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Abstract. Visual cryptography (VC) encodes an image into noise-like shares, which can be 

stacked to reveal a reduced quality version of the original.  The problem with encrypting 

colour images is that they must undergo heavy pre-processing to reduce them to binary, 

entailing significant quality loss.  This paper proposes VC that works directly on intermediate 

grayscale values per colour channel and demonstrates real-valued basis matrices for this 

purpose.  The resulting stacked shares produce a clearer reconstruction than in binary VC, and 

to the best of the authors’ knowledge, is the first method posing no restrictions on colour 

values while maintaining the ability to decrypt with human vision.  Grayscale and colour 

images of differing entropies are encrypted using fuzzy OR and XOR, and their PSNR and 

structural similarities are compared with binary VC to demonstrate improved quality.  It is 

compared with previous research and its advantages highlighted, notably in high quality 

reconstructions with minimal processing. 

 

Keywords: visual cryptography; secret sharing; cryptanalysis; colour images; image 

processing 

Categories: E.3, H.3.5, I.4 

1 Introduction 

Conventional cryptography relies on key distribution to valid participants, but two 

versions of a new cryptographic paradigm were created in 1987 by Kafri and Keren 

[Kafri, 87] and 1994 by Naor and Shamir [Naor, 94], that do not rely on such public 

and private keys.  These methods, respectively random grids and visual cryptography 

(VC), are types of visual secret sharing (VSS), which encodes a secret binary image 

into a set of shadow images, or shares, such that stacking a qualified subset of them 

reveals a reduced quality version of the original secret.  These shares form an access 

structure, containing qualified and forbidden combinations. 

Shadow images comprise random sequences of black and white (or transparent) 

pixels.  As such, they are indistiguishable from random noise, making it impossible 
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for forbidden subsets to decode the secret.  Therefore, not only does VSS eliminate 

key distribution, but it exhibits perfect information theoretic security.  The work of 

Ateniese, et al. [Ateniese, 96:2] proposed methods, such as cumulative array, for 

constructing schemes for any access structure.  However, they yielded far from 

optimal reconstructed image quality (i.e. contrast), leading to years of research into 

this problem, such as that of [Arumugam, 12], who improved the contrast of a 

particular type of general access structure, and [Liu, 10], who built large access 

structures from smaller ones. 

The major drawback is that only black and white images can be directly encoded.  

Grayscale and colour images must first undergo pre-processing (in the form of error-

diffusion and colour decomposion, as in [Duraisamy, 13]), to reduce them to binary 

form.  Even the best error-diffusion algorithms, such as Floyd-Steinberg [Floyd, 76] 

produce lossy images, leaking information from the image.  When the shares of a VC 

scheme are combined in the decryption phase, the result is a highly lossy version of 

the original secret image, therefore conventional (binary) visual cryptography entails 

two stages of quality loss.  Although much prior work exists in colour VC, the range 

of colours is limited either by definition or by large resulting pixel expansions. 

In this paper, a novel VC method, real-valued visual cryptography (RVC), is 

presentated that encodes grayscale and colour values directly into the VC scheme, 

eliminating quality loss emerging from error-diffusion and bringing about clearer 

reconstructions than previously achieved using methods that permit decryption using 

both human vision or computation.  The latter entails low computational cost fuzzy, 

as opposed to binary, operations for decrypting the secret, and to the best of the 

authors’ knowledge, is the first VSS proposal that removes all colour restrictions and 

error-diffusion requirements in such a cryptographic method.  Furthermore, pixel 

exansions are improved versus prior methods.  For example, a pixel expansion of four 

is demonstrated in Section 5 for a 10-colour scheme.  Existing VSS methodologies 

are explored and redefined to relax requirements to real-valued (i.e. grayscale) input 

and output.  The contributions presented herein are: 

 

• A new version of VC – RVC – that eliminates image pre-processing 

requirements while maintaining the theoretical ability to physically stack 

shares for visual decryption. 

