
Middleware-Oriented Government Interoperability

Frameworks: A Comparison
1

Giansalvatore Mecca
(Università della Basilicata, Potenza, Italy

Giansalvatore.mecca@unibas.it)

Michele Santomauro
(Università della Basilicata, Potenza, Italy

michele.santomauro@gmail.com)

Donatello Santoro
(Università della Basilicata, Potenza, Italy

donatello.santoro@unibas.it)

Enzo Veltri
(Università della Basilicata, Potenza, Italy

enzo.veltri@gmail.com)

Abstract: We discuss deployment solutions for e-Government Interoperability Frameworks

(GIFs). We concentrate on middleware-oriented GIFs, i.e., those in which middleware modules

act as intermediaries among information systems that need to exchange data and services. A

prominent example is the Italian SPCoop interoperability framework. We review the SPCoop

architecture, and two popular open-source implementations of its core modules, called

OpenSPCoop and freESBee. We argue that the comparison of these two solutions is relevant

since they obey to radically different philosophies, both in terms of the relationship to the

underlying J2EE container, and of their internal module organization. Then, we discuss one of

the main problems in large-scale deployment of SPCoop-like GIFs, namely the need to quickly

deploy a large number of middleware instances over a relatively small number of servers. We

report a number of experiments to discuss how the different design choices impact

performance. To the best of our knowledge, this is the first large-scale test of the framework,

from which a number of important lessons can be learned.

Keywords: e-Government, interoperability, Government Interoperability Frameworks (GIF),

middleware, domain gateways, Service Level Agreements (SLA)

Categories: H.4.3, H.4.2, H.3.5

1 Introduction

Ensuring interoperability among information systems of Public Administrations is

nowadays considered a primary goal by most Governments in the World.

Interoperability can be defined as the ability to exchange data and services by

different computing systems. Government Interoperability Frameworks (GIFs)

1 Preliminary portions of this paper appeared in [Mecca et al. 2013].

Journal of Universal Computer Science, vol. 20, no. 11 (2014), 1543-1563
submitted: 11/11/13, accepted: 30/6/14, appeared: 28/10/14 J.UCS

[Guijarro 2007] [Abramowicz et al. 2008] [Ibrahim and Hassan 2010] are sets of

rules, guidelines, and technological standards that all agencies within one country

should adopt to enable such an exchange.

In the last ten years, many countries of the world have adopted their own GIFs.

These frameworks share a number of common features, the most prominent being the

adoption of Web Services as the underlying technology. In fact, GIFs typically rely on

Service-Oriented Architectures (SOA) [Krafzig et al. 2005] as a platform for remote

communication and message exchange (see Section 0 for details).

In this paper, we concentrate on middleware-oriented GIFs, i.e., frameworks in

which service providers and service consumers are decoupled by means of

middleware services; in a middleware-oriented framework, systems do not interact

directly with each other in a point-to-point fashion, but rather communicate with

intermediate layers of software that are responsible for various services, among which

message-format standardization, transparent routing, enhanced security, reliability,

and quality-of-service monitoring.

The Italian SPCoop infrastructure [Baldoni et al. 2008] is a primary example of a

middleware-oriented GIF. We focus on the SPCoop standard, review its architecture,

and introduce its core module, the domain-gateway [Baldoni et al. 2008]. Then, we

compare two open source implementation of the SPCoop standard. The first one,

called freESBee [Mecca et al. 2008], has been developed by our group at University

of Basilicata. The second one is called OpenSPCoop [Corradini and Flagella 2007].

We show how these two systems are based on completely different philosophies, each

of which has its own advantages and disadvantages.

These notions lay the ground to discuss one of the main technical challenges

towards the goal of reaching a wide-spread availability of middleware-oriented GIFs,

namely the possibility of effectively deploying a large number of instances of the

middleware modules over small–size server farms. In the paper, we report a number

of experimental results that show how the inner organization and the architectural

choices of a middleware solution deeply impact deployment policies. More

specifically, we compare OpenSPCoop and freESBee in different scenarios, ranging

from simple loopback ones, to more realistic point-to-point communication, with

different configurations and workloads. In addition, we report the first end-to-end

tests of the SPCoop framework, in which all components are in place.

Ultimately, we believe that this paper teaches important lessons to data architects

that face the problem of deploying an interoperability framework.

2 An Overview of SPCoop

SPCoop
2
 is the Italian e-government interoperability infrastructure, aimed at enabling

the seamless exchange of application services among information systems of Public

Administrations. As we mentioned in the previous section, it is based on a set of

standards and guidelines [DigitPA], and a middleware architecture that has the

following goals:

2 SPCoop stands for “Servizio Pubblico di Cooperazione Applicativa”, i.e., public service for

application interoperability.

1544 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

• to standardize the format of messages, and to support the automatic enrichment

of messages with standard-compliant metadata;

• to provide automatic routing, and to abstract the addressing protocol with respect

to the actual location of services over the network;

• to provide advanced services, like enhanced security, identity management and

single sign-on, service level agreements, and publish and subscribe.

In fact, the SPCoop standard shares a number of similarities with the goals of

Enterprise Service Buses [Woolf 2007]. However, differently from ESBs that are

typically centralized middleware components for the various information systems of a

complex enterprise, SPCoop is inherently distributed, since it assumes that

information systems of Public Administrations are organized in independent domains

that need to cooperate while maintaining their autonomy. In this respect, SPCoop can

be considered as a large distributed ESB for the Italian e-Government.

The three main components of the SPCoop architecture are the domain gateway,

the e-Gov envelope, and the service agreement, as shown in Figure 1. These elements

are discussed in the following paragraphs.

The Domain Gateway. In the typical SPCoop scenario, two local information

systems from different domains and networks may exchange messages through the

respective domain gateways. The domain gateway is the unique access point for all

information systems of a given domain to exchange services with systems of other

administrations. It is composed of two main components, one for outbound and the

other for inbound messages, called the delegate gateway and the application gateway

Figure 1: The SPCoop Architecture

1545Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

respectively.

