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Abstract: The use of different techniques and tools is a common practice to cover all stages in 
the systems development lifecycle, generating a very good number of system artefacts. 
Moreover, these artefacts are commonly encoded in different formats and can only be accessed, 
in most cases, through proprietary and non-standard protocols. This scenario can be considered 
a real nightmare for software or systems reuse. Possible solutions imply the creation of a real 
collaborative development environment where tools can exchange and share data, information 
and knowledge. In this context, the OSLC (Open Services for Lifecycle Collaboration) 
initiative pursues the creation of public specifications (data shapes) to exchange any artefact 
generated during the development lifecycle, by applying the principles of the Linked Data 
initiative. In this paper, the authors present a solution to provide a real multi-format system 
artefact reuse by means of an OSLC-based specification to share and exchange any artefact 
under the principles of the Linked Data initiative. Finally, two experiments are conducted to 
demonstrate the advantages of enabling an input/output interface based on an OSLC 
implementation on top of an existing commercial tool (the Knowledge Manager). Thus, it is 
possible to enhance the representation and retrieval capabilities of system artefacts by 
considering the whole underlying knowledge graph generated by the different system artefacts 
and their relationships. After performing 45 different queries over logical and physical models 
stored in Papyrus, IBM Rhapsody and Simulink, results of precision and recall are promising 
showing average values between 70-80%. 
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1 Introduction  

Software and system artefact reuse [Mili et al., 1995] is commonly defined as a 
process to systematically specify, produce, classify, retrieve and adapt software-based 
artefacts for the purpose of using them in a development process. In general, software 
reuse [Krueger, 1992] may have the potential of increasing productivity of engineers, 
improve quality and create a cost efficient development environment. However, both 
technical and non-technical issues for a limited reuse can be found [Smolárová and 
Návrat, 1997]: 1) economical, organizational, educational or psychological issues and 
2) lack of standards to represent artefacts, and lack of reusable component libraries or 
appropriate tools for boosting reuse and interoperability among tools. 

In the context of technical issues, systems and software engineering techniques 
have been widely studied [Boehm, 1981] to support the classical principles of reuse 
[Krueger, 1992]: abstraction, selection, specialization and integration. More 
specifically, abstraction (i.e. management of the intellectual complexity of a software 
artefact) can be considered the essential feature for any reuse technique to specify 
when an artefact could be reused and how to reuse it. Selection refers to the discovery 
of software artefacts, covering from the representation and storage to the 
classification, location and comparison. Specialization consists on the set of 
parameters and transformations required to reuse a software artefact, while integration 
refers to the capability of software systems to communicate, collaborate and exchange 
data. Thus, the reusability factor of system artefacts [Fortune and Valerdi, 2008] will 
directly depend on how they are abstractly described, how they can be selected and 
specialized for reuse, and how they will be integrated in a target software-based 
system. Furthermore, a reuse approach implies that every artefact generated during 
the development lifecycle is not any more an isolated requirement specification, 
model, piece of source code or test case, but a knowledge item.  However, after a long 
time, reuse promises [Jacobson et al., 1997] are still far from reaching the major 
objective of optimizing the system development lifecycle efforts. 

In this context, last times have seen the emergence of Model-based Systems 
Engineering (MBSE) [INCOSE, 2004] as a complete methodology to address the 
challenge of unifying the techniques, methods and tools. This means a “formalized 
application of modelling” to support the left-hand side in the Vee lifecycle model 
implying that any process, task or activity will generate different system artefacts but 
all of them represented as a model. The MBSE approach is considered a cornerstone 
for the improvement of the current practice in the Systems Engineering discipline 
since it is expected to cover multiple domains, to provide better results in terms of 
quality and productivity, lower risks and, in general, to support the concept of 
continuous and collaborative engineering. In the case of system artefact reuse, both 
disciplines are currently under study according to the works in [Shani and Broodney, 
2015] [Smith, 2014] in which component models are applied to enable reuse. 
However, the MBSE approach considers that everything can be a model and this 
assumption is not always true in the development of a complex system. Requirements 
specifications, test cases or simulation data are just some examples of system artefacts 
which natural representation (as communication mechanism) is not a model. 

Furthermore, abstraction and selection processes are not yet fully developed in a 
MBSE environment. Currently, interoperability initiatives (such as ISO 10303-STEP 
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or OASIS OSLC-Open Services for Lifecycle Collaboration) are trying to boost reuse 
through data exchange. However, the first step to be able to exchange and reuse data 
lies on the provision of a proper environment for system artefacts selection. Existing 
platforms for the management of system engineering processes such as the Jazz 
Platform by IBM or Papyrus (Eclipse CDO), offer a kind of central repository in 
which engineers can upload their systems artefacts and perform tasks such as 
searching or traceability recovery. These centralized repositories represent artefacts as 
a set of metadata that are linked to a system artefact (content). Although in some 
cases, the use of metadata can be useful to look up artefacts by filtering certain 
properties, it seems too simple to really enable the proper reuse of the knowledge 
embedded in system artefacts.  

As a motivating example, in traditional information retrieval systems (text-based) 
if someone is looking for documents (text), she will express queries as text (or 
keywords) and the search engine will match documents according to the input query. 
In all of them, the representation of information, queries and results are working 
under the same primitive: text. The same kind of behaviour can be found in the 
Google Image search service where it is possible to look up images by entering an 
image. Moreover, and considering the plethora of tools, system artefacts and formats, 
a retrieval system for a MBSE environment shall be able to represent, store and 
retrieve any kind of artefact by using as input query any kind of system artefact: a 
requirement, an architectural, a physical model or event just a text. Thus, information 
retrieval techniques will equip engineers with a method to discover existing system 
artefacts based on contents not just metadata.  