• Redefinition of contrast calculation. 

• Fuzzy decryption operations. 

• A simulated annealing method or the construction of RVC schemes. 

The remainder of the paper is structured as follows:  Section 3 provides the 

background to Naor-Shamir VC.  Section 4.1 formulates the mapping of RGB values 

onto basis matrix values. In Section 4.2, contrast calculation is redefined for real-

valued schemes, and Section 4.3 likewise redefines the operations required for 

decryption.  In Section 4.4, RVC scheme construction is described, and Section 5 

gives the results of encryption and decryption for grayscale and colour images of 

various entropies and colour distributions.  There is also a comparative analysis with 

various prior works in the field.  Finally, Section 6 concludes the study and proposes 
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further research directions, notably the new mathematical challenges that this 

innovation presents. 

2 Related Work 

2.1 Binary Visual Secret Sharing 

Although Naor and Shamir’s original work on VC remains a popular VSS 

methodology, they were mindful of the contrast loss problem using the OR operation 

for reconstruction and wrote a follow-up paper proposing a “Cover semi-group” 

[Naor, 96].   However, they conceded the impossibility of building any (k, n) access 

structures for 3k n≥ ≥ , thus limiting its applicability.  They also expressed concern 

over its inability to conceal colour images. 

In the same year, [Ateniese, 96:2] proposed the cumulative array method for 

constructing VC basis matrices (which are used to encode secret pixels into shares) 

from ( , )
M M

Z Z  access structures, where 
M

Z  is the set of maximal forbidden subsets 

of participants.  Although it is easily applicable to any required access structure, the 

resulting pixel expansion, hence contrast (given their mutual inverse proportionality) 

is far from optimal.  For instance, a (3, 6)-VC scheme (VCS) produces pixel 

expansion 25.  However, it is shown in [Hofmeister, 00] that the optimal value is 10. 

In 2004, [Yang, 04] devised the first VC method without pixel expansion 

applicable to any access structure.  The method relies on probabilistically setting 

share pixels to black or white, such that the mean count of black-representative pixels 

in the reconstruction is higher than for white-representative pixels.  This probabilistic 

VC (PVC) is distinguished from conventional, or deterministic VC (DVC), in its use 

of random numbers to select individual share pixel values.  Whereas the 

reconstruction contrasts of DVC can be easily and precisely calculated (see equation 

(2)), those in PVC are not.  Moreover, constrasts resulting from the original PVC 

work were lower than for DVC.  However, more recent work, such as that of [Wang, 

11], has considerably improved it.  Indeed, their work introduces the concept of a 

user-defined pixel expansion. 

2.2 Colour Visual Secret Sharing 

The first to study colour VSS was [Verheul, 97], who considered a secret pixel of 

colour 
i

c , where the permitted number of colours is c, and 0 1i c≤ ≤ − .  They 

considered the result of stacking coloured share pixels as a “generalized colour”, 

where the presence of a black pixel results in a black reconstruction, and all 

concurrent pixels of the same colour produce that colour in the reconstruction.  

Additionally, they provide a construction method resulting in c basis matrices, each 

element of which is an integer in {0,..., 1}c − . 

A method with improved contrast was devised by [Blundo, 01], who used c-colour 

(2, n) and (n, n) schemes, with the requirement (proof given in their paper) that c n> .  

They provide two algorithms, one yielding optimal pixel expansion with maximal 

contrast, the other yielding a trade-off between these metrics.  Pixel expansions in 

those works are still high, and image preprocessing is still required.  Interestingly, an 

earlier work [Koga, 98] devised a simple method, again using c colours, using a 
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colour lattice comprising additive and subtractive models.  They construct basis 

matrices with pixel expansion 1n
m ck

−=  for (n, n)-VCS, i.e. the conventional optimal 

pixel expansion multiplied by the number of colours.  They achieve this by 

concatenating combinations of black- and white-representative conventional basis 

matrices and substituting white share pixels (i.e., zeros) with the required colours.  