Figure 1 describes the flow of a typical SPCoop transaction. Assume a local

information system S1 from domain A intends to request services from a local

information system S2 belonging to domain B. SPCoop disallows direct point-to-

point communication between S1 and S2. On the contrary, an SPCoop request

message originating from S1 goes first to the delegate gateway of domain A. Based

on the recipient specified in the message (which we assume to be S2 in this example),

the domain gateway is responsible for locating and contacting the appropriate domain

gateway, the one of domain B, to transfer the message. When the message is received

by the domain gateway at domain B the application gateway contacts the intended

recipient S2, and delivers the message. The opposite path is followed to return the

answer. In the following, we shall refer to an exchange of messages as the one

depicted in Figure 1 under the term SPCoop transaction.

The e-Gov Envelope. SPCoop does not constrain the protocol and format that a local

information systems should use to contact the delegate gateway, or to receive

messages from the application gateway. In fact, the standard leaves some freedom in

this respect to simplify the way in which legacy information systems are integrated

into the platform. On the contrary, the SPCoop rules are quite strict with respect to the

format of messages that domain gateways exchange with each other. These messages,

called SPCoop messages, must adopt the SOAP 1.1 standard (with attachments), and

use HTTPS as a communication protocol. In addition, the SOAP envelope must obey

to a fixed grammar in terms of structure and headers that goes under the name of e-

Gov envelope. Domain gateways are responsible of properly translating the original

application messages into well-formed e-Gov envelopes, enriched with the needed

headers.

Registry Services and Service Agreements. As it is common, registry services are

provided to allow for service identification and location, security management, and

quality of services. Domain gateways contact the centralized registries in order to gain

information about the list of subjects that are authorized to exchange messages using

the infrastructure, and the so called service agreements. Service agreements are XML

documents stored in the appropriate registry that specify all the rules according to

which service requesters and service providers are supposed to exchange services.

More specifically, they describe in detail: (i) all subjects that are authorized requesters

or providers for a given service; (ii) all service interfaces (in essence, fragments of

WSDL code); (iii) a specification of the cooperation profile for each service, either

synchronous, asynchronous, or one-way. In addition, they also provide information

about infrastructure services, namely security policies for the service and service level

agreements. These are described in more detail in the next section.

2.1 Evolutions of the Standard: the ICAR Project

SPCoop was conceived as a nation-wide effort, and therefore aims at supporting

interoperability among a very large number of subjects. Besides central Public

Administrations, these include also local Public Administrations, like Regions and

municipalities, hospitals, and other local agencies.

To alleviate the problem of deploying the framework within local

administrations, it was natural to explore hosting solutions in which larger

1546 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

administrations acted as technology facilitators for smaller ones, offering hosting

services for their domain gateways. To give an example, Regions were soon identified

as natural intermediaries for smaller municipalities within their territories.

In 2006, the ICAR initiative [CISIS] was started by 18 Italian regions in order to

investigate evolutions of the standard in which the role of regions as facilitators was

more prominent. The ICAR project brought two main additions to the SPCoop

standard, as follows (see also Figure 2): (i) it introduced a notion of a network

interoperability node (NICA) as a central hub for a regional domain; (ii) it explored a

number of infrastructure services that were in part described in the standard, but

needed to be made more concrete, namely: federated identity, service-level

agreements (SLA), and event management. We discuss some of these in the following

paragraphs.

Network Interoperability Nodes (NICAs). The organization of a SPCoop network

with NICAs is depicted in Figure 2. As it can be seen, SPCoop domains of central

administrations remain essentially untouched. On the other side, interoperability

domains of local administrations are organized within regional networks. Each

regional network is orchestrated by a NICA that plays the role of a mediator among

domain gateways. In essence, NICAs provide advanced routing facilities to domain

gateways within the network, in the sense that a domain gateway only needs to know

the endpoint of the regional NICA; whenever an information system within the local

domain requests a service, the domain gateway forwards the e-Gov envelope to the

NICA. Each NICA knows every other NICA, and the domain gateways of central

Figure 2: The ICAR Evolution

1547Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

administrations, and takes care of properly routing the message. To this end, it

incorporates a secondary registry, which is transparently synchronized with the

primary registry. In this way the configuration and management of domain gateways

within a regional domain is highly simplified. In addition, NICAs also centralize a

number of value-added services described in the following paragraphs.

Service Level Agreements (SLAs). The first, important service is the management of

service-level agreements (SLAs). Service providers are supposed to guarantee

minimal levels of services to their clients. These levels are explicitly stated within

service agreements, and their respect must be monitored in a continuous way. Each

SLA definition is composed by a parameter and a threshold value. Examples of

parameters are average response time, maximum transaction time, percentage of

errors per day, and so on. For all SPCoop transactions, service providers have the

responsibility of recording the value of any parameter that is mentioned in a service

agreement within the SLA manager, a module of the infrastructure that logs parameter

values, and offers query and analysis functionalities. Domain administrators may

periodically query the SLA manager module in order to detect violations to SLAs or

simply explore bottlenecks and possible optimizations. NICAs offer support for the

management of SLAs to information systems that belong to the regional network by

providing a centralized SLA manager for the entire regional network.

Other Modules. Here we briefly mention a few other modules introduced by the

ICAR project, namely Event Managers (EMs), and Federated Identity Management

(IM). An in-depth discussion of these modules falls outside of the scope of this paper,

and for that we refer the reader to a companion paper [Mecca et al. 2014].

Event Managers implement event-driven communication protocols [Taylor et al.

2009]. This kind of communication proves very helpful in all cases in which many

subscribers need to be notified by a few publishers about changes in the state of

things. In these cases, it is much more effective to decouple publishers from

subscribers through a publish and subscribe infrastructure.

