
Enabling System Artefact Exchange and Selection
through a Linked Data Layer

Jose María Alvarez-Rodríguez
(Carlos III University of Madrid, Madrid, Spain

josemaria.alvarez@uc3m.es)

Roy Mendieta
(Carlos III University of Madrid, Madrid, Spain

roy.mendieta@kr.inf.uc3m.es)

Jose Luis de la Vara
(Carlos III University of Madrid, Madrid, Spain

jvara@inf.uc3m.es)

Anabel Fraga
(Carlos III University of Madrid, Madrid, Spain

afraga@inf.uc3m.es)

Juan Llorens
(Carlos III University of Madrid, Madrid, Spain

juan.llorens@uc3m.es)

Abstract: The use of different techniques and tools is a common practice to cover all stages in
the systems development lifecycle, generating a very good number of system artefacts.
Moreover, these artefacts are commonly encoded in different formats and can only be accessed,
in most cases, through proprietary and non-standard protocols. This scenario can be considered
a real nightmare for software or systems reuse. Possible solutions imply the creation of a real
collaborative development environment where tools can exchange and share data, information
and knowledge. In this context, the OSLC (Open Services for Lifecycle Collaboration)
initiative pursues the creation of public specifications (data shapes) to exchange any artefact
generated during the development lifecycle, by applying the principles of the Linked Data
initiative. In this paper, the authors present a solution to provide a real multi-format system
artefact reuse by means of an OSLC-based specification to share and exchange any artefact
under the principles of the Linked Data initiative. Finally, two experiments are conducted to
demonstrate the advantages of enabling an input/output interface based on an OSLC
implementation on top of an existing commercial tool (the Knowledge Manager). Thus, it is
possible to enhance the representation and retrieval capabilities of system artefacts by
considering the whole underlying knowledge graph generated by the different system artefacts
and their relationships. After performing 45 different queries over logical and physical models
stored in Papyrus, IBM Rhapsody and Simulink, results of precision and recall are promising
showing average values between 70-80%.

Keywords: Linked data, OSLC, data shapes, interoperability, retrieval systems
Categories: D.2.12, D.2.13, D.2.11

Journal of Universal Computer Science, vol. 24, no. 11(2018), 1536-1560
submitted: 27/2/18, accepted: 7/9/18, appeared: 28/11/18 © J.UCS

1 Introduction

Software and system artefact reuse [Mili et al., 1995] is commonly defined as a
process to systematically specify, produce, classify, retrieve and adapt software-based
artefacts for the purpose of using them in a development process. In general, software
reuse [Krueger, 1992] may have the potential of increasing productivity of engineers,
improve quality and create a cost efficient development environment. However, both
technical and non-technical issues for a limited reuse can be found [Smolárová and
Návrat, 1997]: 1) economical, organizational, educational or psychological issues and
2) lack of standards to represent artefacts, and lack of reusable component libraries or
appropriate tools for boosting reuse and interoperability among tools.

In the context of technical issues, systems and software engineering techniques
have been widely studied [Boehm, 1981] to support the classical principles of reuse
[Krueger, 1992]: abstraction, selection, specialization and integration. More
specifically, abstraction (i.e. management of the intellectual complexity of a software
artefact) can be considered the essential feature for any reuse technique to specify
when an artefact could be reused and how to reuse it. Selection refers to the discovery
of software artefacts, covering from the representation and storage to the
classification, location and comparison. Specialization consists on the set of
parameters and transformations required to reuse a software artefact, while integration
refers to the capability of software systems to communicate, collaborate and exchange
data. Thus, the reusability factor of system artefacts [Fortune and Valerdi, 2008] will
directly depend on how they are abstractly described, how they can be selected and
specialized for reuse, and how they will be integrated in a target software-based
system. Furthermore, a reuse approach implies that every artefact generated during
the development lifecycle is not any more an isolated requirement specification,
model, piece of source code or test case, but a knowledge item. However, after a long
time, reuse promises [Jacobson et al., 1997] are still far from reaching the major
objective of optimizing the system development lifecycle efforts.

In this context, last times have seen the emergence of Model-based Systems
Engineering (MBSE) [INCOSE, 2004] as a complete methodology to address the
challenge of unifying the techniques, methods and tools. This means a “formalized
application of modelling” to support the left-hand side in the Vee lifecycle model
implying that any process, task or activity will generate different system artefacts but
all of them represented as a model. The MBSE approach is considered a cornerstone
for the improvement of the current practice in the Systems Engineering discipline
since it is expected to cover multiple domains, to provide better results in terms of
quality and productivity, lower risks and, in general, to support the concept of
continuous and collaborative engineering. In the case of system artefact reuse, both
disciplines are currently under study according to the works in [Shani and Broodney,
2015] [Smith, 2014] in which component models are applied to enable reuse.
However, the MBSE approach considers that everything can be a model and this
assumption is not always true in the development of a complex system. Requirements
specifications, test cases or simulation data are just some examples of system artefacts
which natural representation (as communication mechanism) is not a model.

Furthermore, abstraction and selection processes are not yet fully developed in a
MBSE environment. Currently, interoperability initiatives (such as ISO 10303-STEP

1537Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

or OASIS OSLC-Open Services for Lifecycle Collaboration) are trying to boost reuse
through data exchange. However, the first step to be able to exchange and reuse data
lies on the provision of a proper environment for system artefacts selection. Existing
platforms for the management of system engineering processes such as the Jazz
Platform by IBM or Papyrus (Eclipse CDO), offer a kind of central repository in
which engineers can upload their systems artefacts and perform tasks such as
searching or traceability recovery. These centralized repositories represent artefacts as
a set of metadata that are linked to a system artefact (content). Although in some
cases, the use of metadata can be useful to look up artefacts by filtering certain
properties, it seems too simple to really enable the proper reuse of the knowledge
embedded in system artefacts.

As a motivating example, in traditional information retrieval systems (text-based)
if someone is looking for documents (text), she will express queries as text (or
keywords) and the search engine will match documents according to the input query.
In all of them, the representation of information, queries and results are working
under the same primitive: text. The same kind of behaviour can be found in the
Google Image search service where it is possible to look up images by entering an
image. Moreover, and considering the plethora of tools, system artefacts and formats,
a retrieval system for a MBSE environment shall be able to represent, store and
retrieve any kind of artefact by using as input query any kind of system artefact: a
requirement, an architectural, a physical model or event just a text. Thus, information
retrieval techniques will equip engineers with a method to discover existing system
artefacts based on contents not just metadata.

In this frame, the application of knowledge management techniques has gained
momentum to elevate the meaning of the implicit knowledge coded into system
artefacts and allow engineers to reuse existing data and knowledge. Software-based
artefacts are a new kind of intellectual asset that can be used to reduce costs and save
time to market generating competitive advantage in the construction and operation of
complex systems. That is why, knowledge management techniques [Nonaka and
Takeuchi, 1995] are being applied to capture, structure, store and disseminate system
artefacts and support the aforementioned reuse principles of selection and integration.
However, one of the cornerstones in knowledge management lies in the selection of
an adequate knowledge representation paradigm. After a long time [Hull and King,
1987], this problem still persists since a suitable representation format (and syntax)
can already be reached in several ways [Davis et al., 1993]. Any bit of information
must be structured and stored for supporting other application services such as
business analytics or knowledge discovery. This situation also creates an impedance
mismatch between the system and the outside world.

