 
checking that the discharge is correctly performed. 

The display of the proof tree uses a color and symbol code to show the state of 
the proof at each node. The green nodes represent completed parts of the proof, which 
means that the sub-proof determined by the node is completed and no further action is 
required. On the other side, red leaves correspond to assumptions made that have to 
be discharged. Finally, leaves with missing proofs are represented with a question 
mark on top. This is illustrated here below: 

 
Figure 2: Incomplete proof 

3.1.2 Formula Line Editor 

There is an in-line editor for writing down and having checked every formula 
provided as input to the system. 
 

 

Figure 3: The system validates the syntax of every input formula 

The editor validates that the syntax of the input corresponds to a formula of the 
propositional calculus. However, it does not make any check or validation of the 
logical validity of judgements introduced, i.e. the hypotheses and conclusion may 
create a judgment that cannot be proved. 

The formula editor is reactive in the sense that it checks for every input if the 
written string corresponds to a valid formula: if it doesn’t the text box background 
becomes red, otherwise green. The editor is used every time the user has to write a 
formula during the proof and when introducing a new judgement to be used. In this 
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case, the editor behaves differently, as it allows users to dynamically add any number 
of new hypotheses. 

3.1.3 Drag & Drop of Proofs 

A feature that we consider extremely important is that the construction of the proof on 
the system must simulate the construction on paper, while at the same time improving 
into the latter’s disadvantages. To do this, it has become essential to implement the 
trees as objects that can be moved around a proof panel.  

At any given time during the construction of a proof a main tree coexists with 
several sub-proofs. These work as drafts, i.e. proof fragments used to focus on a 
specific part of the main proof, surely because they involve a complexity that makes it 
difficult to manage the main proof as a single piece. This allows the student to divide 
the problem and attack it from different points, later putting together the intermediate 
results. 

Draft sub-proofs can be dragged through the panel or deleted in their entirety. 
When a sub-proof is complete (and under certain restrictions) it can be put together 
with the main proof by simply dragging and dropping it on one of the incomplete 
leaves of the main proof. The system checks the validity of the resulting construction. 

3.1.4 Forward and Backward Reasoning 

The system allows building a proof using two mechanisms. The first one consists in 
starting from the conclusion and, by applying successive inference rules backwards, 
finally reaching the hypotheses. The second starts from the hypotheses and finally 
reaches the conclusion by applying the inference rules in a forward manner. These 
mechanisms are called backward (or goal oriented) and forward (or assumption 
oriented) reasoning respectively.  

Students are expected to build proofs by combining these two techniques until 
they converge at an intermediate level of the proof and complete it. In order to 
implement these facilities we decided that each inference rule had to have a backward 
and forward variant, which would be applied automatically as the situation required. 
A problem with this is that each Natural Deduction rule seems to adapt better to 
backward reasoning or to forward reasoning, but not to both. The challenge here was 
to devise a general mechanism for each kind of reasoning so that every rule could be 
used naturally, without generating any complexity for the student. 

As a result, each rule variant behaves differently: 
 

- Backward rules [Fig. 4] are applied on a single leaf of the main tree. The 
result is a modification of the main tree, where the selected node has one 
or more children. The application of a rule may generate new 
assumptions. 

- Forward rules involve one or more secondary trees. The result is another 
secondary tree with a new root and a new set of available hypothesis 
[see Fig 5]. 
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Figure 4: Backward rule behavior. Question marks represent incomplete parts of the 
proof. 

 

Figure 5: Forward rule behavior. Γ represents the set of available hypothesis and α  
the root of the new tree 

3.1.4.2 Backward Rules 

The notation for backward rules is: 
 	( )

 

 
The left side of the arrow shows the state of the leaf of the main tree before 

applying the rule, while the right side shows the result of the application. 
Formula represents the formula at the leaf, Rule is the name of the applied rule 

and Args is a list (possibly empty) of arguments which depends on the applied rule. 
NewTree is the resulting tree with Formula as the root. 