Identity Providers are used to store user credentials and to maintain assertions

about user attributes, i.e., descriptions of the roles that a user may play which

authorizations are based upon. A natural requirements is that information systems that

belong to interoperability domains provide single sign-on capabilities. This means

that a user is required to authenticate once, and then her/his credentials and attributes

are stored for the length of the session in such a way that s/he does not need to

provide them for subsequent accesses, as discussed in [Mecca et al. 2014].

3 Open-Source Domain Gateways: OpenSPCoop

In this section and the following we discuss two certified open-source

implementations of the SPCoop domain gateway. We start with OpenSPCoop, and

then introduce freESBee in the next section. While the SPCoop specification does not

prescribe any development platform, Java 2 Enterprise Edition is a de-facto standard

in this field. In fact, both implementations adopt J2EE.

1548 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

OpenSPCoop
3
 has been historically the first open-source implementation of the

SPCoop domain gateway. It offers a suite of modules: an implementation of the

domain gateway, a registry service, and an event manager to support publish and

subscribe applications. In fact, the OpenSPCoop codebase was also used as a basis to

develop the ICAR NICA reference implementation. In the following, we shall refer to

the original plain domain gateway simply as “OpenSPCoop”, and to the reference

implementation of the NICA as the “ICAR NICA”.

The Container-Bound Architecture of OpenSPCoop. OpenSPCoop
4
 is a J2EE

Web application developed for the JBoss application server
5
. To understand the

relationship between OpenSPCoop and JBoss it is useful to recall that domain

gateways are message-oriented applications, i.e., they listen on appropriate network

endpoints for incoming messages, receive the messages, process them, and then

forward the result to the destination network endpoint. In this respect, a crucial

component of the overall application is the adoption of an appropriate messaging

service, i.e., an infrastructure to receive, store, process, and exchange messages

among components.

OpenSPCoop relies on the Java Message Service (JMS) [The Java Community

Process] specification, one of the messaging technologies developed as part of the

Java platform, and more specifically on its implementation as part of the JBoss

application server. In essence, a JMS implementation is a set of queues, each with an

appropriate network endpoint, which can be used to receive, store, and pull out

messages that have been sent to the associated endpoint. An OpenSPCoop domain

gateway is deployed as a Web application within a JBoss installation. As part of the

deployment, users need to specify the endpoints of the JMS queues that OpenSPCoop

will use as an underlying infrastructure to process SPCoop messages. In this respect,

the OpenSPCoop-JBoss integration is quite tight, so that we may say that

OpenSPCoop adopts a container-bound architecture.

This choice has advantages and disadvantages. On one side, it somehow reduces

portability and generates a limited form of platform lock-in, since it is not easy to

deploy an OpenSPCoop gateway outside of JBoss. On the other side, it guarantees

very good performance, given the strong integration with the J2EE container and the

excellent JMS implementation provided as part of JBoss.

The Tight-Integration Architecture of the ICAR NICA. The reference

implementation of the NICA system was developed starting from the OpenSPCoop

codebase. It offers a SLA management module and an event manager, both developed

as internal modules of the NICA system and accessible through Web services hosted

by the NICA. The SLA management system exposes a Web service in order to log

parameter values, and an interface for queries and analysis. Similarly, the Event

Manager exposes Web services to subscribe and publish events. Notice how the level

of integration between the two modules and the NICA is quite tight, since they share

the same database.

3 http://www.openspcoop.org
4 The authors have recently published a beta version of OpenSPCoop 2.0, which will be

compatible with Tomcat as well. Given the preliminary nature of this new version, in the paper

we decided to stick to OpenSPCoop 1.x.
5 Now Wildfly, available at http://www.jboss.org.

1549Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

4 freESBee

freESBee
6
 is an alternative implementation of the SPCoop standard that was

developed at University of Basilicata with the goal of exploring the boundaries of the

standard, and to help clarifying some of its features. In fact, the development of

freESBee originated by two main observations. First, despite the consolidated nature

of the SPCoop standard, the technical documents describe the domain gateway

essentially by a set of use-cases, and there is no shared conceptualization of the

internal architecture and behaviour of the gateway. Second, while the technical

specification is rather prescriptive with respect to the core components, there are other

components of the middleware – primarily the SLA management service and the

event manager – for which the specification leaves wide margins of freedom, to the

point that the few existing implementations are often quite ad-hoc.

The freESBee project provides a number of modules that cover all functional

aspects of the SPCoop platform. In fact, the freESBee suite is composed of the

following sub-project:

• freESBee itself is the domain gateway, and offers support for registry services; in

addition, freESBee is also a fully featured NICA;

• freESBee-SLA is the service-level agreement management module; it interacts

with the domain gateway to log all metadata that are needed in order to monitor

quality of service;

• freESBee-GE is the event manager;

• freESBee-SP is the identity management module; it is conceived to act as a

middleware layer between the local information system and the domain gateway

on one end, and the identity/attribute provider – like, for example, Shibboleth –

used to authenticate and authorize message exchanges in the SPCoop domain.

The main architectural choices behind these modules are described in the next

paragraphs.

Enterprise Integration Patterns. One of the main contributions of freESBee consists

in its design of the internals of the domain gateway, which builds on a well-known

conceptual model for messaging services, namely Enterprise Integration Patterns

(EIPs). EIPs [Hohpe and Woolf 2004] are an application of the design pattern

approach to messaging services. They allow one to describe the processing and

pathways of a message within a system in terms of a few elementary components, like

“channels”, “endpoint”, “router”, “message enricher” and so on. For a detailed

description please see www.enterpriseintegrationpatterns.com.

Differently from other pattern languages, EIPs have the nice feature that is it

typically possible to design or describe a complete message-oriented application

simply by means of the composition of a number of patterns. In this way, they provide

an elegant formalism to conceptualize and document the internals of a complex

software system, leaving alone the benefits in terms of development and maintenance.

There are in fact, various open-source libraries that support the development of

EIP-based applications. These libraries provide ready-made building blocks that an

6 http://freesbee.unibas.it/.

1550 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

application developer can easily customize and compose. The overall architecture of

the SPCoop domain gateway in terms of EIPs is shown in Figure 3. freESBee is the

result of implementing this architecture on top of Apache Camel
7
, a well-known

implementation of EIPs.