However, their method is limited to (n, n)-VCS. 

In [Adhikari, 05], the ratio of correctly reconstructed pixels was increased 

compared to [Koga, 98]. The method entailed either one of two colour sets, {C, M, Y} 

or {C, M, Y, R, G, B}, each colour requiring its own basis matrix.  A further c-colour 

methods are provided by [Cimato, 05], followed up by [Cimato, 07], who demonstrate 

3-colour schemes and compute a lower pixel expansion bound of 1

2 1
n

c
− − .  

Although such methods use mutli-value basis matrices, the preferred technique 

amongst researchers, such as [Chen, 11] and [Wu, 13] is a combination of halftoning 

and colour decomposition.  Here, a colour image is decomposed into its three base 

colours (either additive or subtractive), and each of them is treated as an independent 

grayscale image.  The gray levels are diffused into binary form using an error-

diffusion algorithm such as Floyd-Steinberg.  For example, [Hou, 03] decomposed 

colour pixels to their C, M and Y components before encoding using 2 2×  colour 

blocks comprising the subtractive colours, white and black. 

Colour decomposition is applicable to any type of VSS.  The shares are constructed 

by recomposing the colours, and [Wu, 13] produced arguably the best colour image 

reconstruction using this and void-and-cluster in their recent work.  However, 

information is inevitably lost in the necessary reduction to binary values.  This is 

particularly deleterious when sharing high-entropy images, as further information is 

lost in the VSS encoding. 

More recently, [Christy, 15] used a stochastic method, in the form of a feed-

forward artificial neuron network, to generate extended VC schemes.  In such 

schemes, the shares themselves take on the appearance of cover images, detracting 

attention from hackers who might be curious about the meaning and purpose of purely 

noise-like shares.  Although they achieved a little higher than 41 peak-to-signal noise-

ratio, they do preprocess the image to reduce each channel to binary form. 

Interestingly, [Sugawari, 15] also recently developed a new colour VC method 

without the need for preprocessing, but it does not involve simple transparent shares 

or computational stacking, but high-order retarder films.  Conventional retarder films, 

commonly used to bring about three-dimensional cinematography, rotate polarized 

light by fixed angles.  However [Sugawari, 15] propose arbitrary angle rotation to 

create colour VC shares. 

All of the aforementioned research falls under the category of visual secret sharing, 

as decryption can be carried out visually and computationally.  Many purely 

computational methods have also been developed, such as [Lukac, 05], who encypted 

colour pixel values as numeric data, requiring conversion to binary and simple binary 

operations to combine shares.  Although this and similar methods produce lossless 

reconstruction, they are examples of visual secret sharing, due to lack of ability to 

visually decode from stacking shares.. 
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3 Naor-Shamir Visual Cryptography 

A secret binary image, I , is encrypted  into set H of n shadow images,  only 

qualified subsets of which can be printed onto transparencies and stacked to reveal  

'I , a lossy reconstruction of the secret.  Subsets comprise superset ( ),qual forbΓ = Γ Γ , 

where Γ  is the access structure defining qualified and forbidden subsets, and  

qual forbΓ Γ∩ = ∅ .  For simplicity, { : , }forb qualX X XΓ = ∈Γ ∉Γ .  Access structures 

can be threshold or general.  The latter explicity defines each X ∈Γ , whereas the 

former assumes { : }
qual

X X k= ∀ ≥Γ , producing threshold (k, n)-VCS. 

The procedure, given below, takes two collections of binary matrices, 
0 1,C C , 

forming the basis of a scheme.  These are therefore referred to as basis matrices.  If 

, {0,1}S C ii i∈ ∈ , then all possible columns permutations of 
iS  comprise the 

respective collection.  In this paper, the collections are ignored in favour of referring 

directly to the basis matrices 
iS , with ~iS X  denoting that matrix X is equal to 

iS  up 

to column permutation. 