Notice that the new tree inherits the set of available hypothesis for Formula, 
possibly adding new ones as a result of the application of the inference rule. These 
new hypotheses are temporary, and they only exist and can be used on the scope of 
the sub tree. They are written between brackets above the NewTree. 

The arguments passed to a rule constitute additional information needed to 
correctly apply the rule. An argument may be: 

 
- A formula needed to complete the result of the derivation. For example, in 

the case of the implication elimination (EImpB), the antecedent of the 
derived implication must be explicit. 
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- A direction that defines which variant of an inference rule should be applied 
in rules where the result depends on the chosen operand (Left or Right). For 
example the Disjunction Elimination (EOrB) needs a direction argument to 

define whether from the formula A  B the result is A (Right) or B (Left). 

For example, given a proof tree with the formula A as a leaf we can apply the 
Conjunction Elimination Backwards (EAndB). 

Notice that to apply the rule we need two arguments: a formula that represents the 
missing operand of the resulting conjunction, and a direction that establishes the 
relative position of the initial formula with the conjunction operator. 

[Fig. 6] shows the result of the application of the rule for both possible directions. 
The notation for each rule is shown on the right. 
 

 

Figure 6: Conjunction elimination with both variants 

[See Tab. 1] for a complete specification of the remaining inference rules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1581Pais J., Tasistro A.: Proof Assistant ...



 

Implication 
Introduction 
(IImpB) 

 

→
[ ]?→  

 

Implication 
Elimination 
(EImpB) 

	 ?																?				→ 											 			 
Disjunction 
Introduction 
(IOrB) 

 ∨ 	 ?∨  

 ∨ 	 ?∨  

 

Disjunction 
Elimination 
(EOrB) 

	 ∨
 																													[ ]					[ ]																				?														? 									?								∨ 										 										

Conjunction 
Introduction 
(IAndB) 

∧  				?																		?																					∧  

Conjunction 
Elimination 
(EAndB) 

 	 	 							?							∧  

 							?							∧  

Equivalence 
Introduction 
(IEqB) ↔

						[ ]						[ ]								?										?												↔  

Equivalence 
Elimination 
(EEqB) 

→ 	 	 ?↔→  

 → 	 	 ?↔→  

 

Negation 
Introduction 
(INotB) 

 

¬
[ ]?⊥¬  

 

Negation 
Elimination 
(ENotB) 

⊥		 	 ?																?															¬⊥  

Reductio Ad 
Absurdum 
(RAA) 

 [¬ ]?⊥  

 

Absurdum 
Elimination 
(EBotB) 

?⊥ 

Table 1: Definition of backward inference rules 

To apply, for example, the implication elimination the student must follow these 
steps: 

- Select a leaf from the main proof tree. The chosen leaf must have an 
incomplete proof, symbolized in the program with a question mark above.  
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- From the Rule Panel, click on the Implication Elimination button. The system 
automatically adjusts the rule to apply the backward variant. Then it checks 
that the selected rule can be applied on the formula according to syntactic 
restrictions. In this case there are no restrictions. 

- If the rule requires it, the student must input other arguments. In this case, the 
antecedent of the derived implication. The system shows the expected 
outcome of the applied rule. 

- The main proof tree is modified by adding new leaves. 

 

Figure 7: Implication elimination (backward variant) 

3.1.4.2 Forward Rules 

Forward rules work differently than backward ones: while the latter derive new 
obligations on the main proof represented as new leaves on the tree, the former are a 
sort of complete proof combinators. The main input for a forward rule is one or more 
secondary proofs, which by construction are always complete. The result is a new 
complete proof, composed from the input proofs by creating a new root that depends 
on the applied rule. The set of available hypotheses for the new root is constructed 
from the union of the already existing hypotheses. 
 

 

Figure 8: Forward rule general mechanism 

The general notation for forward rules is: 

Γ ⊢ 	 	 Γ ⊢ , Γ ⊢ …	Γ ⊢ 				Γ ⊢  

The left side of the arrow shows the proof where the rule is applied. The rule is 
always applied on a single proof, but other proofs may be used as arguments. On the 
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right hand side the result of the application is shown: in the upper part all of the used 
proofs are listed and in the bottom there appears the resulting judgement. 