A Container-Independent Architecture. A second, major advancement made by

freESBee is its container-independent architecture. In fact, the EIP-based design, and

the Camel-based implementation are such that the freESBee domain gateway does not

rely in any way on the messaging services of the underlying J2EE.

Guaranteeing this independence has been a precise design guideline throughout

the development of freESBee. In fact, the software does not use JMS in any way,

neither any of the endpoints offered by the J2EE container. On the contrary, each

freESBee installation starts its own set of endpoints for delegate and application

gateways, based on a Jetty
8
 internal engine. This has two main consequences: (i) each

freESBee instance is fully independent from the container, since it does not rely on

any of its services; (ii) freESBee can be freely used in conjunction with any of the

major J2EE containers (Apache Tomcat, JBoss, Glassfish); in fact, its level of

independence is such that with minimal effort freESBee can also be deployed as a

stand-alone application outside of any J2EE container, with benefits in terms of build

time, especially during the development phase.

7 http://camel.apache.org/
8 Jetty is a well-known open-source http server available at http://www.eclipse.org/jetty/.

Figure 3: SPCoop Gateway in terms of EIPs

1551Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

The freESBee NICA and the Loose-Integration Approach. The same philosophy

also inspired the architecture of the freESBee NICA. When designing the modules of

the NICA system, we decided to follow a more lightweight approach in comparison to

the one that has been followed by the ICAR/OpenSPCoop implementation. We

realized that, once the middleware architecture is in place, event management and

SLA monitoring do not need to be provided as ad-hoc services, but can rather be

ordinary SPCoop services with their own service agreements, and therefore can be

used through standard SPCoop transactions – like accessing citizenship information

or recording medical treatments. There are several advantages that come with this

solution:

• first, the inner architecture of the NICA module is strongly simplified, since it is

stripped off of sub-modules that do not serve the purpose of routing messages; in

fact, with this solution, a NICA is little more than a domain gateway, empowered

with more sophisticated routing facilities;

• second, the level of coupling among the NICA system, the event manager and the

SLA monitoring system decreases significantly; this is important to simplify the

evolution of the various modules (especially since SLA management is still in its

infancy within the framework); also, it reduces bottlenecks due to shared

resources, like the database;

• third, there are significant advantages in terms of security associated with the

choice of making the event manager and the SLA monitoring system standard

SPCoop systems; the most prominent one is the fact that it is now possible to

reuse the federated identity architecture and the single-sign on features of the

platform to protect the endpoints, while in the tight-integration solution adopted

by the ICAR NICA these need to be protected through completely different

policies.

In summary, a comparison between the two solutions is reported in Figure 4. On the

left hand side of the figure, we see an abstraction of the ICAR/OpenSPCoop solution.

Notice the container-bound relationship to the JBoss application server, and the tight

integration with the event manager and SLA modules. On the right hand side is a

Figure 4: Comparison between the two architectures

1552 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

representation of the freESBee solution. Here, there is no dependence at all with

respect to the J2EE application container. Also, freESBee-GE (the event management

module), and freESBee-SLA have been externalized and turned into standard SPCoop

service providers, that interact with the rest of the subjects in the network through

domain gateways and SPCoop envelopes.

Notice, however, that the two solutions are completely interoperable with one

another, since they are based on the same standard. In other terms, it is possible to

build mixed architectures in which a freESBee domain gateway interacts with an

ICAR NICA, or an OpenSPCoop gateway with a freESBee NICA.

5 Massive Deployment of Domain Gateways

Deploying the SPCoop framework is currently an ongoing effort in Italy. A study

dating back to 2010
9
 reports over 417 installations of the SPCoop domain gateway in

the country. While we expect this number to have increased in the last few years, we

are still far from the goal of having a domain gateway for each public administration.

As we mentioned, one of the primary concerns is the need to deploy the

framework not only at the central level, but also at the level of local administrations.

Since each of these administrations typically represents an application domain by

itself, and each domain needs a domain gateway in order to interoperate with other

parties, a complete deployment of the framework requires to deploy a large number of

middleware instances.

It was soon realized that only a few administrations have the skills and resources

to manage autonomously their SPCoop platform, especially at the local level. On the

contrary, for many smaller realities the actual management of the middleware

platform turned out to be a major technological and organizational problem. As a

consequence, IT departments of Italian Regions were requested to host within their

server farms hundreds of different instances of SPCoop domain gateways.

The straightforward solution to this problem consists in having a dedicate server

for each domain gateway instance. We call this the dedicate-server architecture; this

is closer to a housing solution, and guarantees the highest level of independence for

the local administration, since its SPCoop transactions are handled by a separate host;

however, when the number of instances is in the order of the thousands
10

, this solution

becomes clearly unfeasible because of the number of different servers that are needed.

To mitigate this problem, one may think to resort to cloud-based virtualization

solutions. Unfortunately, virtual machines are of little help in this framework, for two

main reasons. First, the current regulations in terms of data security and storage for

Public Services in many European countries do not allow yet to adopt external, cloud-

based solutions [Rebollo et al. 2012]. Second, and more important, even in those

cases in which this is possible, the total cost of ownership (TCO) [Ellram 1993] of

thousands of independent servers, either physical or virtual, is unacceptable due to the

need to configure and administer each one independently from the others.

9 Source: http://www.riir.it/sites/default/files/RIIR_2010_light.pdf
10 In Italy there are several Regions of this size. To give an example, Region Lombardia

includes 1.544 municipalities.

1553Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

When this was realized, a proposal was put forward to create multi-subject

domain gateways. A multi-subject domain gateway is a single instance of the gateway

that does not serve a single administration, but possibly more than one. In essence, a

multi-subject domain gateway for administration A (e.g., a hospital) and

administration B (e.g., a local municipality) encapsulates all information systems of

administration A and all information systems of administration B, as if they belong to

the same interoperability domain. This solution is easily realized, since it amounts to

adding a few more endpoints to the domain gateway. However, this is hardly

satisfactory from the functional viewpoint. In fact, it does not guarantee any form of

independence between the two domains, especially in terms of security. Being

handled by the same domain gateway, all information systems of A and B share the

same database, logs, message infrastructure and bandwidth. For this reason it might

be delicate in many cases to handle failures, security breaches, and poor performance.