In this frame, the application of knowledge management techniques has gained 
momentum to elevate the meaning of the implicit knowledge coded into system 
artefacts and allow engineers to reuse existing data and knowledge. Software-based 
artefacts are a new kind of intellectual asset that can be used to reduce costs and save 
time to market generating competitive advantage in the construction and operation of 
complex systems. That is why, knowledge management techniques [Nonaka and 
Takeuchi, 1995] are being applied to capture, structure, store and disseminate system 
artefacts and support the aforementioned reuse principles of selection and integration. 
However, one of the cornerstones in knowledge management lies in the selection of 
an adequate knowledge representation paradigm. After a long time [Hull and King, 
1987], this problem still persists since a suitable representation format (and syntax) 
can already be reached in several ways [Davis et al., 1993]. Any bit of information 
must be structured and stored for supporting other application services such as 
business analytics or knowledge discovery. This situation also creates an impedance 
mismatch between the system and the outside world. 

Therefore, one of the current trends to boost systems engineering processes lies in 
improving interoperability and collaboration through the exchanging of system 
artefacts under common data models, formats and protocols. In this context, OSLC is 
creating a collaborative engineering ecosystem through the definition of data shapes 
that serve us as a contract to get access to information resources applying the Linked 
Data principles. The Representational State Transfer (REST) software architecture 
style is used to manage information resources that are publicly represented and 
exchanged in RDF. However, RDF has been also demonstrated [Powers, 2003] to 
contain some restrictions to represent certain knowledge features such as N-ary 
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relationships [Noy and Rector, 2006], practical issues dealing with reification 
[Nguyen et al., 2014] and blank nodes [Mallea et al., 2011]. Moreover, some common 
services such as indexing or retrieval of any kind of information resource are 
restricted to the internal storage and the query capabilities offered by each tool 
(usually a SPARQL interface). 

That is why, in this paper the authors present an industry-oriented approach based 
on existing standards, OSLC and RDF, to support the principles of abstraction and 
selection of system artefacts. In particular, an OSLC Resource Shape for any 
knowledge item is refined  [Alvarez-Rodríguez et al., 2015] and implemented. 
Afterwards, an experiment is conducted to integrate, exchange and retrieve different 
tools and types of system artefacts and to share them under the designed data shape. 
Finally, some discussion and open issues are outlined with the aim of evaluating the 
capabilities of this approach to enable software practitioners to develop a software 
reuse strategy. 

2 Related work 

In the early days of the Semantic Web, formal ontologies [Benjamins et al., 1998] 
designed in RDFS (Resource Description Framework Schema) or OWL (Ontology 
Web Language) were the key technologies to model and share knowledge. From 
upper ontologies to specific vocabularies, the process to share knowledge consisted in 
designing a formal ontology for a specific domain and populate data (instances) for 
that domain. Although the reuse of existing ontologies was expected, the reality 
demonstrated that every party willing to share knowledge and data would create its 
own ontologies. Thus, the main idea behind web ontologies was partially broken since 
just a few concepts were really reused.   

Once the Linked Data initiative emerged to unleash the power of existing 
databases, a huge part of the Semantic Web community realized that a formal 
ontology was not completely necessary to exchange data. Taking into account that 
ontologies were still present, these efforts were based on validating data consistency 
[Baclawski et al., 2002] through the execution of procedures such as: 1) reasoning 
processes and 2) rules (e.g. SPARQL [Hogan et al., 2012]).  Depending on the size 
and complexity of the ontologies, these procedures are not recommended because of 
performance issues. As a new evolution, the community realized that ontology-based 
reasoning was not the most appropriate method for data querying and validation when 
exchanging RDF resources. Thus, it is possible to find works that focused on 
exploiting Linked Data from an information technology perspective [Colomo-
Palacios et al., 2012] in different domains such as the financial domain [Sánchez-
Cervantes et al., 2018] or in the field of sensor data management [Sánchez-Cervantes 
et al., 2016]. 

That is why, the RDF community has seen an emerging interest to manage and 
validate RDF datasets according to different shapes and schemes. New specifications 
and methods for data validation are being designed to turn reasoning-based validation 
into a kind of grammar-based validation. These methods take inspiration from 
existing approaches in other contexts such as DTD (Document Type Definition), 
XML-Schema or Relax NG (REgular LAnguage for XML Next Generation) for 
XML, or DDL (Data Definition Language) for SQL (Structured Query Language). 
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The W3C has recently launched the W3C Recommendation “Shapes Constraint 
Language (SHACL)“ to support the notion  RDF Data Shapes. The ShEX (Shape 
Expressions) language [Boneva et al., 2014] is an alternative option to SHACL 
addressing the same objectives. Both are formal languages for expressing constraints 
on RDF graphs including cardinality constraints as well as logical connectives for 
disjunction and polymorphism. As other examples of data exchange and validation, 
OSLC Resource Shapes [Ryman et al., 2013], Dublin Core Description Set Profiles 
[Coyle and Baker, 2013], and RDF Unit [Kontokostas et al., 2014] are also constraint 
languages for domain specific RDF resources.  

This focus on RDF data validation for easing data exchange and avoiding 
complex processes such as semantic reasoning also represents an opportunity to bring 
the principles of Linked Data to the Systems Engineering discipline. In this context, 
the OSLC initiative [Ryman et al., 2013] is a joint effort between academia and 
industry to boost data sharing and interoperability among applications by applying the 
Linked Data principles.  Led by the OASIS OSLC working group, OSLC is based on 
a set of specifications that take advantage of web-based standards to share system 
artefact data under a common data model (RDF) and protocol (HTTP). Every OSLC 
specification defines a shape for a type of resource. For instance, requirements, 
changes, test cases or estimation and measurement metrics, to name a few, have 
already a defined shape (also called OSLC Resource Shape).  