 
Rule stands for the name of the rule, and Args is a set of additional data composed of: 

- Propositional logic formulas 
- Directions (Left / Right), as in backward rules 
- Complete proofs. These are needed because some rules may need more than 

one complete proof in order to be applied.  

As an example, [Fig. 9] shows how the Implication elimination works. The rule is 
applied on a complete proof of AB with the set of available hypothesis Γ, and a 
proof of A with hypothesis Γ’ is passed as argument. The result is a new complete 
proof of the formula B with a set of available hypothesis Γ’.  

For a complete list of forward rules [see Tab. 2]. 

 

Figure 9: Implication Elimination Forward (EImpF) 

3.1.5 Meta-Theorems and Instantiation 

The system allows using in formulas both simple propositional variables (which stand 
for truth values) and formula variables (meta-variables) which stand for formulas of 
the propositional logic language. The latter allow to create generic proofs and reason 
about the universe of the propositional formulas. Moreover, generic proofs can be 
instantiated into concrete proofs (only containing propositional variables) and used as 
part of other proofs as if they were rules of inference. If there exists a substitution that 
matches each meta-variable on the generic proof with a formula on the concrete 
proof, then the meta-variables are instantiated. 
 
For example, given the following generic lemma: 
 ( ∧ ) ⊢ ( ∧ ) 
 
there exists in each of the following cases a substitution S that marks the 
corresponding proofs as complete: 
 	( ∧ ) ⊢ ( ∧ )	 	 = {( , ), ( , )}	 
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and ( → ∧ ∨ ) ⊢ ( ∨ ∧ → )	 	 = {( , → ), ( , ∨ )} 
 

ANDY uses this mechanism to implement two functionalities: lemma 
instantiation and secondary tree join. 
 

Implication 
Introduction 
(IImpF) 

 Γ ⊢ 	 Γ ⊢Γ ⊢ →  

 

Implication 
Elimination 
(EImpF) 

Γ ⊢ → 			 ⊢ 	
 Γ ⊢ → 										Γ′ ⊢Γ ∪ Γ′ ⊢  

Disjunction 
Introduction 
(IOrF) 

 Γ ⊢ 	 	 Γ ⊢Γ ⊢ ⋁  

 Γ ⊢ 	 	 Γ ⊢Γ ⊢ ⋁  

 

Disjunction 
Elimination 
(EOrF) 

Γ		 ⊢ ∨ 		 	 		 , ⊢ 		 , ⊢ 				 
 Γ ⊢ ∨ 							{ } ∪ Γ ⊢ 					{ } ∪ Γ′′Γ ∪ Γ′ ∪ Γ′′ ⊢

Conjunction 
Introduction 
(IAndF) 

 Γ ⊢ 			 ⊢ 		
 Γ ⊢ 						Γ′ ⊢ 	Γ ∪ Γ′ ⊢ ∧  

 Γ ⊢ 			 ⊢ 		
 Γ ⊢ 						Γ ⊢ 	Γ ∪ Γ′ ⊢ ∧  

 

Conjunction 
Elimination 
(EAndF) 

 Γ⊢ ∧ 	 Γ ⊢ ∧Γ ⊢  

 Γ⊢ ∧ 	 Γ ⊢ ∧Γ ⊢  

 

Equivalence 
Introduction 
(IEqF) 

, Γ ⊢ 			 , ⊢
 , Γ ⊢ 							 , Γ′ ⊢{ , } ∪ Γ ∪ Γ′ ⊢ ↔  

 , Γ ⊢ 			 , ⊢ 			
 , Γ ⊢ 							 , Γ′ ⊢ 		{ , } ∪ Γ ∪ Γ′ ↔  

 

Equivalence 
Elimination 
(EEqF) 

 Γ ⊢↔ 	 Γ ⊢ ↔Γ ⊢ →  

 Γ ⊢↔ 	 Γ ⊢ ↔Γ ⊢ →  

Negation 
Introduction 
(INotF) 