Since the overall point of a middleware-oriented GIF is to preserve the autonomy and

independence of the local information systems, in the following, we shall not

investigate further this solution.

On the contrary, in this paper we investigate solutions to the problem of hosting

multiple independent instances of a domain gateway within a single server. There are

two main strategies to do this.

(a) the single-container strategy, according to which a single server offers a single

J2EE container, and all instances are deployed as Web applications within the same

container; based on what we discussed so far, it should be easy to see that this is

possible only if the gateway implementation adopts a container-independent

architecture, otherwise the different instances would collide with each other when

using the messaging service infrastructure offered by the container (messaging queues

and endpoints);

(b) the multiple-container strategy, in which several instances of the J2EE container

are installed within a single server, i.e., several JBoss or Tomcat installations listening

on different ports of the same server, each with a single instance of the domain

gateway; this is the only viable option for container-bound gateways like

OpenSPCoop.

We therefore have three possible solutions to compare: (i) the dedicate-server

solution, with one server per domain gateway; (ii) the single-container solution, with

multiple domain gateways per server within a single J2EE container; (iii) the

multiple-container solution, with multiple domain gateways per server, each within a

different J2EE container.

Before we turn to our experimental comparison in the next section, we want to

emphasize that the three solutions have completely different TCOs. Notice that a

complete estimate of the actual TCO of a deployment is not possible here, since there

are many technical parameters that may vary (e.g., configuration and cost of the

physical/virtual machines, skills and cost of the personnel, cost of utilities et cetera).

However, a few considerations are possible.

First, under the same values of the technical parameters, the TCO of the dedicate-

server solution is significantly higher than those of the shared-server ones, because of

the following components: (i) need of a larger server-farm due to the considerably

higher number of servers, with increased cost in terms of space and utilities; (ii)

1554 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

higher cost of the hardware; (iii) higher configuration and maintenance costs of the

servers; (iv) higher configuration and maintenance cost of the network configuration.

Based on these observations, in the following we disregard this solution, and

concentrate on the other two. Between these, we notice that under the same technical

parameters, the multiple-container solution again has a higher TCO with respect to the

single container solution. This is due to the cost of configuring and administering the

higher number of independent instances of the J2EE container.

Given this preliminary observation, in the next Section we compare the

performances of these two solutions, and gain deeper insights about their respective

advantages.

6 Experiments

We conducted a number of experiments using both freESBee and OpenSPCoop. The

main goals were to test the scalability of the two solutions, under two main

perspectives. On one side, we measure the throughput achieved by the domain

gateway, i.e., the average number of messages per second handled during a test

session. On the other side, we are interested in investigating how the throughput

varies for the two solutions when the number of instances of the domain gateway per

server increases.

For the purpose of our tests we set-up three different interoperability scenarios, as

shown in Figure 5.

Scenario a: Loopback. This is a simple loopback scenario, with one service provider,

one domain gateway, and a number of service requesters. This scenario was

conceived to test the scalability of the domain gateway in isolation. Since we are not

interested in testing the actual performance of the service provider, nor that of the

service requesters, but rather the one of the domain gateway, we chose as a service

provider a simple “echo” Web service developed for this test, with messages of

1Kbyte each. The service provider runs on the same physical machine as the domain

gateway. To simulate the traffic originated by an increasing number of clients, we

used Apache JMeter v. 2.7. JMeter was configured to simulate variable numbers of

concurrent clients, ranging from 10 to 100, each one issuing repeated requests to the

service provider through the domain gateway, for a total of 10.000 messages sent for

each test session. All components run on the same machine, which was deliberately

chosen with a high-end profile (a MacBook Pro with a quad-core Intel i7 running at

2.6 GHz, a 512 GB solid-state HD, and 8 GB of RAM).

The DBMS used by the domain gateways to log transactions was PostgreSQL

9.1. We ran scalability tests both for single-instance-per-server and multiple-instance-

per-server configurations of the middleware. Proper care was needed in multiple-

instance tests in order to prevent that the DBMS connection pool was saturated. Since

PostgreSQL accepts a maximum of 120 concurrent connections, to execute a test with

X instances of the domain gateway we configured each instance to ask for a

maximum of 120/X connections.

Scenario b: Point-to-Point. This is a more typical point-to-point interoperability

scenario, with two domains: a number of service requesters (simulated using JMeter)

1555Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

run on one domain, with an appropriate domain gateway, and send messages to a

service provider that runs in a different domain, with a different domain gateway. The

service provider implements a real-life service – it returns the set of cars owned by a

person, given its unique national identifier (the taxpayer number in Italy). Request

messages contain a random identifier, chosen by a pool that was configured into

JMeter, and have size between 7 and 8KB. This is a rather typical size for this kind of

messages when WS-Security is used to crypt and digitally sign the payload. The

service provider runs an actual query on the database to retrieve the answer.

In this second case, our priority was to be close to the actual implementation of

these services in local administrations. Therefore, we chose lower-end machines. Both

the server and the client are dual-core machines with an Intel Xeon Processor at

3GHz, 7200 rpm SATA disks and 8GB of RAM. The operating system was Lubuntu

12.10 and the DBMS was PostgreSQL. Also in this case we ran scalability tests both

with single instances and multiple instances per server, and used these to compare the

two implementations of the domain gateways.

Scenario c: Full Architecture. This is a NICA-oriented scenario, in which all

components of the framework are in place. As it can be seen in Figure 5, this requires

to deploy a number of components that is significantly higher than in previous

scenarios, including the event manager, the SLA management module, and an IdP to

provide federated identity services. Also this test was run on the servers used for

scenario a.