Therefore, one of the current trends to boost systems engineering processes lies in
improving interoperability and collaboration through the exchanging of system
artefacts under common data models, formats and protocols. In this context, OSLC is
creating a collaborative engineering ecosystem through the definition of data shapes
that serve us as a contract to get access to information resources applying the Linked
Data principles. The Representational State Transfer (REST) software architecture
style is used to manage information resources that are publicly represented and
exchanged in RDF. However, RDF has been also demonstrated [Powers, 2003] to
contain some restrictions to represent certain knowledge features such as N-ary

1538 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

relationships [Noy and Rector, 2006], practical issues dealing with reification
[Nguyen et al., 2014] and blank nodes [Mallea et al., 2011]. Moreover, some common
services such as indexing or retrieval of any kind of information resource are
restricted to the internal storage and the query capabilities offered by each tool
(usually a SPARQL interface).

That is why, in this paper the authors present an industry-oriented approach based
on existing standards, OSLC and RDF, to support the principles of abstraction and
selection of system artefacts. In particular, an OSLC Resource Shape for any
knowledge item is refined [Alvarez-Rodríguez et al., 2015] and implemented.
Afterwards, an experiment is conducted to integrate, exchange and retrieve different
tools and types of system artefacts and to share them under the designed data shape.
Finally, some discussion and open issues are outlined with the aim of evaluating the
capabilities of this approach to enable software practitioners to develop a software
reuse strategy.

2 Related work

In the early days of the Semantic Web, formal ontologies [Benjamins et al., 1998]
designed in RDFS (Resource Description Framework Schema) or OWL (Ontology
Web Language) were the key technologies to model and share knowledge. From
upper ontologies to specific vocabularies, the process to share knowledge consisted in
designing a formal ontology for a specific domain and populate data (instances) for
that domain. Although the reuse of existing ontologies was expected, the reality
demonstrated that every party willing to share knowledge and data would create its
own ontologies. Thus, the main idea behind web ontologies was partially broken since
just a few concepts were really reused.

Once the Linked Data initiative emerged to unleash the power of existing
databases, a huge part of the Semantic Web community realized that a formal
ontology was not completely necessary to exchange data. Taking into account that
ontologies were still present, these efforts were based on validating data consistency
[Baclawski et al., 2002] through the execution of procedures such as: 1) reasoning
processes and 2) rules (e.g. SPARQL [Hogan et al., 2012]). Depending on the size
and complexity of the ontologies, these procedures are not recommended because of
performance issues. As a new evolution, the community realized that ontology-based
reasoning was not the most appropriate method for data querying and validation when
exchanging RDF resources. Thus, it is possible to find works that focused on
exploiting Linked Data from an information technology perspective [Colomo-
Palacios et al., 2012] in different domains such as the financial domain [Sánchez-
Cervantes et al., 2018] or in the field of sensor data management [Sánchez-Cervantes
et al., 2016].

That is why, the RDF community has seen an emerging interest to manage and
validate RDF datasets according to different shapes and schemes. New specifications
and methods for data validation are being designed to turn reasoning-based validation
into a kind of grammar-based validation. These methods take inspiration from
existing approaches in other contexts such as DTD (Document Type Definition),
XML-Schema or Relax NG (REgular LAnguage for XML Next Generation) for
XML, or DDL (Data Definition Language) for SQL (Structured Query Language).

1539Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

The W3C has recently launched the W3C Recommendation “Shapes Constraint
Language (SHACL)“ to support the notion RDF Data Shapes. The ShEX (Shape
Expressions) language [Boneva et al., 2014] is an alternative option to SHACL
addressing the same objectives. Both are formal languages for expressing constraints
on RDF graphs including cardinality constraints as well as logical connectives for
disjunction and polymorphism. As other examples of data exchange and validation,
OSLC Resource Shapes [Ryman et al., 2013], Dublin Core Description Set Profiles
[Coyle and Baker, 2013], and RDF Unit [Kontokostas et al., 2014] are also constraint
languages for domain specific RDF resources.

This focus on RDF data validation for easing data exchange and avoiding
complex processes such as semantic reasoning also represents an opportunity to bring
the principles of Linked Data to the Systems Engineering discipline. In this context,
the OSLC initiative [Ryman et al., 2013] is a joint effort between academia and
industry to boost data sharing and interoperability among applications by applying the
Linked Data principles. Led by the OASIS OSLC working group, OSLC is based on
a set of specifications that take advantage of web-based standards to share system
artefact data under a common data model (RDF) and protocol (HTTP). Every OSLC
specification defines a shape for a type of resource. For instance, requirements,
changes, test cases or estimation and measurement metrics, to name a few, have
already a defined shape (also called OSLC Resource Shape).

In the knowledge management area, the Assets Management and the Tracked
Resource Set are the most convenient specifications for managing artefacts. However,
there are many artefacts generated during the development lifecycle which may not fit
to existing shapes or standard vocabularies. Simulation models, logical models,
business rules or physical circuits are examples of potential artefacts whose an OSLC
resource shape is not yet defined. Furthermore, some common and useful services
such as indexing, naming, retrieval, quality assessment, visualization or traceability
must be provided by all tool vendors, creating a tangled environment of query
languages, interfaces, formats and protocols. However, some specific works can be
also found in this area of semantically representing and retrieving system artefacts
such as system models (e.g. Modelica RC circuits [Gallego et al., 2015] or SysML
models [Mendieta et al., 2017]).

Like OSLC, Agosense Symphony offers an integration platform for application
and product lifecycle management with a huge implantation in the industry due to the
possibility of connecting existing tools. WSO2 is another middleware platform for
service-oriented computing based on standards for business process modelling and
management. However, none of them offer a standard input/output interfaces based
on lightweight data models and software architectures such as RDF and REST. Other
industry platforms such as PTC Integrity, Siemens Team Center, IBM Jazz Platform
or HP PLM are now offering OSLC interfaces for different types of artefacts.

As it has been introduced, software and system artefact reuse [Mili et al., 1995]
[Smolárová and Návrat, 1997] as a discipline has been widely studied and surveyed
from different perspectives. Reuse depending on software metrics and models [Frakes
and Terry, 1996], reuse of software libraries [Mili et al., 1998], reuse in software
repositories [Guo and others, 2000], reuse of components in the industry [Land et al.,
2009], reuse success factors [Basili and Rombach, 1991] and reuse in software
product lines [Thüm et al., 2014]. In all of them, the different authors have explored

1540 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

and classified the mechanisms to store and retrieve software assets. One of the main
conclusions in these studies is that successful reuse will come with sophisticated
software components storage, representation and retrieval techniques. In this light, the
authors in [Guo and others, 2000] define a set of orthogonal attributes and six broad
classes of methods for software reuse. Requirements specifications and knowledge
management techniques are presented in [Bolanle, 2014] to address the challenge of
software reuse using formal ontologies and reasoning methods. Other very relevant
works have been focused on applying control engineering techniques [Mili, 2002].
Although some of good experiences have been reported [Tracz, 1995], success and
failure facts outlined in [Morisio et al., 2002] and [Desouza et al., 2006] are still open.