 , Γ ⊢⊥  , Γ ⊢⊥{ } ∪ Γ ⊢ ¬  

 

Negation 
Elimination 
(ENotF) 

Γ ⊢ ⊢¬
 Γ ⊢ 									Γ′ ⊢ ¬Γ ∪ Γ′ ⊢⊥  

 
 
 
Reductio Ad 
Absurdum 
(RAA) 

 
 ¬ , Γ ⊢⊥   ¬ , Γ ⊢⊥{¬ } ∪ Γ ⊢  

 

 
 
 
Absurdum 
Elimination 
(EBotF) 

 
 
 Γ ⊢⊥ Γ ⊢⊥Γ ⊢  

Table 2: Definition of forward inference rules 
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Lemma instantiation allows a user to use a completed generic proof as a new 
inference rule in another proof. When a generic proof is completed, the user can save 
it on a lemma library, so that it remains available to use in future proofs. Then, during 
the construction of a proof the user can invoke a lemma to complete the proof of a 
leaf on the main tree. ANDY automatically finds the most suitable substitution based 
on information about the formula on the leaf and the available hypothesis. After that, 
the instantiated lemma is attached to the main tree and the sub-proof is marked as 
complete. 

Secondary tree join is one of the main features that makes ANDY similar to 
working with paper and pencil. The user can build a secondary proof anywhere inside 
the proof panel and then use it to complete the proof of a leaf on the main tree. In this 
way, the user can divide the proof in several easier sub-proofs, work with them and 
then put them back together to complete the main proof. The secondary proof does 
not have to be complete in order to join it with the main tree but there are certain 
restrictions that check that the proof can be completed after the join by considering 
the available hypotheses at that moment. 

3.2 Implementation 

We chose to implement the system in a functional language, because the description 
therein of the syntactic structures involved in the calculus turns out to be quite simple 
and natural. We also needed a language that allowed us to create a functionally 
complex graphic interface that was at the same time simple and familiar for the 
student. As functional language, Haskell seemed a natural choice because it is widely 
used at the University and we had some experience working with it. However it was 
complicated to satisfy the graphical requirements. So we decided to take a chance on 
F# (actually a multi-paradigm language) to develop the core of the system (data 
structures, inference rules, etc.) and C# to create the graphical interface. As both 
languages compile to common code that runs on Microsoft’s Common Language 
Runtime (CLR), it was very simple to interoperate between what was written on each 
language. 

ANDY is a Windows Forms application; however we have considered the need 
for portability to non-Windows systems, so it was designed with highly decoupled 3-
tier architecture. This allows us to modify the presentation tier while maintaining the 
logical tier, to create for example a web application.  

ANDY is a non-commercial application and can be downloaded and used freely 
from our research group’s web site http://fi.ort.edu.uy/innovaportal/v/ 
3641/5/fi.ort.front/inicio.html 

4 Survey of Available Systems 

The main goal of this project was to design and build a system that facilitates learning 
of the natural deduction calculus in introductory logic courses. The problem of 
building such systems is well known in the academic environment and there are 
several programs that implement different solutions, each one with its particular set of 
features. We now characterize and evaluate the ones which in our opinion 
characterize the present state of the art: 
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- Pandora IV [Pandora] 
- DC Proof [DC Proof] 
- Proof Builder [ProofBuilder] 
- Gateway to Logic [Gateway to Logic] 
- JAPE [JAPE] 

4.1 Comparison Criteria 

In addition to a brief description of how each program works, we define a set of 
points to compare based on the ones in [van Ditmarsch 1998], where a comparison of 
natural deduction systems from the point of view of the user interface is proposed. 
 

1. Implementation features: details about the programming language used and 
portability 

2. Implementation and internal representation of the calculus: Information 
about data structures and algorithms used to represent the proofs and 
inference rules. 

3. Proof management: ability to save proofs and later use them as lemma. 
4.  Version of natural deduction: logical system (classical, minimal, 

intuitionist, predicate, etc.), available inference rules and their behavior, 
system restrictions, equality. 