In the knowledge management area, the Assets Management and the Tracked 
Resource Set are the most convenient specifications for managing artefacts. However, 
there are many artefacts generated during the development lifecycle which may not fit 
to existing shapes or standard vocabularies. Simulation models, logical models, 
business rules or physical circuits are examples of potential artefacts whose an OSLC 
resource shape is not yet defined. Furthermore, some common and useful services 
such as indexing, naming, retrieval, quality assessment, visualization or traceability 
must be provided by all tool vendors, creating a tangled environment of query 
languages, interfaces, formats and protocols. However, some specific works can be 
also found in this area of semantically representing and retrieving system artefacts 
such as system models (e.g. Modelica RC circuits [Gallego et al., 2015] or SysML  
models [Mendieta et al., 2017]).  

Like OSLC, Agosense Symphony offers an integration platform for application 
and product lifecycle management with a huge implantation in the industry due to the 
possibility of connecting existing tools. WSO2 is another middleware platform for 
service-oriented computing based on standards for business process modelling and 
management. However, none of them offer a standard input/output interfaces based 
on lightweight data models and software architectures such as RDF and REST. Other 
industry platforms such as PTC Integrity, Siemens Team Center, IBM Jazz Platform 
or HP PLM are now offering OSLC interfaces for different types of artefacts. 

As it has been introduced, software and system artefact reuse [Mili et al., 1995] 
[Smolárová and Návrat, 1997] as a discipline has been widely studied and surveyed 
from different perspectives. Reuse depending on software metrics and models [Frakes 
and Terry, 1996], reuse of software libraries [Mili et al., 1998], reuse in software 
repositories [Guo and others, 2000], reuse of components in the industry [Land et al., 
2009], reuse success factors [Basili and Rombach, 1991] and reuse in software 
product lines [Thüm et al., 2014]. In all of them, the different authors have explored 
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and classified the mechanisms to store and retrieve software assets. One of the main 
conclusions in these studies is that successful reuse will come with sophisticated 
software components storage, representation and retrieval techniques. In this light, the 
authors in [Guo and others, 2000] define a set of orthogonal attributes and six broad 
classes of methods for software reuse. Requirements specifications and knowledge 
management techniques are presented in [Bolanle, 2014] to address the challenge of 
software reuse using formal ontologies and reasoning methods. Other very relevant 
works have been focused on applying control engineering techniques [Mili, 2002]. 
Although some of good experiences have been reported [Tracz, 1995], success and 
failure facts outlined in [Morisio et al., 2002] and [Desouza et al., 2006] are still open. 

In the specific case of software and systems engineering and reuse, the 
application of semantics-based technologies has also been focused in the creation of 
OWL ontologies [Castañeda et al., 2010] to support requirements elicitation, and to 
model development processes [Kossmann et al., 2008] or information systems 
[Beydoun et al., 2014] or Model Driven Architecture [Gaševic et al., 2006], to name 
just a few. These works only leverage ontologies to formally design a meta-model. 

In conclusion, software and system artefact reuse is an active research area that 
evolves according to the current trends in development lifecycles. It may have the 
potential of leveraging new technologies such as the web environment, service-
oriented computing, semantics and Linked Data. However, data exchange [García-
Rodríguez et al., 2012] does not necessarily imply reuse. From service providers to 
data items, a knowledge strategy is required to really represent, store and search 
system artefacts metadata and contents. In this light, the OSLC initiative is following 
this approach, having impact on the main players of software and systems industry. 
Nevertheless, it only covers a restricted set of artefacts and some cross-cutting and 
basic services for reuse, such as selection (discovery), must be provided by all third-
parties. Lastly, a system and software repository for systematic reuse shall fulfil the 
following three requirements:  

1) A language for representing any artefact’s metadata and contents;  
2) A system for indexing and retrieval; and  
3) A standard input/output interface (data shape+REST+RDF) to share and 

exchange artefact metadata and contents. 

3 Definition of a Linked Data layer for system artefact exchange 

As it has been introduced, the OSLC initiative is making a strong commitment to 
apply the principles of Linked Data, RDF and REST to boost interoperability and tool 
integration. Some specifications or, more precisely, data shapes, have already been 
defined to model metadata and contents of requirements, assets, test cases, changes 
and estimation and measurement metrics. However, there are still some artefacts for 
which there is no shape. Moreover, some cross-cutting services are delegated in third-
party tools, preventing the implementation of one of the cornerstones for system 
artefact reuse: selection.  

In this section, a data shape, coined as OSLC KM (Knowledge Management) 
[Alvarez-Rodríguez et al., 2015], for any system artefact is introduced. This data 
shape gives a response to the basic requirements that have been previously identified 
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for a modern system artefact knowledge repository, and fits to common processes in a 
knowledge management strategy, see Table 1: 

 
Process Support 

Capture/Acquire Access OSLC repositories in the context of 
Systems Engineering for all existing 
specifications and other RDF-based services or 
SPARQL endpoints. 

Organize/Store RDF as a public exchange data model and 
syntax. The data shape is also a kind of 
general-purpose representation model to build 
a system artefact repository. 

Access/Search/Disseminate RDF query language (e.g. SPARQL), natural 
language [Paredes-Valverde et al., 2016] or a 
native query language (if any). A set of entities 
and relationships creating an underlying graph. 

Use/Discover/Trace/Exploit Entity reconciliation based on graph 
comparison.  

Visualization A generic graph-based visualization 
framework that can show not only entities and 
relationships, but also interpret them as type of 
diagram. E.g. Class diagram. 