To the best of our knowledge, this is the first end-to-end extensive test of the

SPCoop/ICAR infrastructure, and therefore we believe it has its merits. The use-case

we adopted is event-oriented, and is referred to public auctions. Events correspond to

the opening and closing of auctions of public goods. Clients that subscribe an auction

receive notifications about all changes of state of a good, and may make offers. In this

scenario, it makes little sense to measure the scalability of one or the other

component. We believe it is more interesting to use SLA to investigate how an

increased workload impacts the SLA parameters registered by service providers,

primarily the average and maximum response time.

Test Configurations. In all scenarios, we tested the most recent stable version of

OpenSPCoop (v. 1.4.1) available on the Web site, configured according to the

standard set of configuration parameters suggested on http://openspcoop.org under

JBoss. As suggested by the Web site, we used JBoss v. 4.2.3, although this is not the

most recent version of JBoss available at the moment. Due to its container-bound

architecture, multiple-instance tests were run by installing several instances of JBoss

on the server, each with a single copy of OpenSPCoop. For some of our experiments,

we also ran additional tests using the new version of OpenSPCoop (v. 2.0beta2) under

Tomcat.

1556 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

We also tested the latest available version of freESBee (v. 2.2), deployed

according to the standard set of configuration parameters suggested on

http://freesbee.unibas.it. We selected Tomcat v. 7.0.47 as a container for freESBee,

due to its wide adoption and ease of configuration. Multiple-instance tests were run

by deploying different copies of freESBee inside the same Tomcat instance.

Since we want to measure the performance of the middleware modules, in all

tests we connected the various components using a dedicated high-speed Gigabit

Ethernet networks. In this way, network latency was negligible, no other traffic

impacted our tests results, and the network never became the bottleneck.

Throughput values in our results are the ones reported by JMeter in its Summary

Report (average number of requests completed per second during a test session). In

addition, we used the machine built-in profiler to measure RAM occupation and CPU

workload. We repeated each experiment 5 times, and took the average result for each

output value. A test was successful if we were able to complete the expected number

of messages with less that 1% of errors, and none of the domain gateway instances

stalled. It was considered as failed otherwise. The two main causes of failures were

out-of-memory errors on the server side, and inability to obtain connections within a

given timeout from the DBMS.

Test Results – Scenario a: Loopback. Let us begin with Scenario a., the loopback

scenario. Recall that this scenario was primarily conceived to test the scalability of the

domain gateway in isolation. We ran both single-instance and multi-instance tests.

Figure 6.a.1 reports scalability results for single-instance test. In this case, a single

instance of the domain gateway was installed, and throughput was recorded for

increasing numbers of concurrent clients, ranging from 10 to 100. It can be seen that

OpenSPCoop v.1.4.1 under JBoss reaches a considerable throughput of 120 messages

Figure 5: Interoperability scenarios used in experiments

1557Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

per second for 10-20 concurrent clients. Then, performance decreases as soon as the

PostgreSQL connection pool becomes the bottleneck. We ran the same tests also

using OpenSPCoop v.2.0beta2 under Tomcat to confirm the results, and no noticeable

change of performance was recorded.

In previous tests reported in [Mecca et al. 2013], the throughput of freESBee was

slightly lower than OpenSPCoop’s. This was due to the fact that the version of

freESBee we used at the time (v. 2.1) did not use any form of main-memory caching.

More specifically, whenever the domain gateway needed to route a message, and

therefore access the details of the service agreement for that SPCoop transaction, it

ran a query over the local database to fetch the needed records. Notice, however, that

these queries are repeated for each message, so that they may introduce a considerable

overhead.

In version 2.2 we introduced a main-memory cache for service agreements. In the

new version, service agreements are fetched from the database at the first message,

and then stored for a fixed time-to-leave in the cache. In Figure 6.a we report

throughputs for both the execution of freESBee with and without caching. It can be

seen that enabling the cache brings considerable benefits in terms of scalability, to the

point that freESBee outperforms OpenSPCoop, reaching a maximum of

approximately 150 messages per second.

Figure 6.a.2 and Figure 6.a.3 report results for multi-instance tests on the

loopback scenario. As it was expected, freESBee had better performance in multi-

instance tests. Figure 6.a.3 reports RAM occupation for multiple-instance tests

ranging from 2 to 20 domain gateway instances per server. Tests were run for 20

concurrent clients per instance, i.e., the 20-instance test with 10 clients per instance

simulated the load of 200 concurrent clients. It can be seen that, memory-wise, the

container-independent architecture of freESBee guarantees better performance, so that

it is possible to run up to 20 instances of the domain gateway inside a single server.

On the contrary, several of the OpenSPCoop tests failed. In the 20-client

configuration, the maximum number of OpenSPCoop instances for which the test

succeeded was 8. Above those numbers some of the instances stall, and high numbers

of errors are observed. This is due to the nasty interaction between excessive memory

usage and aggressive requests for connections by the multiple JBoss instances to the

DBMS.

Figure 6.a.2 report throughput results for multiple-instance tests. It can be seen

how the throughput of freESBee improved as the number of instance increased, as

long as the CPU of the server machine was not saturated. In fact, given the less

aggressive thread management policy of Camel, the presence of multiple instances,

and therefore of multiple Camel contexts, brings an increase in parallelism.

Test Results – Scenario b: Point-to-Point. Differently from the loopback scenario,

the second, point-to-point test scenario is more faithful to the typical execution of

SPCoop transactions. We expect lower throughputs with respect to the ones reported

for scenario a, for several reasons. First, recall that the server configuration we chose

in this case is relatively low-end. We believe this is quite close to what typically

happens in the server farms of most public administrations in Italy. Second, the

SPCoop transaction now starts at the requester’s domain gateway, and crosses the

network to reach the provider’s domain gateway.

1558 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

Overall, Figure 6.b.1 and Figure 6.b.2 confirm the results discussed above. Also

in this case freESBee (with caching) guaranteed a higher throughput, and it was less

eager in terms of memory consumption due to the container-independent, multiple-

gateway per container configuration. OpenSPCoop was unable to complete the test

for a number of instances higher than 8.