5. Proof visualization: The way the proof is displayed to the user (as a tree, as a 
sequence). Also visualization of premises, goals, rule application, formulas 
and step numeration 

6. Type of reasoning: Backward, forward, both 
7. Help: Depending on the implementation, the system might offer certain help 

to finish the proof. This is very important pedagogically. Too much help 
make it easy for the student to randomly try different rues until the proof is 
completed. We establish 4 kinds of help: 

a. Global help: Independent form the proofs, based on tutorials. 
Describes the available rules and may have examples of how to 
apply them. 

b. Tactical help: Gives the student a possible tactic to solve the 
problem depending on the current state of the proof. Usually consists 
on a single deductive step. 

c. Strategical help: Extension of tactical help. It gives a proof plan that 
consists of several deductive steps. 

d. Debugging: points to errors that arise on the proof, for example 
when a rule is applied incorrectly. 

8. Proof checking: Mechanism by which the system validates that the proof is 
correct. It can be a step by step validation, preventing steps that would lead to 
a wrong proof or impossible to complete, or a validation test when the proof 
is finished.   

9. Creation date / Last version: Indicates the creation date of the program, the 
current version and the current state of the project (discontinued, in use, etc.) 

 
To begin with, we describe ANDY from the point of view of these criteria. 
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Criteria Description 
Implementation 
features 

Desktop application based on Microsoft .NET Framework 4.0. 
The core of the system is developed in F# and the UI in C#.  

Implementation 
and internal 
representation of 
the calculus 

The derivation engine and proof manager are based on 
functional programming. 
Proofs are implemented as n-ary trees and inference rules as 
functions applied to formulas on tree leaves.  

Proof 
management 

Proofs (complete or incomplete) can be exported as XML files. 
Incomplete proofs can be later imported and resume the proof. 
Complete proofs can be used as lemma on new proofs. 
 
The system can scan a directory where XML proofs are saved 
and obtain the proof statement (Γ ⊢ ) before actually 
importing the proof into the system. 

Version of 
natural deduction 

Propositional logic with backward and forward variant for each 
introduction and elimination rules for conjunction, disjunction, 
implication, equivalence, negation and bottom (⊥) plus a rule 
for Reductio ad absurdum 

Proof 
visualization 

Represented as trees, where the root is the conclusion and the 
leaves are hypothesis of the statement. Each node represents 
the application of an inference rule.  
 
Available hypothesis for a given node are shown on a lateral 
panel discriminated using a color code into theorem hypothesis, 
assumptions and derived hypothesis.  

Type of 
reasoning 

Allows backward and forward reasoning. Backward rules are 
applied on the root of the proof tree while forward rules are 
applied onto secondary trees that can be constructed on the 
proof panel. The main tree and these secondary trees can be 
joined at any moment by a formula instantiation procedure that 
is transparent to the student. 

Help 

Includes a help guide that explains all the functions and how to 
use each rule. 
 
Also implements debugging help by pointing out errors when a 
rule is not correctly applied. 
 
There is no tactical or strategical help.  

Proof checking 
Step by step validation. The system prevents the user from 
applying incorrect rules on a given formula.  

Creation date / 
Last version 

2011, fully functional version for propositional logic. Now 
working on an extension for predicate logic. 

Table 3: Description of ANDY 
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4.2 Survey 

4.2.1 Pandora 

For more information see [Pandora]. 
 

Criteria Description 
Implementation 
features 

Java based web application. Highly portable 

Implementation 
and internal 
representation of 
the calculus 

No available documentation about its internal implementation. There 
is documentation about Java packages and classes used 

Proof management 

The program allows saving complete and incomplete proofs as .pan 
files. 
Not allowed to use previous proofs in new ones.  
It allows taking goals as proven without the need to provide an explicit 
derivation, using a tactic called Trust Me. This can be used to simulate 
the use of lemmas.  