In the specific case of software and systems engineering and reuse, the
application of semantics-based technologies has also been focused in the creation of
OWL ontologies [Castañeda et al., 2010] to support requirements elicitation, and to
model development processes [Kossmann et al., 2008] or information systems
[Beydoun et al., 2014] or Model Driven Architecture [Gaševic et al., 2006], to name
just a few. These works only leverage ontologies to formally design a meta-model.

In conclusion, software and system artefact reuse is an active research area that
evolves according to the current trends in development lifecycles. It may have the
potential of leveraging new technologies such as the web environment, service-
oriented computing, semantics and Linked Data. However, data exchange [García-
Rodríguez et al., 2012] does not necessarily imply reuse. From service providers to
data items, a knowledge strategy is required to really represent, store and search
system artefacts metadata and contents. In this light, the OSLC initiative is following
this approach, having impact on the main players of software and systems industry.
Nevertheless, it only covers a restricted set of artefacts and some cross-cutting and
basic services for reuse, such as selection (discovery), must be provided by all third-
parties. Lastly, a system and software repository for systematic reuse shall fulfil the
following three requirements:

1) A language for representing any artefact’s metadata and contents;
2) A system for indexing and retrieval; and
3) A standard input/output interface (data shape+REST+RDF) to share and

exchange artefact metadata and contents.

3 Definition of a Linked Data layer for system artefact exchange

As it has been introduced, the OSLC initiative is making a strong commitment to
apply the principles of Linked Data, RDF and REST to boost interoperability and tool
integration. Some specifications or, more precisely, data shapes, have already been
defined to model metadata and contents of requirements, assets, test cases, changes
and estimation and measurement metrics. However, there are still some artefacts for
which there is no shape. Moreover, some cross-cutting services are delegated in third-
party tools, preventing the implementation of one of the cornerstones for system
artefact reuse: selection.

In this section, a data shape, coined as OSLC KM (Knowledge Management)
[Alvarez-Rodríguez et al., 2015], for any system artefact is introduced. This data
shape gives a response to the basic requirements that have been previously identified

1541Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

for a modern system artefact knowledge repository, and fits to common processes in a
knowledge management strategy, see Table 1:

Process Support

Capture/Acquire Access OSLC repositories in the context of
Systems Engineering for all existing
specifications and other RDF-based services or
SPARQL endpoints.

Organize/Store RDF as a public exchange data model and
syntax. The data shape is also a kind of
general-purpose representation model to build
a system artefact repository.

Access/Search/Disseminate RDF query language (e.g. SPARQL), natural
language [Paredes-Valverde et al., 2016] or a
native query language (if any). A set of entities
and relationships creating an underlying graph.

Use/Discover/Trace/Exploit Entity reconciliation based on graph
comparison.

Visualization A generic graph-based visualization
framework that can show not only entities and
relationships, but also interpret them as type of
diagram. E.g. Class diagram.

Exploit Index, search, trace or assess quality based on
the internal representation model.

Share/Learn An OSLC interface on top of the system
artefact repository that offers both data and
services.

Create Third-party tool that exports artefacts using an
OSLC-based interface.

Table 1: Mapping of the OSLC KM approach to the knowledge management
processes presented in Figure 1.

3.1 A data shape for representing system artefacts

The previous section has outlined the different approaches for data validation and
definition of data shapes. In this case and taking into account the guidelines and
definitions of the OSLC Core specification, the data shape for a system artefact shall
conform the next basic OSLC definitions [Ryman et al., 2013]:

1. “An OSLC Domain is one ALM (Application Lifecycle Management) or PLM
(Product Lifecycle Management) topic area”. Each domain defines a specification.
In this case, a new domain is being defined: Knowledge Management (KM).

2. “An OSLC Specification is comprised of a fixed set of OSLC Defined
Resources”. The following UML class diagram, see Figure 1, represents a simple
metamodel that will be used as the underlying shape for representing system
artefacts. The key concepts here are the classes Artefact and Relationship. An
artefact is a container of relationships between terms under a specific semantics and

1542 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

syntax (e.g. “Car has 4 Wheel”) that can have metadata (authoring, versioning,
visualization features and, in general, provenance information) and data (e.g.
attribute-expressions of a system artefact, such as “Temperature=50”). This shape
is inspired by previous works on representing engineering knowledge.

Figure 1: UML Class Diagram of the OSLC Resource Shape for representing system
artefacts based on [Llorens et al., 2004].

3. “An OSLC Defined Resource is an entity that is translated into an RDF
class with a type”. Every resource consists of a set of defined properties whose
values may be set when the resource is created or updated. In this case and
following the previous design, a shape for every class has been defined. Table 2
presents a brief description of the resource shape and provides a link to the official
definition (prefix:name, e.g. Ios_km1:Artefact) and a brief description of the
resource.

Taking into account that the Linked Data Initiative has also seen the creation of
methodologies, guidelines or recipes [Hyland and Terrazas, 2011] to publish RDF-
encoded data, we have paid special attention to follow a similar approach by reusing
existing RDF-based vocabularies. More specifically, the following rules have been
applied to create the OSLC resource shapes:

4. If there is an RDF-based vocabulary that is already a W3C Recommendation
or it is being promoted by other standards body, it must be used as it is, by creating
an OSCL Resource Shape.

5. If there is an RDF-based vocabulary but it is just a de-facto standard, it
should be used as it is, by including minor changes in the creation of an OSCL
Resource Shape.

1 The prefix Ios_km refers to the URI: https://www.eca-ios.orgmediawiki/index.php/
that was part of the “Interoperability Specification” developed within the CRYSTAL
project. See web link: http://www.crystal-
artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_023_v3.0.pdf

1543Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

6. If there is not an RDF-based vocabulary, try to take advantage (reusing
properties and classes) of existing RDF-based vocabularies to create the OSLC
Resource Shape.

Class in
Figure 1

OSLC Resource Shape Item Description

Artefact Ios_km:Artefact A container of relationships
between concepts and
metaproperties to semantically
describe any piece of information.
It is the basis for the creation of
an underlying semantic network.

Relationship Ios_km:Relationship A relationship represents a link
between any set of resources. It is
possible to add semantics and it
can contain any number of
elements representing binary,
ternary or even n-ary
relationships.

Data Ios_km:Data An attribute-value expression that
represents a property of the
artefact under description.

MetaData Ios_km:MetaData A tag-value attribute representing
typical metadata properties.
Dublin Core is used here to
represent such information. Both
can be any type of resource or,
more specifically, concepts.

Term Ios_km:Concept This concept follows the
semantics and shape of a
skos:Concept [Baker et al.,
2013].

More specifically: "the notion of a
SKOS concept is useful when
describing the conceptual or
intellectual structure of a
knowledge organization system,
and when referring to specific
ideas or meanings established
within a KOS (Knowledge
Organization System)”.

Type Ios_km:Concept Everything has a type and a type
is a kind of concept coming from
a classification. E.g. The types of
UML metamodel, such as Class,
Use Case, etc.