Each such matrix has dimensions n m× , where m is the pixel expansion.  To 

encode a secret pixel, one member of 0C  or 
1C  if selected if it is a white, resp. black, 

pixel.  To encode shadow 
j

H , the jth row of 
iS  is selected and converted into a 

rectangular matrix of “subpixels” whose dimensions are as close to each other as 

possible (ideally a square matrix, if m is a square number, thus retaining aspect ratio).  

Each secret pixel is replaced by these subpixel blocks to form shadow images, as in 

Figure 1.  Given that stacking is equivalent to binary OR, 
1 ... n' = ⊗ ⊗I H H .  Figure 1 

illustrates a simple (2, 2)-VCS.   

 

Figure 1:  Encryption and decryption of a (2, 2)-VCS 

Given contrast reduction and pixel expansion, a major challenge is the design of 

basis matrices that optimize these metrics.  A classical way to contruct them is via 

accumulative arrays [Ateniese, 96:2].  Although it is efficient and accurate, the CA 
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method rarely results in optimal schemes, because impracticle pixel expansions arise 

with large k and n. 

4 Real-valued Visual Secret Sharing 

In this section, RVC scheme construction is demonstrated, along with the pre-

requisitives for encryption, decryption and calculation of contrast.  In 4.1, a simple 

equation is presented for converting grayscale or RGB values to real values.  In 4.2, 

the standard contrast calculation of binary VC is generalised for RVC.  As binary 

image decryption relies on binary operations for decryption, these are generalised to 

fuzzy operations in 4.3.  Finally, in 4.4, the RVC methodology is introduced. 

4.1 Mapping Real Values to Grayscale Colours 

For I  to be a valid input into a VSS scheme, it must be binary.  Error-diffusion 

methods can be used on grayscale (and colour) images, but signifant information is 

lost, as evidenced in Figure 2, below.  Furthermore, the result is a set of binary shares 

(i.e., each colour channel is binary), making it diffult to conceal additional 

“subliminal” messages in them using steganography. 

A.  B.   C.  

Figure 2:  A: Secret image, B: Halftoned image (Floyd-Steinberg), C: Final VSS 

decryption 

The proposed real-valued VC (RVC), avoids this information and quality loss by 

taking fractional colour values directly as input.  Here, the grayscale secret image is a 

matrix of real values from 0 to 1 inclusive.  If an RGB model is used with values 

ranging from 0 to 255, the pixel at position (i, j) of colour channel h is represented as, 

 
pixel grayscale value

1
255

ijh = −I        (1) 

where the pixel grayscale value is in 0,..., 255 , i.e. the 8-bit colour value of the 

pixel in the respective channel.  Given that a colour image comprises three combined 

grayscale images (of resp. red, green and blue hues), each channel can be taken as a 

separate grayscale image. 

4.2 Contrast 

The formulae given (in, for example [Ateniese, 96:1]; [Chen, 11]) to calculate 

reconstructed image contrast in VSS schemes assume binary pixel values, but these 

must be generalizes to real values.  Relative contrast, α , in binary VC is defined as 
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the mean difference between black- and white-representative pixels (or subpixel 

matrices) in the reconstruction.  In VC, if 
qual

X ∈Γ  and 0

X
S  (resp. 1

X
S ) is the vector 

resulting from the OR of rows 
1 2

, ,X X etc. of 
0S  (resp. 

1S ), then, 

0 1( ) ( )X XH S H S

m
α

−
= ,      (2) 

where H(.) denotes Hamming weight. 

An RVC scheme requires basis matrices , {1, ..., }iS i c= , where c is the number of 

colours.  (2) can thus be generalizes as, 
1

1
1

( ) ( )
c

X X
i i

i

H S H S

m
α

−

+
=
∑ −

=        (3) 

4.3 Operations for Decryption 

4.3.1 Fuzzy OR 

RVC needs fuzzy equivalents of OR and XOR, respectively denoted fuz⊗  and fuz⊕ .  

The algorithms given in [Zadeh, 65] and other works on fuzzy logic are insuffifient.  