Exploit Index, search, trace or assess quality based on 
the internal representation model. 

Share/Learn An OSLC interface on top of the system 
artefact repository that offers both data and 
services. 

Create Third-party tool that exports artefacts using an 
OSLC-based interface. 

Table 1: Mapping of the OSLC KM approach to the knowledge management 
processes presented in Figure 1. 

3.1 A data shape for representing system artefacts 

The previous section has outlined the different approaches for data validation and 
definition of data shapes. In this case and taking into account the guidelines and 
definitions of the OSLC Core specification, the data shape for a system artefact shall 
conform the next basic OSLC definitions [Ryman et al., 2013]: 

1. “An OSLC Domain is one ALM (Application Lifecycle Management) or PLM 
(Product Lifecycle Management) topic area”. Each domain defines a specification. 
In this case, a new domain is being defined: Knowledge Management (KM). 

2. “An OSLC Specification is comprised of a fixed set of OSLC Defined 
Resources”. The following UML class diagram, see Figure 1, represents a simple 
metamodel that will be used as the underlying shape for representing system 
artefacts. The key concepts here are the classes Artefact and Relationship. An 
artefact is a container of relationships between terms under a specific semantics and 
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syntax (e.g. “Car has 4 Wheel”) that can have metadata (authoring, versioning, 
visualization features and, in general, provenance information) and data (e.g. 
attribute-expressions of a system artefact, such as “Temperature=50”).  This shape 
is inspired by previous works on representing engineering knowledge.  

 

Figure 1: UML Class Diagram of the OSLC Resource Shape for representing system 
artefacts based on [Llorens et al., 2004]. 

3.  “An OSLC Defined Resource is an entity that is translated into an RDF 
class with a type”. Every resource consists of a set of defined properties whose 
values may be set when the resource is created or updated. In this case and 
following the previous design, a shape for every class has been defined. Table 2 
presents a brief description of the resource shape and provides a link to the official 
definition (prefix:name, e.g. Ios_km1:Artefact) and a brief description of the 
resource. 

Taking into account that the Linked Data Initiative has also seen the creation of 
methodologies, guidelines or recipes [Hyland and Terrazas, 2011] to publish RDF-
encoded data, we have paid special attention to follow a similar approach by reusing 
existing RDF-based vocabularies. More specifically, the following rules have been 
applied to create the OSLC resource shapes: 

4. If there is an RDF-based vocabulary that is already a W3C Recommendation 
or it is being promoted by other standards body, it must be used as it is, by creating 
an OSCL Resource Shape. 

5. If there is an RDF-based vocabulary but it is just a de-facto standard, it 
should be used as it is, by including minor changes in the creation of an OSCL 
Resource Shape. 

                                                           
1 The prefix Ios_km refers to the URI: https://www.eca-ios.orgmediawiki/index.php/ 
that was part of the “Interoperability Specification” developed within the CRYSTAL 
project. See web link: http://www.crystal-
artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_023_v3.0.pdf  
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6. If there is not an RDF-based vocabulary, try to take advantage (reusing 
properties and classes) of existing RDF-based vocabularies to create the OSLC 
Resource Shape. 
 

Class in 
Figure 1 

OSLC Resource Shape Item Description 

Artefact Ios_km:Artefact A container of relationships 
between concepts and 
metaproperties to semantically 
describe any piece of information. 
It is the basis for the creation of 
an underlying semantic network. 

Relationship Ios_km:Relationship  A relationship represents a link 
between any set of resources. It is 
possible to add semantics and it 
can contain any number of 
elements representing binary, 
ternary or even n-ary 
relationships. 

Data Ios_km:Data  An attribute-value expression that 
represents a property of the 
artefact under description. 

MetaData Ios_km:MetaData A tag-value attribute representing 
typical metadata properties. 
Dublin Core is used here to 
represent such information. Both 
can be any type of resource or, 
more specifically, concepts. 

Term Ios_km:Concept This concept follows the 
semantics and shape of a 
skos:Concept  [Baker et al., 
2013].  

More specifically: "the notion of a 
SKOS concept is useful when 
describing the conceptual or 
intellectual structure of a 
knowledge organization system, 
and when referring to specific 
ideas or meanings established 
within a KOS (Knowledge 
Organization System)”. 

Type Ios_km:Concept Everything has a type and a type 
is a kind of concept coming from 
a classification. E.g. The types of 
UML metamodel, such as Class, 
Use Case, etc. 

Table 2: OSLC Resource Shapes description within the Knowledge Management 
domain. 

1544 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...



In the case of knowledge management, we have selected the Simple Knowledge 
Organization System (SKOS), a W3C recommendation, to define concepts, since it 
has been designed for promoting controlled vocabularies, thesauri, taxonomies or 
even simple ontologies to the Linked Data initiative. That is why, in the proposed data 
shape, most of the entities can be considered as a skos:Concept and we have created 
the shape of this standard definition within the resource Ios_km:Concept.  

7. “An OSLC Defined Property is an entity that is translated into an RDF 
property”. It may define useful information such as the type of the property, 
datatypes and values, domain, range, min. and max. cardinality, representation 
(inline or reference) and readability. 

The detailed  and preliminary description of all properties for every defined 
resource can be found in the public deliverable “Interoperability Specification – V3” 
of the CRYSTAL project  and [Alvarez-Rodríguez et al., 2015]. 