Table 2: OSLC Resource Shapes description within the Knowledge Management
domain.

1544 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

In the case of knowledge management, we have selected the Simple Knowledge
Organization System (SKOS), a W3C recommendation, to define concepts, since it
has been designed for promoting controlled vocabularies, thesauri, taxonomies or
even simple ontologies to the Linked Data initiative. That is why, in the proposed data
shape, most of the entities can be considered as a skos:Concept and we have created
the shape of this standard definition within the resource Ios_km:Concept.

7. “An OSLC Defined Property is an entity that is translated into an RDF
property”. It may define useful information such as the type of the property,
datatypes and values, domain, range, min. and max. cardinality, representation
(inline or reference) and readability.

The detailed and preliminary description of all properties for every defined
resource can be found in the public deliverable “Interoperability Specification – V3”
of the CRYSTAL project and [Alvarez-Rodríguez et al., 2015].

8. An OSLC Service Provider is a tool that offers data implementing an OSLC
specification in a REST-fashion.

Figure 2 shows a functional architecture for an OSLC Knowledge Management

provider. It shall be able to process any kind of OSLC-based resource or even any
piece of RDF by applying the mappings described in [Alvarez-Rodríguez et al.,
2015]. Once the data is in the OSLC KM processor, a reasoning process can be
launched to infer new RDF triples (if required). Afterwards, data is validated and
indexed into the system and software knowledge repository. On top of this repository,
services such as semantic search, naming, traceability, quality checking or
visualization may be provided, generating new OSLC KM Resources.

Mapping Rules

RDF2DataS
hape

(Visitor
Patterrn)

Reasoning
process to

classify and
infer new

triples
(optional)

Validation
& Data
Shape

generation

OSLC KM specification

OSLC-KM processor

OSLC-
based

resources
and RDF

Semantic
Indexing
process

OSLC KM
based

resources
RDF vocabularies

Semantic
Search

Process &
Naming

SAR

Traceabi
lity

OSLC KM item2

OSLC KM item1

Quality
Checking

Quality rules

Visualiza
tion

General-purpose
view

Preferred view

System Artefact or
Natural language query

End-users and
tools

OSLC KM interface

OSLC KM items
(OSLC resources

&
skos:Concept)

OSLC KM items
(mappings)

OSLC KM items
(OSLC resources+
quality metrics)

System Artefact
Repository

Figure 2: Functional Architecture and core services for knowledge management
based on the OSLC KM specification.

1545Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

3.2 Technological environment

Figure 3 depicts the elements of the functional architecture. Here, it is important to
remark that a service-oriented architecture is proposed to implement the approach.
More specifically, the next building blocks and technologies have been used to
develop this architecture:

 Toolk. It is the target tool from which artefacts are expected to be
exposed following the OSLC Resource Shape defined for Knowledge
Management, see Figure 1.

 OSLC KM adapter. It is a wrapper on top of a target tool, toolk, that must
implement the transformation rules from the internal representation
format to the resource shape in Figure 1. Currently, there are some
available implementations based on .Net, Java and XSLT.

 OSLC KM Provider. It is an OSLC service provider that offers a Linked
Data API (Application Programming Interface) to access the artefacts
available in toolk. Currently, there are two implementations for .Net and
Java.

 OSLC KM Client & Provider. It is an OSLC client and Provider for
OSLC KM resources. There are again two available implementations in
.Net and Java.

 CAKE (Computer-Aided Knowledge Environment). It is an API on top
of the Knowledge Manager (KM) tool and a repository that offers
natural language processing techniques and ontology management
capabilities to promote any kind of resource to a semantic-based
representation creating an underlying knowledge graph. The CAKE v18
has been used to implement this functional block.

 KM. It is the acronym of the Knowledge Manager2 v18, a commercial
tool developed by The Reuse Company, that offers capabilities to design
ontologies and a semantic-based retrieval engine based on graph-
matching techniques.

 Common services. Once any piece of data and information is stored in
the repository as a graph, it is possible to reuse some of the operations
available in the KM tool such as naming, traceability recovery, quality
checking or semantic retrieval.

One relevant implication of this architecture is that the reuse of a new type of
system artefact only requires the implementation of an OSLC KM adapter.

2 https://www.reusecompany.com/knowledge-manager

1546 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

Figure 3: Building blocks of the functional architecture and technology.

4 Experiment: Exchange and selection of logical and physical
models

4.1 Motivation

An organization [Berglund, 2013] developing a cyber-physical system, a rugged
computer, is looking for a solution to integrate all tools involved in the development
lifecycle. Instead of using a complete ALM or PLM suite, they follow a decentralized
and federated approach where different tool providers can be found. They use a
requirements management tool (RMT) for gathering and storing stakeholder and
system requirements. They also have tools for designing logical models (e.g. Papyrus
and IBM Rhapsody) and physical models (Simulink). The organization is looking for
the best way to integrate and reuse all the system artefacts that are being continuously
generated. Sometimes, requirements contain entities that do not appear in the models,
preventing the possibility of recovering traceability links. Thus, the cost of reusing
any existing artefact is becoming higher, since it is not possible to completely trace a
component from its inception to the final release. In conclusion, this organization is
facing some issues:

1. Lack of a product breakdown structure (or a metamodel) to drive the
development lifecycle.

2. Name mismatches.
3. Point-to-point and ad-hoc integrations between a client and a tool

provider.
4. A plethora of heterogeneous protocols and data models (most of them

non-standard ones).
5. Impossibility of reusing artefacts since system artefacts cannot be easily

discovered.
6. Lack of a system artefact repository to store and search for system

artefacts (metadata and contents).
7. Standalone applications not ready for a collaborative web environment.
8. Vendor lock-in.

Due to all these reasons, they are interested in a holistic and standard approach that
can tackle these issues, easing the development lifecycle and boosting the reuse of
existing and future artefacts. Since natural language is the most common mean

1547Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

[Valencia-García and García-Sánchez, 2013] of expression, even in the Linked Data
world [Paredes-Valverde et al., 2016], string queries will be used to retrieve artefacts.

4.2 Research design

The validation of the presented approach is conducted using the schema proposed by
[Juristo and Moreno, 2001], where experimentation is divided into four main
activities: definition of the objectives of the experimentation, design of the
experiment, execution of the experiment, and analysis of the results. In this case, two
different experiments have been conducted to test the retrieving capabilities of:

1. Exchange and selection of logical models in SysML. Papyrus and IBM
Rhapsody have been selected as target tools that can manage logical
models and are expected to provide reuse capabilities.

2. Exchange and selection of physical models. In this case, Simulink has
been selected as a tool to create and manage physical system models.

In both cases, the reuse capabilities of these tools are compared to the proposed
approach.

4.2.1 Main research objective

The following objective was defined for the validation: “To study the effectiveness of
the proposed solution in finding reusable SysML and Simulink models (i.e. suitable
for reuse) from a model repository”.

4.2.2 Detailed Design

To evaluate the reuse capabilities of the selected tools in comparison to the presented
approach, the following metrics [Croft et al., 2010] have been selected:

 Precision: fraction of retrieved models that are relevant to the query.

 Recall: fraction of relevant models that are retrieved.