Version of natural 
deduction 

Implements the classic rules of natural deduction in first-order logic 
(introduction and elimination of connectives and quantifiers). 
Adds rules for equality (reflexivity, substitution), and the Law of the 
Excluded Middle. 

Proof visualization 

The proof is shown sequentially as a Fitch diagram. 
The places where a demonstration is needed are symbolized with an 
<empty> label. 
The proof obligations are indicated by the label <goal>. 
It uses the concept of signature of the proof which is the set of 
predicates and terms that appear on it. There is a global signature 
throughout the proof and a local signature (usually with more items 
than the global one) for each box in the diagram. The overall signature 
is created automatically by the program and is not editable; however 
the local signatures can be edited at any time, for example to create a 
variable that can be used fresh to apply the rule of universal quantifier 
elimination. 

Type of reasoning 

Allows forward and backward reasoning, determined by the way in 
which each rule is applied. To apply a rule forward, usually <empty> 
line is selected and then one of the rules to the side panel, while to 
apply a backward rule <goal> line is selected and then one of the 
rules. 

Help 

The system contains an extensive guide ant tutorial which is accessed 
from the help menu of the application. I has a detailed explanation of 
how each tactic work in its forward and backward mode, in addition to 
conventions, some generic hints on how to develop tests and notions 
of syntax. 
No strategic or tactical support, but if it shows errors when applied 
incorrectly rules. 

Proof checking 
The proof is checked after it is finished. The only restrictions to rule 
application are given by the help system. 

Creation date / 
Last version 

On the website there is no information about the date of creation of the 
system, but it seems to be constantly updated. 

Table 4:  Description of Pandora 
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4.2.2 DC Proof 

Program developed by Dan Christensen [DC Proof]. It is not a program for natural 
deduction proofs exclusively; it is focused on mathematical proofs generally, 
implementing set theory and induction proof concepts. 
 

Criteria Description 

Implementation 
features 

There is no documentation indicating the language in which it 
is implemented. In the download page states that it is an 
application for Windows environments and emulators are 
needed for other operating systems. 

Implementation 
and internal 
representation of 
the calculus 

No information about internal data structures and algorithms 
to explain how proofs are performed internally. 

Proof 
management 

Allows storing complete and incomplete proofs, plus the 
ability to print and create HTML files. 

Version of 
natural deduction 

It doesn’t follow the classic terminology for natural deduction 
rules, probably because it is not a system dedicated to natural 
deduction but to general mathematical proofs. 

Proof 
visualization 

Sequentially numbered, with an indication of the rule applied 
at each step and the lines involved. 
Sub proofs contraction allows to reduce space. 

Type of 
reasoning 

The reasoning is strongly forward. 
To begin a test, there is only the possibility of entering 
premises and the conclusion must be built by successive 
application of rules 

Help 
The program contains a separate manual with explanation of 
each tactic, a tutorial with examples of application and a 
reference manual on the operation of the overall program. 

Proof checking 

Since the proofs are performed from premises without 
previously setting the conclusion, validation is made step by 
step. The system ensures that the proof cannot be wrong, as 
all steps are controlled. 

Creation date / 
Last version 

No information about the date of creation, but the website 
shows that it is still in development. 

Table 5: Description of DC Proof 

4.2.3 ProofBuilder 

Software developed by Hugh McGuire, Grand Valley State University. See 
[ProofBuilder]. 
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Criteria Description 
Implementation 
features 

Implemented in Java, downloadable from its web site 

Implementation 
and internal 
representation of 
the calculus 

No information on how the calculus is implemented, but the 
sources are available to download. 

Proof 
management 

Incomplete proofs can be saved to continue them later. Can 
be exported as HTML files. 

Version of 
natural deduction 

Allows proof construction in propositional logic and 
predicate logic. Implements rules for all connectives, but does 
not respect the known elimination and introduction 
nomenclature. 
 
The system allows rewriting formulas by the application of 
logical laws. 