8. An OSLC Service Provider is a tool that offers data implementing an OSLC 
specification in a REST-fashion. 

 
Figure 2 shows a functional architecture for an OSLC Knowledge Management 

provider. It shall be able to process any kind of OSLC-based resource or even any 
piece of RDF by applying the mappings described in [Alvarez-Rodríguez et al., 
2015]. Once the data is in the OSLC KM processor, a reasoning process can be 
launched to infer new RDF triples (if required). Afterwards, data is validated and 
indexed into the system and software knowledge repository. On top of this repository, 
services such as semantic search, naming, traceability, quality checking or 
visualization may be provided, generating new OSLC KM Resources.  

Mapping Rules

RDF2DataS
hape

(Visitor 
Patterrn)

Reasoning 
process to 

classify and 
infer new 

triples
(optional)
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& Data 
Shape 

generation

OSLC KM specification

OSLC-KM processor

OSLC-
based 

resources 
and RDF

Semantic 
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Quality 
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view
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Natural language query

End-users and 
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OSLC KM items
(OSLC resources

&
skos:Concept)

OSLC KM items 
(mappings)

OSLC KM items 
(OSLC resources+
quality metrics)

System Artefact 
Repository 

 

Figure 2: Functional Architecture and core services for knowledge management 
based on the OSLC KM specification. 
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3.2 Technological environment 

Figure 3 depicts the elements of the functional architecture. Here, it is important to 
remark that a service-oriented architecture is proposed to implement the approach. 
More specifically, the next building blocks and technologies have been used to 
develop this architecture: 

 Toolk. It is the target tool from which artefacts are expected to be 
exposed following the OSLC Resource Shape defined for Knowledge 
Management, see Figure 1. 

 OSLC KM adapter. It is a wrapper on top of a target tool, toolk, that must 
implement the transformation rules from the internal representation 
format to the resource shape in Figure 1. Currently, there are some 
available implementations based on .Net, Java and XSLT. 

 OSLC KM Provider. It is an OSLC service provider that offers a Linked 
Data API (Application Programming Interface) to access the artefacts 
available in toolk. Currently, there are two implementations for .Net and 
Java. 

 OSLC KM Client & Provider. It is an OSLC client and Provider for 
OSLC KM resources. There are again two available implementations in 
.Net and Java. 

 CAKE (Computer-Aided Knowledge Environment). It is an API on top 
of the Knowledge Manager (KM) tool and a repository that offers 
natural language processing techniques and ontology management 
capabilities to promote any kind of resource to a semantic-based 
representation creating an underlying knowledge graph. The CAKE v18 
has been used to implement this functional block. 

 KM. It is the acronym of the Knowledge Manager2 v18, a commercial 
tool developed by The Reuse Company, that offers capabilities to design 
ontologies and a semantic-based retrieval engine based on graph-
matching techniques. 

 Common services. Once any piece of data and information is stored in 
the repository as a graph, it is possible to reuse some of the operations 
available in the KM tool such as naming, traceability recovery, quality 
checking or semantic retrieval. 

One relevant implication of this architecture is that the reuse of a new type of 
system artefact only requires the implementation of an OSLC KM adapter. 

 
 
 
 
 
 
 
 
 
 

                                                           
2 https://www.reusecompany.com/knowledge-manager 
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Figure 3: Building blocks of the functional architecture and technology. 

4 Experiment: Exchange and selection of logical and physical 
models 

4.1 Motivation 

An organization [Berglund, 2013] developing a cyber-physical system, a rugged 
computer, is looking for a solution to integrate all tools involved in the development 
lifecycle. Instead of using a complete ALM or PLM suite, they follow a decentralized 
and federated approach where different tool providers can be found. They use a 
requirements management tool (RMT) for gathering and storing stakeholder and 
system requirements. They also have tools for designing logical models (e.g. Papyrus 
and IBM Rhapsody) and physical models (Simulink). The organization is looking for 
the best way to integrate and reuse all the system artefacts that are being continuously 
generated. Sometimes, requirements contain entities that do not appear in the models, 
preventing the possibility of recovering traceability links. Thus, the cost of reusing 
any existing artefact is becoming higher, since it is not possible to completely trace a 
component from its inception to the final release. In conclusion, this organization is 
facing some issues: 

1. Lack of a product breakdown structure (or a metamodel) to drive the 
development lifecycle. 

2. Name mismatches. 
3. Point-to-point and ad-hoc integrations between a client and a tool 

provider. 
4. A plethora of heterogeneous protocols and data models (most of them 

non-standard ones). 
5. Impossibility of reusing artefacts since system artefacts cannot be easily 

discovered. 
6. Lack of a system artefact repository to store and search for system 

artefacts (metadata and contents). 
7. Standalone applications not ready for a collaborative web environment. 
8. Vendor lock-in. 

Due to all these reasons, they are interested in a holistic and standard approach that 
can tackle these issues, easing the development lifecycle and boosting the reuse of 
existing and future artefacts. Since natural language is the most common mean 
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[Valencia-García and García-Sánchez, 2013] of expression, even in the Linked Data 
world [Paredes-Valverde et al., 2016], string queries will be used to retrieve artefacts. 

4.2 Research design 

The validation of the presented approach is conducted using the schema proposed by 
[Juristo and Moreno, 2001], where experimentation is divided into four main 
activities: definition of the objectives of the experimentation, design of the 
experiment, execution of the experiment, and analysis of the results. In this case, two 
different experiments have been conducted to test the retrieving capabilities of: 

1. Exchange and selection of logical models in SysML. Papyrus and IBM 
Rhapsody have been selected as target tools that can manage logical 
models and are expected to provide reuse capabilities. 

2. Exchange and selection of physical models. In this case, Simulink has 
been selected as a tool to create and manage physical system models. 

In both cases, the reuse capabilities of these tools are compared to the proposed 
approach. 

4.2.1 Main research objective 

The following objective was defined for the validation: “To study the effectiveness of 
the proposed solution in finding reusable SysML and Simulink models (i.e. suitable 
for reuse) from a model repository”. 