For example, the classical fuzzy-OR definition simply takes the maximum value.  

However, Figure 3 illustrates the result of stacking two regions of colour value 0.5.  

The result of classical fuzzy-OR is the maximum, which is 0.5, but the stack is clearly 

darker than A or B.  In fact, its grayscale value is 0.75 according to equation (1). 

 

Figure 3:  Stack of colours A and B (here A=B=0.5) to produce colour C 

Based on this, equation (4) is given for the fuzzy OR of shadow image subpixels 

1[ , ]x yH  and 
2 [ , ]x yH : 

1 2 1 21 (1 )(1 ), [ , ]fuz

i ib b b b b x y⊗ = − − − = H     (4) 

Generalised for k shares is the iterative (5): 

 

( )1 1

1

... 1 (1 )(1 ) ,

( ) 1 (1 )(1 ),

, 1,..., 1, [ , ]

fuz fuz

k i i

j j j

i i

b b f b b

f b b b

i j k b x y

+

+

⊗ ⊗ = − − −

= − − −

= − = H

  (5) 

To prove the correctness of equations (4) and (5), let us regard a pixel of colour 

value ϕ  (e.g. 0.3) containing a ratio of ( :1 )ϕ ϕ−  black to white pigments.  Clearly, 

stacking pigment values is equivalent to the binary OR operation on those values, 

since individual pigments have values 0 or 1 only (that is, a printer ink of a given 
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colour is either applied, or it is not).  Superimposing a second pixel of value λ  (of 

pigment ratio ( :1 )λ λ−  ) onto the first, there are four possibilities, summarised in 

Table 1. 
 

Pigment of ϕ  Pigment of λ  Probability 

0 0 (1 )(1 )ϕ λ− −  

0 1 (1 )ϕ λ−  

1 0 (1 )ϕ λ−  

1 1 ϕλ  

Table 1:  Pixel pigment superimposiiton probabilities 

The latter three are relevant, since they are the stacks resulting in an existant 

pigment.  Summing these gives (1 ) (1 )ϕ λ ϕ λ ϕλ− + − +  = ϕ λ ϕλ+ − =

1 (1 )(1 )ϕ λ− − − , and equation (4) clearly follows from this.  (5) is simply an iterative 

version of (4), taking each successive superimposition as the new ϕ  pigment, 

therefore its correctness follows. 

4.3.2 Fuzzy XOR 

An advantage of VSS is the ability to decrypt without computation, by physically 

stacking shares.  However, the information theoretic security of VSS is also available 

while using computation.  There has been much research into applications of 

computational decryption, such as [Wang, 13], who use XOR to losslessly decrypt 

multiple images from one random grid scheme. 

A definition of 1 2

fuzb b⊕  is thus needed.  [Hernandez, 11] describes a “least 

sensitive”  interpretation, based on the need for a definition that, given 3 1 2

fuzb b b= ⊕ , 

1 2 3( ) ( )fuzb b b+∆ ⊕ +∆ ≈  for small ∆ .  Here, this definition is denoted subscript LS.  

They prove that such a definition can be expressed as: 

( )1 2 1 2 1 2min max( , ),max(1 )(1 ) , [ , ]
fuz

LS i ib b b b b b b x y⊕ = − − = H   (6) 

4.4 RVC Schemes 

Two additional parameters are introduced in an RVC scheme (RVCS), basis matrix 

count ( µ ) and colour value count (κ ).  These are part of the definition of a threshold 

access ( , , , )k n RVCSµ κ −  based on n m×  matrices , {1, 2, ..., }iS i µ=  with pixel 

expansion m.  A Naor-Shamir VCS is seen as a special case in which 2µ κ= = .  