Proof 
visualization 

Visualization is sequential but using two columns. On the left 
are the assumptions and derivations that are obtained and to 
the right proof obligations. 
Further, in another column the formulas used (i.e. to which 
some tactic was applied) are indicated. The first two columns 
to the left of the panel correspond to the numbering of the 
line and a field to add comments. 
An interesting detail is that as rules are used, the system adds 
natural language comments on how the proof proceeds.  
Another feature is that when a formula is selected, the system 
automatically identifies the main connective and the rules that 
can be applied. 

Type of 
reasoning 

Backward and forward reasoning 

Help 

No help included in the program (there is an online guide), or 
any tactical or strategic assistance. The system automatically 
locks the tactics that are not applicable for the selected 
formula, so that no error cases can be reached. 

Proof checking Proof is validated at the end.  
Creation date / 
Last version 

It was developed in 2006 and still in development. 

Table 6: Description of ProofBuilder 

4.2.4 Gateway to Logic 

It is a website that brings together several web programs, particularly this one that 
builds natural deduction based proofs. For more information see [Gateway to Logic]. 
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Criteria Description 
Implementation 
features 

Java applet, it works on the web page. No downloadable 
version. 

Implementation 
and internal 
representation of 
the calculus 

No information on how the calculus is implemented. 

Proof 
management 

Proofs cannot be saved, though there is an option to print 
them. 

Version of 
natural deduction 

It is based on classical logic (propositional and first order) 
and provides elimination and introduction rules for each 
logical constant. 

Proof 
visualization 

The proof is sequentially numbered at each step and labeled 
with the name of the applied rule. 
No visualization of goals or proof obligation, which can be a 
bit confusing. 

Type of 
reasoning 

Forward reasoning only. The only way to generate 
hypotheses is to enter them manually. 

Help 

Global aid is very brief and only explains rules of the 
propositional calculus. This, plus the fact that there are no 
examples, makes it very difficult to use. 
Error messages are displayed when rules are applied 
incorrectly. 

Proof checking 
It enables rules depending on the context. Proof validated at 
the end. 

Creation date / 
Last version 

No information about the creation date and current system 
status 

Table 7: Description of Gateway to Logic 

4.2.5 JAPE 

For more information see [JAPE]. 
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Criteria Description 
Implementation 
features 

It is an application written in Java. Can be downloaded from 
their website. 

Implementation 
and internal 
representation of 
the calculus 

Internally, the program drives a sequent calculation, and 
represents the evidence as a Gentzen tree 

Proof 
management: 

Allows storing complete and incomplete proofs. 
It has a predefined set of derivations, which after being proven 
can be applied in new derivations as lemma.  

Version of 
natural deduction 

Jape is a program that allows deductions on various theories 
(set theory, predicate logic, propositional logic, Hoare logic 
and others.). The most important thing is that it is possible to 
define new theories, rules and properties, upload them to Jape 
and make inferences with them. 
In the case of natural deduction (import file I2l.jt theory) 
allows the calculation for propositional logic and predicate 
logic. This includes all known rules of introduction and 
elimination. An important detail is that it classifies rules as 
backward and forward. 

Proof 
visualization 

Proof is displayed as sequentially as Fitch diagrams. 
Each step is numbered and displays the rule that was applied to 
obtain the formula. 
While deriving the proof, incomplete parts are shown with 
ellipses. The absence of ellipses means that the proof is 
completed. 

Type of 
reasoning 

Allows both forms of reasoning with preference toward 
backward reasoning. This shows in particular cases such as the 
introduction of universal quantifier, which cannot be applied 
forward. 

Help 
No tactical or strategical help, the proof  must be constructed 
step by step and the only help appears when a rule has been 
wrongly applied. 

Proof checking 
The system does not allow missteps. The validation is done 
step by step. 

Creation date / 
Last version 

Continuously updated 

Table 8: Description of JAPE 

4.3 Discussion 

In most of the cases listed above there is little information about how the proof system 
was implemented internally. The exception is Jape, which provides abundant 
documentation about internal structures and interface development, as well as 
experiences and usage experiments. 
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There are varied forms of naming the classical rules of natural deduction 
(deletion, insertion), some can be very confusing especially for beginners. In contrast, 
our system uses the customary nomenclature which is presented in any textbook. 
Pandora adopts the nomenclature we know and Jape goes a little further, classifying 
the rules according to the type of reasoning. 