4.2.2 Detailed Design 

To evaluate the reuse capabilities of the selected tools in comparison to the presented 
approach, the following metrics [Croft et al., 2010] have been selected: 

 Precision: fraction of retrieved models that are relevant to the query.  

 
 

 Recall: fraction of relevant models that are retrieved. 

 
 F1: a combination of precision and recall that measures the accuracy of the 

test. 

 
 

Furthermore, some levels of „goodness” for them are defined based on [Hayes et 
al., 2005]:  

 1) Precision: above 20% it is acceptable, good above 30%, and excellent 
above 50%.  

1548 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...



 2) Recall: above 60% it is acceptable, good above 70%, and excellent above 
80%. 

In the case of the first experiment, a set of 44 SysML models based on existing 
requirements diagrams from two sources [Friedenthal et al., 2014] [OMG, 2016] have 
been loaded in Papyrus and IBM Rhapsody. Morevover, a set of 25 queries, see Table 
3, has been designed to compare and validate the retrieving capabilities of the 
proposed approach. These queries were designed by experts considering functional 
aspects common to several of the models, the components of the models, and the 
terminology of the models. After creating the queries, the relevant items to be 
retrieved were defined allowing us to calculate the performance metrics. 

 

Id Query string 

Q1 System availability 

Q2 Maximum rate of failure 

Q3 Manage Traffic flow 

Q4 System for purify water 

Q5 System using remote control component 

Q6 System use cameras 

Q7 System with an statistical data component 

Q8 System Performance Requirements 

Q9 Requirements of System Usability 

Q10 System with Simulation Component 

Q11 Group Creation 

Q12 System Restrictions Requirements 

Q13 System that use Sensors 

Q14 Gather and Interpret Information Module 

Q15 Adaptive Control 

Q16 Consistency in transaction 

Q17 Manual Control 

Q18 intruders detection 

Q19 Time Validation 

Q20 computer response time 

Q21 System validation cards 

Q22 tasks and scenarios 

Q23 traffic management based in the region 

Q24 semaphores automatic operation 

Q25 Control standard 

Table 3: Queries for retrieving logical models. 
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In the second case, a set of Simulink models available as libraries have been 
selected. 20 queries have been again designed to compare both approaches. 

 
Id Query string 

Q1 A flow between a constant, product,  block sum and a outport 
block. 

Q2 A flow between an inport, product, an a block sum. 

Q3 A flow between an inport,  block sum and integrator. 

Q4 A flow between a subsystem and outport block. 

Q5 A flow between a subsystem and to Workspace block. 

Q6 A flow between a Transport Delay and Subsystem block. 

Q7 A flow between a Integrator block, Transport Delay and 
Subsystem block. 

Q8 A flow between a Inport and constant blocks with a product 
block. 

Q9 A flow between a Inport and constant blocks with a product 
block and the product block with outport block 

Q10 A flow between a Integrator and Subsystem, Add block and 
subsystem and Subsystema with Subsystem 

Q11 A flow between a Integrator and Subsystem, Add block and 
subsystem and Subsystema with Subsystem1 and subsystem2 

Q12 A flow between a Integrator and Subsystem, Add block and 
subsystem and Subsystema with Subsystem1 and subsystem2 
with to Workspace block 

Q13 Model with no flows only inport block, outport block and 
product block 

Q14 Two submodels of A flow between an inport, product, an a 
block sum and outport. 

Q15 Two submodels of A flow between an inport, product, an a 
block sum and outport with two constants 

Q16 A flow between inport and add block, and two inports nodes 
without flow 

Q17 A flow between add bloc and constant with divide block. 

Q18 A flow between divide block tro integrator nodes and tree 
outports block 

Q19 A flow between integrator block and aoutport block and two 
outports block and one add block with no flows 

Q20 A flow between 4 transfer delay with two subsystems. 

Table 4: Queries for retrieving physical models. 

4.3 Results and analysis 

Table 5 and Figure 4 present the results of the first experiment in which it is possible 
to find the next metrics (only good, excellent and perfect results are commented): 
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Query  OSLC KM Papyrus IBM Rhapsody 

P R F1 P R F1 P R F1 

Q1 0.45 0.94 0.61 1.00 0.44 0.61 1.00 0.44 0.61 

Q2 1.00 0.83 0.91 1.00 0.67 0.80 1.00 0.67 0.80 

Q3 0.67 1.00 0.80 0.75 0.38 0.50 0.80 0.50 0.62 

Q4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q5 1.00 0.75 0.86 0.00 0.00 0.00 0.00 0.00 0.00 

Q6 0.36 1.00 0.53 1.00 1.00 1.00 1.00 1.00 1.00 

Q7 1.00 1.00 1.00 1.00 0.56 0.71 1.00 0.56 0.71 

Q8 0.33 1.00 0.50 0.50 1.00 0.67 0.00 0.00 0.00 

Q9 0.38 1.00 0.55 0.75 1.00 0.86 0.75 1.00 0.86 

Q10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q11 0.50 1.00 0.67 0.33 1.00 0.50 0.33 1.00 0.50 