 F1: a combination of precision and recall that measures the accuracy of the

test.

Furthermore, some levels of „goodness” for them are defined based on [Hayes et
al., 2005]:

 1) Precision: above 20% it is acceptable, good above 30%, and excellent
above 50%.

1548 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

 2) Recall: above 60% it is acceptable, good above 70%, and excellent above
80%.

In the case of the first experiment, a set of 44 SysML models based on existing
requirements diagrams from two sources [Friedenthal et al., 2014] [OMG, 2016] have
been loaded in Papyrus and IBM Rhapsody. Morevover, a set of 25 queries, see Table
3, has been designed to compare and validate the retrieving capabilities of the
proposed approach. These queries were designed by experts considering functional
aspects common to several of the models, the components of the models, and the
terminology of the models. After creating the queries, the relevant items to be
retrieved were defined allowing us to calculate the performance metrics.

Id Query string

Q1 System availability

Q2 Maximum rate of failure

Q3 Manage Traffic flow

Q4 System for purify water

Q5 System using remote control component

Q6 System use cameras

Q7 System with an statistical data component

Q8 System Performance Requirements

Q9 Requirements of System Usability

Q10 System with Simulation Component

Q11 Group Creation

Q12 System Restrictions Requirements

Q13 System that use Sensors

Q14 Gather and Interpret Information Module

Q15 Adaptive Control

Q16 Consistency in transaction

Q17 Manual Control

Q18 intruders detection

Q19 Time Validation

Q20 computer response time

Q21 System validation cards

Q22 tasks and scenarios

Q23 traffic management based in the region

Q24 semaphores automatic operation

Q25 Control standard

Table 3: Queries for retrieving logical models.

1549Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

In the second case, a set of Simulink models available as libraries have been
selected. 20 queries have been again designed to compare both approaches.

Id Query string

Q1 A flow between a constant, product, block sum and a outport
block.

Q2 A flow between an inport, product, an a block sum.

Q3 A flow between an inport, block sum and integrator.

Q4 A flow between a subsystem and outport block.

Q5 A flow between a subsystem and to Workspace block.

Q6 A flow between a Transport Delay and Subsystem block.

Q7 A flow between a Integrator block, Transport Delay and
Subsystem block.

Q8 A flow between a Inport and constant blocks with a product
block.

Q9 A flow between a Inport and constant blocks with a product
block and the product block with outport block

Q10 A flow between a Integrator and Subsystem, Add block and
subsystem and Subsystema with Subsystem

Q11 A flow between a Integrator and Subsystem, Add block and
subsystem and Subsystema with Subsystem1 and subsystem2

Q12 A flow between a Integrator and Subsystem, Add block and
subsystem and Subsystema with Subsystem1 and subsystem2
with to Workspace block

Q13 Model with no flows only inport block, outport block and
product block

Q14 Two submodels of A flow between an inport, product, an a
block sum and outport.

Q15 Two submodels of A flow between an inport, product, an a
block sum and outport with two constants

Q16 A flow between inport and add block, and two inports nodes
without flow

Q17 A flow between add bloc and constant with divide block.

Q18 A flow between divide block tro integrator nodes and tree
outports block

Q19 A flow between integrator block and aoutport block and two
outports block and one add block with no flows

Q20 A flow between 4 transfer delay with two subsystems.

Table 4: Queries for retrieving physical models.

4.3 Results and analysis

Table 5 and Figure 4 present the results of the first experiment in which it is possible
to find the next metrics (only good, excellent and perfect results are commented):

1550 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

Query OSLC KM Papyrus IBM Rhapsody

P R F1 P R F1 P R F1

Q1 0.45 0.94 0.61 1.00 0.44 0.61 1.00 0.44 0.61

Q2 1.00 0.83 0.91 1.00 0.67 0.80 1.00 0.67 0.80

Q3 0.67 1.00 0.80 0.75 0.38 0.50 0.80 0.50 0.62

Q4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Q5 1.00 0.75 0.86 0.00 0.00 0.00 0.00 0.00 0.00

Q6 0.36 1.00 0.53 1.00 1.00 1.00 1.00 1.00 1.00

Q7 1.00 1.00 1.00 1.00 0.56 0.71 1.00 0.56 0.71

Q8 0.33 1.00 0.50 0.50 1.00 0.67 0.00 0.00 0.00

Q9 0.38 1.00 0.55 0.75 1.00 0.86 0.75 1.00 0.86

Q10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Q11 0.50 1.00 0.67 0.33 1.00 0.50 0.33 1.00 0.50

Q12 0.50 1.00 0.67 0.12 1.00 0.22 0.12 1.00 0.22

Q13 0.36 1.00 0.53 0.12 1.00 0.22 0.14 1.00 0.24

Q14 1.00 0.73 0.84 0.73 1.00 0.85 0.71 0.91 0.80

Q15 0.75 1.00 0.86 1.00 0.67 0.80 1.00 0.67 0.80

Q16 1.00 1.00 1.00 1.00 0.75 0.86 1.00 1.00 1.00

Q17 1.00 1.00 1.00 1.00 0.75 0.86 1.00 0.75 0.86

Q18 1.00 1.00 1.00 0.50 1.00 0.67 0.50 1.00 0.67

Q19 0.70 1.00 0.82 0.88 1.00 0.93 0.88 1.00 0.93

Q20 1.00 1.00 1.00 0.18 1.00 0.31 0.24 1.00 0.38

Q21 1.00 1.00 1.00 0.12 1.00 0.22 1.00 1.00 1.00

Q22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Q23 0.78 1.00 0.88 0.16 1.00 0.27 0.88 1.00 0.93

Q24 1.00 1.00 1.00 0.50 1.00 0.67 0.50 1.00 0.67

Q25 0.43 0.75 0.55 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.77 0.96 0.82 0.67 0.85 0.66 0.71 0.82 0.70

Table 5: Results of retrieving logical models with OSLC KM, Papyrus and IBM
Rhapsody.

 The precision and recall are at least good for all the queries, and excellent on
average.

 The precision is good for 8 queries (32%), and excellent for 17 (68%) being
perfect (1,00) for 13 queries (52%).

 The recall is good for 3 queries (12%) and excellent for 22 (88%) being
perfect (1,00) for 20 queries (80%).

1551Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

 F1 is perfect (1,00) for 10 queries (40%).
On the other hand, Table 6 and Figure 5 present the results of the second

experiment comparing the Simulink capabilities for retrieving models and the
presented approach. An analysis of the results shows that:

 The precision and recall are at least good for all the queries, and excellent on
average.

 The precision is good for 3 queries (12%), and excellent for 14 (56%) being
perfect (1,00) for 6 queries (25%).

 The recall is good for 18 queries (72%) and excellent for 16 (64%) being
perfect (1,00) for 11 queries (44%).

 F1 is perfect (1,00) for 3 queries (40%).