The combination of forward and backward reasoning is present in several 
systems. This feature is the one resembling the construction of proofs on paper, so we 
accord it high relevance. 

Jape seems to be the system with the simplest graphical user interface and easier 
to understand. However, it is for us imperative that the system shows the proof as 
tree, for the reasons already explained. This feature is not present in any of the 
systems above. One proposal presenting this kind of interface is [Byrnes et al. 2009] 
but it is not a proof assistant aimed at pedagogic ends, but rather a (semi-)automatic 
theorem prover. 

An interesting feature is the one on ProofBuilder which generates natural 
language description of the proof. This, combined with the representation of the proof 
in a tree, can be a very powerful tool to help understand how the proof is being 
constructed. 

Our system seems to be the one providing the most general way to manage 
lemmas. This is, in our opinion, a very important feature, since it embodies a principle 
of modular development that is relevant both in practice and from the theoretical or 
methodological point of view. 

Finally, our system falls short of all the ones cited above in its scope, since, for 
the moment, it remains restricted to propositional logic. 

5 Experience of Use of the System 

We have employed the assistant in some instances of our course. The results 
concerning the performance in tests of students that used the tool have shown only a 
slight improvement which we dare not deem significant. But we have also carried out 
extended interviews with several such students, detecting a large agreement in the 
following points: 
 
 The assistant makes it easier and (more) appealing to experiment with the natural 

deduction calculus. 

 It is very convenient that the assistant checks the correctness of the proofs, since 
that gives the student confidence and independence from the teachers. 

 Both backward and forward strategies are useful, although there is a clear 
preference for trying to use exclusively the backward method. 

 No great use of the lemma facility has been done. 

The two first points only confirm that formal proof is an activity which lends itself 
naturally to be carried out in a computerized environment. The third observation 
originates in the fact that, as the method is presented in the course, a general strategy is 
promoted which consists in starting backwards using introduction rules and turning to 
forward reasoning (beginning to apply elimination rules to the available assumptions) 
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when no more introduction rules can be used (or when some might be applicable, but it 
is not convenient to do so.)  Many students find it difficult to dynamically perform this 
switch, preferring instead to uniformly proceed backwards. Finally, the fourth point 
above is related to the fact that only small size exercises which do not require or favor 
the use of derived rules are presented in the current version of the course. This is likely 
to change, in particular because of the availability of the assistant. Also there are 
modifications to the Software Engineering curriculum on their way to be implemented 
starting in 2013, which will incorporate the first part of the current Logic course 
(dealing with Induction and Recursion) to a previous course named Foundations of 
Computing that will serve also as an introduction of Functional Programming as well 
as to informal proof of programs. This will leave more room in the Logic course for, 
among other things, playing more extensively with formal proofs. 

6 Conclusions and Future Work 

We have designed, based on didactic considerations, an assistant for carrying out 
formal proofs in the calculus of natural deduction. The current implementation is for 
propositional logic. The main novelties of the system with respect to those available 
elsewhere are: the tree display of the proofs, the possibility of storing and 
instantiating lemmas expressed in terms of meta-variables, the possibility of 
employing forward as well as backward reasoning, and the possibility of maintaining 
a set of draft trees that can be dragged and dropped on the main proof tree. 

The obvious extension to be made to the tool is to incorporate first-order logic. 
The challenge is of course to maintain the facilities of our current version, particularly 
the use of meta-variables and lemmas. Now, using meta-variables in the first-order 
version requires to deal with side-conditions of the form x not free in formulas, for 
term variables x, as well as other meta-notions. We plan to attack this by employing the 
systems of nominal syntax which manage meta-variables as primitive along bound 
names and restrictions of precisely the form above. Particularly, a system named of 
One-and-a-halfth order has been put forward [see Gabbay and Mathijssen 2008] which 
seems precisely the one we wish to manage. 
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