Q12 0.50 1.00 0.67 0.12 1.00 0.22 0.12 1.00 0.22 

Q13 0.36 1.00 0.53 0.12 1.00 0.22 0.14 1.00 0.24 

Q14 1.00 0.73 0.84 0.73 1.00 0.85 0.71 0.91 0.80 

Q15 0.75 1.00 0.86 1.00 0.67 0.80 1.00 0.67 0.80 

Q16 1.00 1.00 1.00 1.00 0.75 0.86 1.00 1.00 1.00 

Q17 1.00 1.00 1.00 1.00 0.75 0.86 1.00 0.75 0.86 

Q18 1.00 1.00 1.00 0.50 1.00 0.67 0.50 1.00 0.67 

Q19 0.70 1.00 0.82 0.88 1.00 0.93 0.88 1.00 0.93 

Q20 1.00 1.00 1.00 0.18 1.00 0.31 0.24 1.00 0.38 

Q21 1.00 1.00 1.00 0.12 1.00 0.22 1.00 1.00 1.00 

Q22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Q23 0.78 1.00 0.88 0.16 1.00 0.27 0.88 1.00 0.93 

Q24 1.00 1.00 1.00 0.50 1.00 0.67 0.50 1.00 0.67 

Q25 0.43 0.75 0.55 1.00 1.00 1.00 1.00 1.00 1.00 

Average 0.77 0.96 0.82 0.67 0.85 0.66 0.71 0.82 0.70 

Table 5: Results of retrieving logical models with OSLC KM, Papyrus and IBM 
Rhapsody. 

 The precision and recall are at least good for all the queries, and excellent on 
average. 

 The precision is good for 8 queries (32%), and excellent for 17 (68%) being 
perfect (1,00) for 13 queries (52%). 

 The recall is good for 3 queries (12%) and excellent for 22 (88%) being 
perfect (1,00) for 20 queries (80%). 
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 F1 is perfect (1,00) for 10 queries (40%). 
On the other hand, Table 6 and Figure 5 present the results of the second 

experiment comparing the Simulink capabilities for retrieving models and the 
presented approach. An analysis of the results shows that: 

 The precision and recall are at least good for all the queries, and excellent on 
average. 

 The precision is good for 3 queries (12%), and excellent for 14 (56%) being 
perfect (1,00) for 6 queries (25%). 

 The recall is good for 18 queries (72%) and excellent for 16 (64%) being 
perfect (1,00) for 11 queries (44%). 

 F1 is perfect (1,00) for 3 queries (40%). 
 

Query OSLC KM Simulink 

P R F1 P R F1 

Q1 0.44 0.41 0.42 0.64 0.94 0.76 

Q2 0.58 0.65 0.61 0.64 0.94 0.76 

Q3 0.53 1.00 0.69 1.00 0.90 0.95 

Q4 1.00 1.00 1.00 0.00 0.00 0.00 

Q5 1.00 1.00 0.00 0.00 0.00 0.00 

Q6 1.00 1.00 1.00 0.00 0.00 0.00 

Q7 0.10 1.00 0.18 0.00 0.00 0.00 

Q8 1.00 0.44 0.61 1.00 0.69 0.81 

Q9 0.13 1.00 0.22 0.00 0.00 0.00 

Q10 0.67 1.00 0.80 0.24 1.00 0.39 

Q11 0.40 1.00 0.57 0.16 1.00 0.28 

Q12 0.33 0.75 0.46 0.16 1.00 0.28 

Q13 1.00 0.26 0.42 0.00 0.00 0.00 

Q14 0.90 0.56 0.69 0.80 0.25 0.38 

Q15 0.90 0.56 0.69 0.67 1.00 0.80 

Q16 0.17 0.25 0.20 0.32 1.00 0.48 

Q17 0.58 0.85 0.69 0.31 0.31 0.31 

Q18 0.90 1.00 0.95 0.25 0.56 0.34 

Q19 0.90 1.00 0.95 0.28 0.56 0.37 

Q20 1.00 1.00 1.00 0.00 0.00 0.00 

Average 0.68 0.79 0.61 0.32 0.51 0.35 

Table 6: Results of retrieving physical models with OSLC KM and Simulink. 

In both experiments, the presented approach of transforming existing system 
artefacts into an OSLC data shape to be indexed in the system artefact repository is a 
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valuable solution to make logical and physical models reuse effective. The level of 
precision and recall has been excellent for most of the queries. Results also suggest 
that a user would be able to find almost all the models that could be reused for a given 
purpose. Here, it is necessary to remark, that is more important to retrieve all potential 
reusable models than retrieving models that are not reusable. The F1 score is also 
promising, suggesting that the presented approach can be used to effectively 
implement a reuse strategy. 

 

 

Figure 4: Graphical view of the averaged values of precision, recall and F1 when 
retrieving logical models. 

 

Figure 5: Graphical view of the averaged values of precision, recall and F1 when 
retrieving physical models. 

On the other hand, the development of a Linked Data-based architecture 
following the guidelines of OSLC has generated several positive effects. The issues 
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that the organization under study was facing are now mitigated, see Table 7. This is 
mainly due to the use of standards and a common data shape for data management.  

4.4 Research limitations 

Some key limitations of the presented work must be outlined. The first one depends 
on the number and type of services and defined resources. This experiment has been 
conducted in a closed world and, more specifically, two different types of artefacts 
and three tools have been validated.  

A new OSLC domain, OSLC KM, has been defined and implemented for 
knowledge management. This domain takes inspiration from existing W3C 
recommendations so that, in a broader and real scope, this specification could change 
to meet real industry needs.  

In the same manner, new tool providers and domains are expected to be 
integrated in this case study to ensure the representation capabilities of the OSLC KM 
specification. However, this work presents an industry-oriented case study based on a 
real environment for software and knowledge reuse.  

Building on the previous comment, we cannot either figure out the internal 
budget, methodologies, tools, domain vocabularies, experience and background of 
organizations. We merely observe and re-use existing public and on-line knowledge 
sources to provide a demonstrative experiment of an OSLC-based architecture for 
system artefact selection. 

On the other hand, it seems clear that after a long time, software and system 
artefact reuse is an active research area in which a good number of challenges and 
open issues can be found. The emerging application of the OSLC principles to enable 
interoperability among tools in the development lifecycle is providing a new 
opportunity for enhancing reuse techniques. 