Query OSLC KM Simulink

P R F1 P R F1

Q1 0.44 0.41 0.42 0.64 0.94 0.76

Q2 0.58 0.65 0.61 0.64 0.94 0.76

Q3 0.53 1.00 0.69 1.00 0.90 0.95

Q4 1.00 1.00 1.00 0.00 0.00 0.00

Q5 1.00 1.00 0.00 0.00 0.00 0.00

Q6 1.00 1.00 1.00 0.00 0.00 0.00

Q7 0.10 1.00 0.18 0.00 0.00 0.00

Q8 1.00 0.44 0.61 1.00 0.69 0.81

Q9 0.13 1.00 0.22 0.00 0.00 0.00

Q10 0.67 1.00 0.80 0.24 1.00 0.39

Q11 0.40 1.00 0.57 0.16 1.00 0.28

Q12 0.33 0.75 0.46 0.16 1.00 0.28

Q13 1.00 0.26 0.42 0.00 0.00 0.00

Q14 0.90 0.56 0.69 0.80 0.25 0.38

Q15 0.90 0.56 0.69 0.67 1.00 0.80

Q16 0.17 0.25 0.20 0.32 1.00 0.48

Q17 0.58 0.85 0.69 0.31 0.31 0.31

Q18 0.90 1.00 0.95 0.25 0.56 0.34

Q19 0.90 1.00 0.95 0.28 0.56 0.37

Q20 1.00 1.00 1.00 0.00 0.00 0.00

Average 0.68 0.79 0.61 0.32 0.51 0.35

Table 6: Results of retrieving physical models with OSLC KM and Simulink.

In both experiments, the presented approach of transforming existing system
artefacts into an OSLC data shape to be indexed in the system artefact repository is a

1552 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

valuable solution to make logical and physical models reuse effective. The level of
precision and recall has been excellent for most of the queries. Results also suggest
that a user would be able to find almost all the models that could be reused for a given
purpose. Here, it is necessary to remark, that is more important to retrieve all potential
reusable models than retrieving models that are not reusable. The F1 score is also
promising, suggesting that the presented approach can be used to effectively
implement a reuse strategy.

Figure 4: Graphical view of the averaged values of precision, recall and F1 when
retrieving logical models.

Figure 5: Graphical view of the averaged values of precision, recall and F1 when
retrieving physical models.

On the other hand, the development of a Linked Data-based architecture
following the guidelines of OSLC has generated several positive effects. The issues

1553Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

that the organization under study was facing are now mitigated, see Table 7. This is
mainly due to the use of standards and a common data shape for data management.

4.4 Research limitations

Some key limitations of the presented work must be outlined. The first one depends
on the number and type of services and defined resources. This experiment has been
conducted in a closed world and, more specifically, two different types of artefacts
and three tools have been validated.

A new OSLC domain, OSLC KM, has been defined and implemented for
knowledge management. This domain takes inspiration from existing W3C
recommendations so that, in a broader and real scope, this specification could change
to meet real industry needs.

In the same manner, new tool providers and domains are expected to be
integrated in this case study to ensure the representation capabilities of the OSLC KM
specification. However, this work presents an industry-oriented case study based on a
real environment for software and knowledge reuse.

Building on the previous comment, we cannot either figure out the internal
budget, methodologies, tools, domain vocabularies, experience and background of
organizations. We merely observe and re-use existing public and on-line knowledge
sources to provide a demonstrative experiment of an OSLC-based architecture for
system artefact selection.

On the other hand, it seems clear that after a long time, software and system
artefact reuse is an active research area in which a good number of challenges and
open issues can be found. The emerging application of the OSLC principles to enable
interoperability among tools in the development lifecycle is providing a new
opportunity for enhancing reuse techniques.

RDF has been demonstrated to be a very good candidate as an input/output data
model. One of the main and well-known drawbacks of RDF is that just a few tools
natively work in RDF. However, other languages such as RDFS or OWL, designed
for representing logical statements, lack of the proper constructors to represent any
piece of knowledge based on other paradigms. Although, it is possible to define a
RDFS or OWL vocabulary for a domain, the reality is that most of times domain
experts do not really need an underlying formal logic but a flexible language for
representing concepts and relationships. In this sense, the use of OSLC KM as a
language to represent metadata and contents of any artefact has been demonstrated to
be flexible and practical (including a native tool support).

In the context of data validation, the related work section has outlined the
increasing interest of checking data consistency and integrity of RDF graphs. In a
reuse environment, this approach can be applied to matchmaking system artefacts.

From a technical point of view, the deployment of the tools and OSLC adapters
has involved a major technical challenge, due to the need of configuration for every
tool vendor and adapter. That is why, we consider that new trends in micro services
should be applied to decrease the time to deploy and test. Furthermore, an OSLC-
based architecture for systematic reuse also requires a new mindset to move existing
applications to a web environment in which context issues regarding authorization or
authentication are completely different.

1554 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

Id Issue Description Mitigation

1 Lack of a product
breakdown structure (PBS)
to drive the development
lifecycle.

The possibility of defining and sharing a
PBS under the OSLC initiative enables
practitioners the management of complex
processes in the development lifecycle.

2 Name mismatches. A common domain vocabulary can now be
shared and reused in other tools.

3 Point-to-point and ad-hoc
integrations between a client
and a tool provider.

This is a common side-effect of reusing
standards and software knowledge
repository. Consumers can ask the
repository for an artefact, and once the
metadata (e.g. information access) and
contents are gathered, they can directly
request data to the real provider.

4 A plethora of heterogeneous
protocols and data models
(most of them non-standard
ones).

Although each tool can have its internal
data model, there is a unified and shared
input/output interface based on RDF.

5 Impossibility of reusing
artefacts since traces cannot
be recovered.

Having the possibility of representing any
artefact under the same data model can help
to recover traces.

6 Lack of a software
knowledge repository to
store and search for artefacts
(metadata and contents).

Any piece of software or knowledge can
now be represented using concepts and
relationships.

7 Poor documentation
mechanisms.
Lack of graphical view of
artefact dependencies.

As a side-effect, the implementation of the
OSLC KM specification on top the System
Knowledge Manager provides also a
mechanism for visualizing artefacts or even
generating documentation templates.

8 Standalone applications not
ready for a collaborative
web environment.

The use of services in a federated
architecture enables practitioners the
deployment of applications in different
locations making the development lifecycle
more flexible and scalable. On the contrary,
performance, security and privacy issues
can emerge avoiding the proper
development a collaborative environment
for software development.

9 Vendor lock-in. The use of a standard layer for exchanging
data and information avoids a complete
vendor lock-in. It is possible to easily
change the provider of a service if it also
implements that OSLC specification.

Table 7: Issues in the case study and mitigating factors.

1555Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

On the other hand, a federated and distributed environment of services also
implies potential issues regarding security, privacy and performance. That is why this
new paradigm must be carefully managed to avoid well-known problems such as
information loss, bottlenecks or denegation of service attacks to name just a few.

Finally, the OSLC initiative is continuously releasing and updating specifications,
some of them have been already promoted to OASIS standards. This also means that
the industry support and commitment behind of OSLC is strongly encouraging
interoperability through the creation and use of standards. In this sense, all software
libraries and results of the present work are publicly available in a Github repository3.