General access structures (see [Ateniese, 96:2]), are denoted ( , , ) RVCSµ κΓ − , where 

{ , }qual forbΓ = Γ Γ  is the access structure comprising all explicity defined qualified and 

forbidden share subsets. 
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An RVCS therefore has µ  basis matrices, where
iS encodes mapped grayscale 

value 
1

1

i

µ
−
−

.  For instance, in a 3-coloured scheme, the mapped values would be 0, 

0.5 and 1, each encoded by a basis matrix.  Permitted matrix element values are  

1
, {1,2,..., }

1

i
i κ

κ
−

∈
−

.  An example of a valid a (3, 3, 3, 3)-RVCS basis is, 

 
1 2 3

.5 1 .5 0 1 0 .5 .5 0 1 .5 .5

~ 0 0 1 0 , ~ 0 1 0 0 , ~ 0 1 0 0

.5 1 1 0 1 .5 0 1 1 0 .5 1

S S S

     
     
     
          

 

 

According to [Kafri, 87], the mean contrast for minimal qualified subsets (i.e. k=2) 

is 0.25 in this example.  This is also the contrast resulting from stacking all three 

shares.  In this case, µ κ= , i.e. the number of possible colours is equal to the number 

of basis matrices, but this need not be true.  κ  is chosen based on the number of 

grayscale values each basis matrix element can potentially take, whereas higher 

values of µ are chosen to create a finer grain encoding of colour ranges.  In practice, 

its maximum value is 256, wherein each RGB colour value in 0,…,255 has its own 

respective matrix, but experiments have shown that such schemes are difficult to 

derive. 

The deterministic construction of these matrices remains a challenge in RVC.  

Note in [Ateniese, 96:2] the need to construct basis  � �
0 1

{ , }S S  for an (n, n)-VCS.  This 

is, as discussed in Section 4, simple for binary encoding, but not clear for real-valued 

encoding. 

Simulated annealing is therefore proposed to stochastically derive RVC basis 

matrices for required parameters.  However, for small k, n and Γ , a brute-force 

method is applicable, whereby basis matrices of decreasing cost are reported. 

A candidate solution, CS, is generated according to, 

( 1) (0,1)]
~

1

mn
rand

CS

µκ
κ

− 
 

− 
      (7) 

where ~  indicates vector permutation and each sequential m-sized sub-vector forms 

the next respective row of , {1, ..., }iS i µ= .  Important to note is that row , 1,...,j j n=  

 of all basis matrices in the candidate are random column permutations of each other, 

which is crucial to maintain security, as discussed in Section 5.4. 

The objective function is given in Algorithm 1.  Although it is efficient, having at 

most 2( )O n  complexity, when executed in a heuristic, the run time depends hugely 

on 
n

k

 
 
 

 and min qualΓ .  If the latter is 2, a valid basis is normally found within 30 

seconds on a personal computer.  This is sufficient for all graph access structures. 

 

Algorithm 1:  Objective Function for Stochastic RVC Basis Generator 

Input:  CS, qualΓ and preferred participant subset, pref qualΓ ∈Γ  
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Output:  , {1, ..., }iS i µ= , costValue 

Procedure: 

Extract , {1, ..., }iS i µ=  from CS 

rewardConst ← reward constant, punishConst ← punishment constant 

( ), {1,..., }pref

i i
H S iβ µΓ← =  

Put 
iβ  into ascending order and re-order the basis matrices  according to 

iβ . 

For each qualY ∈Γ , do, 

 α ← contrast of stack Y according to (5) 

 *costValue costValue rewardConst α← +  

End For 

For each forbY ∈Γ , do, 

 α ← contrast of stack Y according to equation (5) 

 *costValue costValue rewardConst α← −  

End For 

 

In conventional VC, the ith row of both basis matrices must have the same 

Hamming weight.  In RVC, they are must be equal up to column permutation (as 

detailed in Section 6.4).  That is, 

1[ ] ~ [ ], {1, ..., }, {1,..., }i iS j S j i j nη+ = = .     (8) 