To summarize, our experiments show that the container-independent architecture

of freESBee may achieve better performance in SPCoop installations, especially when

the number of instances per server increases.

Test Results – Scenario c: Full Architecture. Figure 6.c reports results for our final

test, based on Scenario c. Here, we deployed all components of the framework.

Besides the domain gateways, we also put in place: (a) a regional NICA; (b) an event

manager; (c) a SLA management module; (d) an IdP to handle security and

authorizations based on single-sing-on. This test was performed only using the

freESBee platform, since we do not have access to the ICAR NICA. In fact, to the

best of our knowledge, this is the first end-to-end experiment of the SPCoop

framework.

Notice that transactions become so involved, in this case, that measuring

scalability in terms of messages per second, or even RAM usage at one or more of the

nodes makes little sense. In other terms, the deployment is too complex to justify unit

tests, like the ones we performed in previous scenarios. As a consequence, we decide

to perform a functional test, and to do this, we rely on the SLA management

architecture. More specifically, we report three SLA parameters related to

transactions, and measured at the service consumer, namely minimum, maximum, and

average transaction time.

The most prominent evidence of this test is that exercising the framework in its

entirety brings to execution times that are considerably higher than in the previous

scenarios. Recall from Figure 6 that in the loopback case on a high-end computer we

were able to process hundreds of transactions per seconds. In the point-to-point case –

stripped down of any additional processing related to SLAs, event management and

security – the throughput was lowered to dozens of messages per second, which is

still pretty high, especially considering that the servers were mid-range in this case.

As soon as we put in place all of the components, transaction times rise to a few

seconds per transaction, i.e., less than a message per second. This is not surprising,

considering the overhead associated with the routing throughout the two domain

gateways and then the NICA, queries to the IdP, and then SLA recording.

This should help to put in perspective the adoption of such an elaborated

architecture: even middleware modules that in isolation have excellent scalability will

hardly scale to large throughputs due to the complexities of the framework.

1559Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

6 Related Work

In the last ten years, many countries of the world have adopted their own GIFs. These

have been the subject of several recent surveys [Guijarro 2007] [Abramowicz et al.

2008]. Here we discuss a few aspects. Broadly speaking, we may classify SOA-

oriented GIFs in two main categories.

On one side we have lightweight GIFs; these frameworks adopt the standard

service-oriented point-to-point architecture, in which a service consumer that needs to

access data or applications, and a service provider that offers access to data or

Figure 6: Test Results

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19

R
A

M
 (

G
B

)

Instances per server

OpenSPCoop freESBee

(a.1) Loopback Single Instance, throughput (a.2) Loopback Multiple Instance (10 clients),

throughput

(a.3) Loopback Multiple Instance (10 clients), RAM

usage

(b.1) Point-to-Point Multiple Instance (20 clients),

throughput

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(m

sg
/s

e
c)

Concurrent clients

OpenSPCoop freESBee freESBee noCache

10

60

110

160

210

260

2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(m

sg
\s

e
c)

Instances per server

OpenSPCoop freESBee

0

10

20

30

40

2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(m

sg
\s

e
c)

Instances per server

OpenSPCoop freESBee

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19

R
A

M
 (

G
B

)

Instances per server

OpenSPCoop freESBee

(b.2) Point-to-Point Multiple Instance (20 clients),

RAM usage
(c) Full Architecture, Service Consumer, SLA

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19

T
im

e
 (

se
cs

)

Instances per server

Min Time Max Time Avg Time

1560 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

applications, directly exchange messages with one another through Web services

organized according to a common format. These GIFs consist essentially of

collections of technological standards and guidelines that consumer and provider

systems should adhere to in order to participate in interoperability initiatives.

Lightweight GIFs represent the majority in Europe [Guijarro 2007]. Main examples

of lightweight GIFs are the UK e-GIF framework [The UK e-Government Unit], the

French CCI [ADAE], and Germany’s SAGA framework [Federal Government Co-

ordination and Advisory Agency for IT]. At different degrees, all of these frameworks

are primarily collections of technical documents that provide IT specialists with

references to standards and guidelines in order to build interoperable solutions within

e-Government services.

A similar solution has been adopted by the USA within their Federal Enterprise

Architecture Framework (FEAF) [Federal Chief Information Officers Council]. The

FEAF initiative, however, departs from the ones in Europe primarily because of the

federal nature of the country.

On the other side, we have heavyweight GIFs; these frameworks typically adopt a

more involved architecture, in which service providers and service consumers are

decoupled by means of middleware services. This is the category we focus on in this

paper. We have discussed the Italian SPCoop infrastructure [Baldoni et al. 2008] in

detail in the paper. Another example of this kind of architecture is represented by the

early efforts towards a European Interoperability Standard within the IDA eLink

initiative [European Dynamics 2004]. The eLink architecture is virtually identical to

the SPCoop one, since it envisions application domains within the various European

countries, decoupled by domain gateways (the eLink gateway). More recently,

European efforts towards a general interoperability framework for e-Government

services have evolved into the EIF initiative [IDABC]. While EIF is a more ambitious

and higher level framework, domain gateways are still present under the name of

interoperability facilitators.

More recently, e-Government frameworks have progressed with the goal of

incorporating forms of semantic interoperability, in the spirit of the Semantic Web

[Sabucedo and Anido Rifòn 2010]. Semantic interoperability allow services to share a

common vocabulary, and facilitates the integration of different domains.

7 Conclusions

Government Interoperability Frameworks are essential initiatives in order to promote

the adoption of advanced platform for Government-to-Government and Government-

to-Citizen services. Among these, middleware-oriented GIFs pose a number of

technical challenges, primarily related to the deployment of the middleware modules.

In this paper, we reported an in-depth analysis of the Italian SPCoop framework.