5 Conclusions and Future Work

The application of the Linked Data principles through a set of OSLC specifications is
gaining momentum in the Software and Systems Engineering disciplines.
Interoperability among tools is a key enabler for boosting collaboration in the
development of complex cyber physical systems. The concept of continuous
engineering is becoming a reality since it is possible to integrate data and services
under common protocols and data models. In this context, reuse is a key factor that
can ease teams to develop systems faster and safer. However, software is not
anymore, a piece of logical instructions but any kind of knowledge and organizational
asset. That is why a proper environment for system artefact reuse should provide the
appropriate mechanisms for representing, storing, indexing and retrieving any kind of
software artefact. However, the implicit design of OSLC (mainly focused in the
interoperability between two agents) and the lack of tools to provide a set of core
services such as naming, indexing, retrieval, quality assessment or visualization, are
preventing the creation of a real collaborative environment to boost the concept of
continuous engineering.

That is why we present here a data shape and a retrieving service for
implementing the selection process of a reuse strategy overcoming the existing issues
regarding knowledge representation and exploitation. This approach is based on a
federated and distributed architecture of services that implies a new mindset shifting
the traditional paradigm of software product lines to a flexible and interoperable
architecture.

Thus, a holistic and standard view of the development lifecycle can be created by
easy re-use of existing data, information and knowledge. Future work includes the full
implementation of the architecture and the refinement of the OSLC KM specification
to fulfil the needs of the development of software-based critical systems. Finally, we
also plan to report this work to the OSLC community and to make studies on the
return of investment.

Acknowledgements

The research leading to these results has received funding from the AMASS project
(H2020-ECSEL grant agreement no 692474; Spain's MINECO ref. PCIN-2015-262)

3 https://github.com/trc-research/oslc-km

1556 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

and the CRYSTAL project (ARTEMIS FP7-CRitical sYSTem engineering
AcceLeration project no 332830-CRYSTAL and the Spanish Ministry of Industry).

References

[Alvarez-Rodríguez et al., 2015] Alvarez-Rodríguez, J. M., Llorens, J., Alejandres,
M., and Fuentes, J. M.: “OSLC-KM: A knowledge management specification for
OSLC-based resources” INCOSE Int. Symp., 25 (1)., p. 16–34, 2015.

[Baclawski et al., 2002] Baclawski, K., Kokar, M. M., Waldinger, R. J., and Kogut, P.
A.: “Consistency Checking of Semantic Web Ontologies” Int. Semantic Web Conf., p.
454–9, 2002.

[Baker et al., 2013] Baker, T., Bechhofer, S., Isaac, A., Miles, A., Schreiber, G., and
Summers, E.: “Key choices in the design of Simple Knowledge Organization System
(SKOS)” Web Semant. Sci. Serv. Agents World Wide Web, 20 , p. 35–49, 2013.

[Basili and Rombach, 1991] Basili, V. R., and Rombach, H. D.: “Support for
Comprehensive Reuse” Softw Eng J, 6 (5)., p. 303–316, 1991.

[Benjamins et al., 1998] Benjamins, V. R., Fensel, D., and Gómez-Pérez, A.:
“Knowledge Management through Ontologies” PAKM, 1998.

[Berglund, 2013] Berglund, M.: “Tool Integration in the Age of Agile” Stockholm,
Sweeden. 2013.

[Berners-Lee, 2006] Berners-Lee, T.: “Linked Data” 2006.

[Beydoun et al., 2014] Beydoun, G., Low, G., García-Sánchez, F., Valencia-García,
R., and Martínez-Béjar, R.: “Identification of ontologies to support information
systems development” Inf. Syst., 46 , p. 45–60, 2014.

[Boehm, 1981] Boehm, B. W.: “Software Engineering Economics.” 1st ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR. 1981.

[Bolanle, 2014] Bolanle, O. F.: “Software Reuse Facilitated by the Underlying
Requirement Specification Document: A Knowledge-Based Approach” Am. J. Softw.
Eng. Appl., 3 (3)., p. 21, 2014.

[Boneva et al., 2014] Boneva, I., Gayo, J. E. L., Hym, S., Prud’hommeau, E. G.,
Solbrig, H. R., and Staworko, S.: “Validating RDF with Shape Expressions” CoRR,
abs/1404.1270 , 2014.

[Castañeda et al., 2010] Castañeda, V., Ballejos, L., Caliusco, L., and Galli, R.: “The
Use of Ontologies in Requirements Engineering” GJRE, 10 (6)., 2010.

[Colomo-Palacios et al., 2012] Colomo-Palacios, R., Sánchez-Cervantes, J. L., Alor-
Hernández, G., and Rodríguez-González, A.: “Linked Data: Perspectives for IT
Professionals” Int. J. Hum. Cap. Inf. Technol. Prof., 3 (3)., p. 1–12, 2012.

[Coyle and Baker, 2013] Coyle, K., and Baker, T.: “Dublin Core Application Profiles
Separating Validation from Semantics” W3C. 2013.

1557Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

[Croft et al., 2010] Croft, W. B., Metzler, D., and Strohman, T.: “Search Engines:
Information Retrieval in Practice” Pearson Education. 2010.

[Davis et al., 1993] Davis, R., Shrobe, H., and Szolovits, P.: “What is a knowledge
representation?” AI Mag., 14 (1)., p. 17, 1993.

[Desouza et al., 2006] Desouza, K. C., Awazu, Y., and Tiwana, A.: “Four Dynamics
for Bringing Use Back into Software Reuse” Commun ACM, 49 (1)., p. 96–100, 2006.

[Fortune and Valerdi, 2008] Fortune, J., and Valerdi, R.: “Considerations for
successful reuse in systems engineering” Space 2008 Conf., 2008.

[Frakes and Terry, 1996] Frakes, W., and Terry, C.: “Software reuse: metrics and
models” ACM Comput. Surv. CSUR, 28 (2)., p. 415–435, 1996.

[Friedenthal et al., 2014] Friedenthal, S., Moore, A., and Steiner, R.: “A practical
guide to SysML: the systems modeling language” Morgan Kaufmann. 2014.

[Gallego et al., 2015] Gallego, E., Alvarez Rodríguez, J. M., and Llorens, J.: “Reuse
of Physical System Models by means of Semantic Knowledge Representation: A Case
Study applied to Modelica” Proc. 11th Int. Model. Conf. Versailles Fr. Sept. 21-23
2015, Linköping University Electronic Press, Linköpings universitet. p. 747–57, 2015.

[García-Rodríguez et al., 2012] García-Rodríguez, M., Álvarez-Rodríguez, J. M.,
Muñoz, D. B., Paredes, L. P., Gayo, J. E. L., and Pablos, P. O. de: “Towards a
Practical Solution for Data Grounding in a Semantic Web Services Environment” J
UCS, 18 (11)., p. 1576–1597, 2012.

[Gaševic et al., 2006] Gaševic, D., Devedžic, V., Djuric, D., and SpringerLink
(Online service): “Model Driven Architecture and Ontology Development” Berlin,
Heidelberg: Springer-Verlag Berlin Heidelberg. 2006.

[Guo and others, 2000] Guo, J., and others: “A survey of software reuse repositories”
Eng. Comput.-Based Syst. IEEE Int. Conf. On, IEEE Computer Society. p. 92–92,
2000.