RDF has been demonstrated to be a very good candidate as an input/output data 
model. One of the main and well-known drawbacks of RDF is that just a few tools 
natively work in RDF. However, other languages such as RDFS or OWL, designed 
for representing logical statements, lack of the proper constructors to represent any 
piece of knowledge based on other paradigms. Although, it is possible to define a 
RDFS or OWL vocabulary for a domain, the reality is that most of times domain 
experts do not really need an underlying formal logic but a flexible language for 
representing concepts and relationships. In this sense, the use of OSLC KM as a 
language to represent metadata and contents of any artefact has been demonstrated to 
be flexible and practical (including a native tool support). 

In the context of data validation, the related work section has outlined the 
increasing interest of checking data consistency and integrity of RDF graphs. In a 
reuse environment, this approach can be applied to matchmaking system artefacts. 

From a technical point of view, the deployment of the tools and OSLC adapters 
has involved a major technical challenge, due to the need of configuration for every 
tool vendor and adapter. That is why, we consider that new trends in micro services 
should be applied to decrease the time to deploy and test. Furthermore, an OSLC-
based architecture for systematic reuse also requires a new mindset to move existing 
applications to a web environment in which context issues regarding authorization or 
authentication are completely different. 
 

1554 Alvarez-Rodriguez J.M., Mendieta R., de la Vara J.L., Fraga A., Llorens J. ...



 

Id Issue Description Mitigation 

1 Lack of a product 
breakdown structure (PBS) 
to drive the development 
lifecycle. 

The possibility of defining and sharing a 
PBS under the OSLC initiative enables 
practitioners the management of complex 
processes in the development lifecycle. 

2 Name mismatches. A common domain vocabulary can now be 
shared and reused in other tools. 

3 Point-to-point and ad-hoc 
integrations between a client 
and a tool provider. 

This is a common side-effect of reusing 
standards and software knowledge 
repository. Consumers can ask the 
repository for an artefact, and once the 
metadata (e.g. information access) and 
contents are gathered, they can directly 
request data to the real provider. 

4 A plethora of heterogeneous 
protocols and data models 
(most of them non-standard 
ones). 

Although each tool can have its internal 
data model, there is a unified and shared 
input/output interface based on RDF. 

5 Impossibility of reusing 
artefacts since traces cannot 
be recovered. 

Having the possibility of representing any 
artefact under the same data model can help 
to recover traces. 

6 Lack of a software 
knowledge repository to 
store and search for artefacts 
(metadata and contents). 

Any piece of software or knowledge can 
now be represented using concepts and 
relationships. 

7 Poor documentation 
mechanisms.  
Lack of graphical view of 
artefact dependencies. 

As a side-effect, the implementation of the 
OSLC KM specification on top the System 
Knowledge Manager provides also a 
mechanism for visualizing artefacts or even 
generating documentation templates.  

8 Standalone applications not 
ready for a collaborative 
web environment. 

The use of services in a federated 
architecture enables practitioners the 
deployment of applications in different 
locations making the development lifecycle 
more flexible and scalable. On the contrary, 
performance, security and privacy issues 
can emerge avoiding the proper 
development a collaborative environment 
for software development. 

9 Vendor lock-in. The use of a standard layer for exchanging 
data and information avoids a complete 
vendor lock-in. It is possible to easily 
change the provider of a service if it also 
implements that OSLC specification. 

Table 7: Issues in the case study and mitigating factors. 
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On the other hand, a federated and distributed environment of services also 
implies potential issues regarding security, privacy and performance. That is why this 
new paradigm must be carefully managed to avoid well-known problems such as 
information loss, bottlenecks or denegation of service attacks to name just a few. 

Finally, the OSLC initiative is continuously releasing and updating specifications, 
some of them have been already promoted to OASIS standards. This also means that 
the industry support and commitment behind of OSLC is strongly encouraging 
interoperability through the creation and use of standards. In this sense, all software 
libraries and results of the present work are publicly available in a Github repository3. 

5 Conclusions and Future Work 

The application of the Linked Data principles through a set of OSLC specifications is 
gaining momentum in the Software and Systems Engineering disciplines. 
Interoperability among tools is a key enabler for boosting collaboration in the 
development of complex cyber physical systems. The concept of continuous 
engineering is becoming a reality since it is possible to integrate data and services 
under common protocols and data models. In this context, reuse is a key factor that 
can ease teams to develop systems faster and safer. However, software is not 
anymore, a piece of logical instructions but any kind of knowledge and organizational 
asset. That is why a proper environment for system artefact reuse should provide the 
appropriate mechanisms for representing, storing, indexing and retrieving any kind of 
software artefact. However, the implicit design of OSLC (mainly focused in the 
interoperability between two agents) and the lack of tools to provide a set of core 
services such as naming, indexing, retrieval, quality assessment or visualization, are 
preventing the creation of a real collaborative environment to boost the concept of 
continuous engineering.  

That is why we present here a data shape and a retrieving service for 
implementing the selection process of a reuse strategy overcoming the existing issues 
regarding knowledge representation and exploitation. This approach is based on a 
federated and distributed architecture of services that implies a new mindset shifting 
the traditional paradigm of software product lines to a flexible and interoperable 
architecture.   

Thus, a holistic and standard view of the development lifecycle can be created by 
easy re-use of existing data, information and knowledge. Future work includes the full 
implementation of the architecture and the refinement of the OSLC KM specification 
to fulfil the needs of the development of software-based critical systems. Finally, we 
also plan to report this work to the OSLC community and to make studies on the 
return of investment. 
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