We reviewed its main components, and investigated the two main open-source

implementations. We showed that the internal and external design of an

implementation may deeply impact its performance in different deployment scenarios.

Our experiments show that the container-independent architecture of freESBee may

achieve better performance in SPCoop installations, both in terms of throughput and

memory occupation. This is especially true when the number of instances per server

1561Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

increases, and may contribute to lower the TCO of freESBee-based deployment

solution with respect to the alternatives explored in the paper.

In addition, we report the first comprehensive end-to-end tests of the SPCoop

infrastructure. These tests show that complex transactions that need to traverse

multiple agents throughout the network have performances that may significantly

differ from those of simple messages exchange. This sheds some further light on the

distinction between lightweight and heavyweight GIFs. We believe these results may

be of help to middleware developers and system managers, and represent a useful

reference for data architects that face the need to deploy e-Government services. In

fact, we consider this paper a first important step towards more systematic studies of

middleware modules in e-Government architectures.

References

[Abramowicz et al. 2008] Abramowicz W., Bassara A., Wisniewski M. and Zebrowski P. -

Interoperability Governance for e-Government. In: Information Systems and e-Business

Technologies. Berlin Heidelberg: Springer-Verlag; 2008. p. 14 - 24.

[ADAE] Le Cadre Commun d’Intéroperabilité. [Internet]. http://www.adae.gouv.fr.

[Baldoni et al. 2008] Baldoni R., Fuligni S., Mecella M. and Tortorelli F. - The Italian e-

Government Enterprise Architecture: A Comprehensive Introduction with Focus on the SLA

Issue. In: Proceedings of the 5th International Service Availability Symposium, ISAS 2008;

2008; Tokyo, Japan.

[CISIS] The ICAR Project Web Site. [Internet]. http://www.progettoicar.it.

[Corradini and Flagella 2007] Corradini A. and Flagella T. - OpenSPCoop: un Progetto Open

Source per la Coperazione Applicativa nella Pubblica Amministrazione. In: Atti del Convegno

Italiano AICA; 2007.

[DigitPA] Servizi di Interoperabilità Evoluta. [Internet]. http://www.digitpa.gov.it/spc/servizi-

interoperabilit-evoluta.

[Ellram 1993] Ellram L. - Total Cost of Ownership: Elements and Implementation.

International Journal of Purchasing and Materials Management. 1993;29:2-11.

[European Dynamics 2004] IDA eLink Specification. [Internet]. 2004

http://ec.europa.eu/idabc/servlets/Doc1a78.pdf?id=18685.

[Federal Chief Information Officers Council] Federal Enterprise Architecture Framework

(FEAF). [Internet]. http://www.whitehouse.gov/omb/e-gov/fea.

[Federal Government Co-ordination and Advisory Agency for IT] SAGA. [Internet].

http://www.cio.bund.de/Web/DE/Architekturen-und-Standards/SAGA/saga_node.html.

[Guijarro 2007] Guijarro L. - Interoperability Framewors and Enterprise Architectures in e-

Government Initiatives in Europe and the Unites States. Government Information Quarterly.

2007;24:89-101.

[Hohpe and Woolf 2004] Hohpe G. and Woolf B. - Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Prentice Hall; 2004.

1562 Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

[Ibrahim and Hassan 2010] Ibrahim N.M. and Hassan M.F. - A survey on different

interoperability frameworks of SOA systems towards seamless interoperability. In:

International Symposium on Information Technology (ITSim 2010); 2010. p. 1119-1123.

[IDABC] EIF - European Interoperability Framework for pan-European eGovernment services.

[Internet]. http://ec.europa.eu/idabc/en/document/2319/5644.html.

[Krafzig et al. 2005] Krafzig D., Banke K. and Slama D. - Enterprise SOA: Service-Oriented

Architecture Best Practices. Prentice Hall; 2005.

[Mecca et al. 2008] Mecca G., Pappalardo A. and Raunich S. - Soluzioni Infrastrutturali Open

Source per il Sistema Pubblico di Cooperazione Applicativa. In: Proceedings of the Sixteenth

Italian Symposium on Advanced Database Systems, SEBD 2008; 2008; Mondello (Palermo). p.

156-167.

[Mecca et al. 2013] Mecca G., Santomauro M. and Santoro D. - Large-Scale Deployment of

Middleware-Oriented Government Interoperability Frameworks. In: Proceedings of the 7th

International Conference on Methodologies, Technologies and Tools enabling e-Government

(MeTTeG 2013); 2013; Vigo, Spain.

[Mecca et al. 2014] Mecca G., Santomauro M., Santoro D. and Veltri E. - On Federated Single

Sign-On Systems within e-Government Architectures. Technical Report, Department of

Mathematics, Computer Science and Economics; 2014.

http://freesbee.unibas.it/articles/TR2014.pdf.

[Rebollo et al. 2012] Rebollo O., Mellado D. and Fernández-Medina E. - A Systematic Review

of Information Security Governance Frameworks in the Cloud Computing Environment.

Journal of Universal Computer Science. 2012;18(6):798-815.

[Sabucedo and Anido Rifòn 2010] Sabucedo L.A. and Anido Rifòn L. - Locating and Crawling

eGovernment Services A Lightweight Semantic Approach. Journal of Universal Computer

Science. 2010;16(8):1117-1137.

[Taylor et al. 2009] Taylor H., Yochem A., Phillips L. and Martinez F. - Event-Driven

Architecture: How SOA Enables the Real-Time Enterprise. Addison Wesley; 2009.

[The Java Community Process] The Java Messaging Service (JMS) Specification v. 1.1.

[Internet]. http://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/.

[The UK e-Government Unit] UK eGovernment Interoperability Framework (e-GIF).

[Internet]. http://www.govtalk.gov.uk/.

[Woolf 2007] ESB-oriented architecture: The wrong approach to adopting SOA. [Internet].

2007 http://www.ibm.com/developerworks/webservices/library/ws-soa-esbarch.

1563Mecca G., Santomauro M., Santoro D., Veltri E.: Middleware-Oriented ...