[Hayes et al., 2005] Hayes, J. H., Dekhtyar, A., and Sundaram, S. K.: “Improving
after-the-fact tracing and mapping: Supporting software quality predictions” IEEE
Softw., 22 , p. 30–7, 2005.

[Hogan et al., 2012] Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A.,
and Decker, S.: “An empirical survey of Linked Data conformance” Web Semant. Sci.
Serv. Agents World Wide Web, 14 , p. 14–44, 2012.

[Hull and King, 1987] Hull, R., and King, R.: “Semantic database modeling: Survey,
applications, and research issues” ACM Comput. Surv. CSUR, 19 (3)., p. 201–260,
1987.

[Hyland and Terrazas, 2011] Hyland, B., and Terrazas, B. V.: “Cookbook for Open
Government Linked Data” W3C. 2011.

[INCOSE, 2004] INCOSE: “Systems Engineering Vision 2020” INCOSE. 2004.

1558 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

[Jacobson et al., 1997] Jacobson, I., Griss, M., and Jonsson, P.: “Software Reuse:
Architecture, Process and Organization for Business Success” New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co. 1997.

[Juristo and Moreno, 2001] Juristo, N., and Moreno, A. M.: “Basics of Software
Engineering Experimentation” Analysis. Springer Science & Business Media. 2001.

[Kontokostas et al., 2014] Kontokostas, D., Westphal, P., Auer, S., et al.: “Test-driven
evaluation of linked data quality” 23rd Int. World Wide Web Conf. WWW 14 Seoul
Repub. Korea April 7-11 2014, p. 747–758, 2014.

[Kossmann et al., 2008] Kossmann, M., Wong, R., Odeh, M., and Gillies, A.:
“Ontology-driven Requirements Engineering: Building the OntoREM Meta Model”
IEEE. p. 1–6, 2008.

[Krueger, 1992] Krueger, C. W.: “Software reuse” ACM Comput. Surv. CSUR, 24
(2)., p. 131–183, 1992.

[Land et al., 2009] Land, R., Sundmark, D., Lüders, F., Krasteva, I., and Causevic, A.:
“Reuse with software components-a survey of industrial state of practice” Form.
Found. Reuse Domain Eng., Springer. p. 150–159, 2009.

[Llorens et al., 2004] Llorens, J., Morato, J., and Genova, G.: “RSHP: an information
representation model based on relationships” In: Damiani E, editor. Soft Comput.
Softw. Eng., Berlin, Heidelberg: Springer Berlin Heidelberg. p. 221–53, 2004.

[Mallea et al., 2011] Mallea, A., Arenas, M., Hogan, A., and Polleres, A.: “On blank
nodes” Semantic Web–ISWC 2011, Springer. p. 421–437, 2011.

[Mendieta et al., 2017] Mendieta, R., Vara, J. L. de la, Llorens, J., and Alvarez-
Rodríguez, J. M.: “Towards Effective SysML Model Reuse” Proc. 5th Int. Conf.
Model-Driven Eng. Softw. Dev. - Vol. 1 Model., p. 536–41, 2017.

[Mili et al., 1998] Mili, A., Mili, R., and Mittermeir, R. T.: “A survey of software
reuse libraries” Ann. Softw. Eng., 5 , p. 349–414, 1998.

[Mili et al., 1995] Mili, H., Mili, F., and Mili, A.: “Reusing software: Issues and
research directions” Softw. Eng. IEEE Trans. On, 21 (6)., p. 528–562, 1995.

[Mili, 2002] Mili, H.: “Reuse based software engineering: techniques, organization
and measurement” New York: Wiley. 2002.

[Morisio et al., 2002] Morisio, M., Ezran, M., and Tully, C.: “Success and failure
factors in software reuse” IEEE Trans. Softw. Eng., 28 (4)., p. 340–57, 2002.

[Nguyen et al., 2014] Nguyen, V., Bodenreider, O., and Sheth, A.: “Don’t like RDF
reification?: making statements about statements using singleton property” ACM
Press. p. 759–70, 2014.

[Nonaka and Takeuchi, 1995] Nonaka, I., and Takeuchi, H.: “The knowledge-creating
company: How japanese companies create the dynamics of innovation” New York:
Oxford University Press. 1995.

1559Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

[Noy and Rector, 2006] Noy, N., and Rector, A.: “Defining N-ary Relations on the
Semantic Web” W3C Working Group. 2006.

[OMG, 2016] OMG: “The Official OMG SysML site” 2016.

[Paredes-Valverde et al., 2016] Paredes-Valverde, M. A., Valencia-García, R.,
Rodríguez-García, M. Á., Colomo-Palacios, R., and Alor-Hernández, G.: “A
semantic-based approach for querying linked data using natural language” J. Inf. Sci.,
42 (6)., p. 851–62, 2016.

[Powers, 2003] Powers, S.: “Practical RDF” Beijing ; Sebastopol: O’Reilly. 2003.

[Ryman et al., 2013] Ryman, A. G., Hors, A. L., and Speicher, S.: “OSLC Resource
Shape: A language for defining constraints on Linked Data” LDOW, 2013.

[Sánchez-Cervantes et al., 2016] Sánchez-Cervantes, J. L., Radzimski, M.,
Rodriguez-Enriquez, C. A., et al.: “SREQP: A Solar Radiation Extraction and Query
Platform for the Production and Consumption of Linked Data from Weather Stations
Sensors” J. Sens., 2016 , p. 1–18, 2016.

[Sánchez-Cervantes et al., 2018] Sánchez-Cervantes, J. L., Alor-Hernández, G.,
Salas-Zárate, M. del P., García-Alcaraz, J. L., and Rodríguez-Mazahua, L.:
“FINALGRANT: A Financial Linked Data Graph Analysis and Recommendation
Tool” In: Valencia-García R, editor. Explor. Intell. Decis. Support Syst., Cham:
Springer International Publishing. p. 3–26, 2018.

[Shani and Broodney, 2015] Shani, U., and Broodney, H.: “Reuse in model-based
systems engineering” IEEE. p. 77–83, 2015.

[Smith, 2014] Smith, W. B.: “3.3.2 Re-Use Libraries Leveraging Model-Based
Systems Engineering to greatly increase engineering productivity” INCOSE Int.
Symp., 24 (1)., p. 298–312, 2014.

[Smolárová and Návrat, 1997] Smolárová, M., and Návrat, P.: “Software reuse:
Principles, patterns, prospects” CIT J. Comput. Inf. Technol., 5 (1)., p. 33–49, 1997.

[Thüm et al., 2014] Thüm, T., Apel, S., Kästner, C., Schaefer, I., and Saake, G.: “A
Classification and Survey of Analysis Strategies for Software Product Lines” ACM
Comput. Surv., 47 (1)., p. 1–45, 2014.

[Tracz, 1995] Tracz, W.: “Confessions of a Used Program Salesman:
Institutionalizing Software Reuse” Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc. 1995.

[Valencia-García and García-Sánchez, 2013] Valencia-García, R., and García-
Sánchez, F.: “NATURAL LANGUAGE PROCESSING and Human–Computer
Interaction” Comput. Stand. Interfaces, 35 (5)., p. 415–6, 2013.

1560 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...