Any basis not exhibiting this property is rejected in the evaluation phase, as it is 

not secure.  Indeed, this guarantees that individual shares cannot leak the secret and 

guarantees perfect security in (2, n) schemes, as the only forbidden subsets are the 

individual shares themselves. 
The annealer additionally requires a nearest neighbor and acceptance probability 

algorithm, as used in the SA architecture in Figure 5.  Both algorithms follow: 

 

Algorithm 2:  Nearest Neighbour 

Input:  
currCS CS= , m, n, ,µ κ  

Output:  
newCS  

Procedure: 

Extract 1
,...,S Sµ  from 

currCS  

1 ({1,..., })r rand µ←  /RANDOM MATRIX 

2 ({1, ..., })r rand n←  //RANDOM ROW OF MATRIX 

3 ({1, ..., })r rand m←  //RANDOM SUBPIXEL IN ROW 

4 ({ 1, 1})r rand← − +  //RANDOM DIRECTION 

({" "," "," "})method rand alter shift permutate←  
 

If method = “alter”, then, 

1 2 3[ ][ ]p S r r←  , 4

1

r
q p

κ
← +

−
 

If q > 1 or q < 0, then 
4 4r r← − ,  

End If 
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4

1

r
p p

κ
′ ← +

−
 and replace first instance of p with p'  in all 

2[ ], 1, ...,iS r i µ=  

Else If method = “shift”, then, 

If 
4 1r = − , then, 

1 12 2[ ] [ ] 1r rS r S r← �   //LEFT SHIFT OF ELEMENTS 

Else If 
4 1r = + , then, 

1 12 2[ ] [ ] 1r rS r S r← �   //RIGHT SHIFT OF ELEMENTS 

End If 

Else If method = “permutate”, then, 

Randomly permutate  
1 2[ ]rS r  

End If 

 
Hence a neighbor is selected by either altering the same pixel value in the same 

row of all matrices, shifting the elements of one matrix row by one position, or 

randomly permutating one matrix row.  Crucially, each method maintains the relation 

between all matrices that all rows , 1,...,j j n=  are equal up to permutation. 

 

Algorithm 3:  Acceptance Probability 

Input:  , ,curr newE E T  

Output:  P 
Procedure: 

If 
new currE E> , then, 1P ←  

Else, 
curr newE E

TP e

−

←  

End If 

 

Finally, Algorithm 4 describes the use of a derived set of RVC basis matrices to 
encode a secret image into shares. 

 

Algorithm 4:  Encoding a Secret Image 

Input:  , , 1, ...,iS i µ=I  

Output:  , 1, ...,i i n=H  

Procedure: 

1
, 1,...,

1

i
i µ

µ
 −

= 


Λ
−

←  

For each pixel at position x,y in I , do, 
[ , ]s x y← I  

{ : min( )}i ii i s s← −Λ = −Λ  

iB S←  

For 1,...,i n← , do, 

[ ]V B i←  

M V←  reshaped  to a p q×  matrix, where p q≈  

Place subpixel block M at position x,y in 
iH  
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End For 

End For 
 

Crucially, a common problem in binary VC is the reversal of colours in the 

reconstruction (producing a negative image).  This is exacerbated in RVC, resulting in 

(seemingly) unpredictable permuations of reconstructed grayscale values.  It is for 

this reason that the collection of RVC basis matrices must be reordered to optimize 

for the visual quality of a “preferred” share stack, pref
Γ .  The simulated annealing 

algorithm is illustrated in Figure 5.  Given the superior quality using XOR,  
fuz

LS
⊕  is 

defined using equation (6) to improve the contrast of the decoded secret. 

Algorithm 1 was applied to evolve  the (2, 3, 10, 255)-RVCS below (each element 

rounded to two decimal places), with m=4, producing the shadow images in Figure 4.  
 

1

0.99 0.59 0.01 0.76

~ 0.99 0.03 0.06 0.39 ,

0.85 0.45 0.03 0.67

S

 
 
 
  

2

0.59 0.01 0.99 0.76

~ 0.39 0.03 0.99 0.06 ,

0.85 0.03 0.45 0.67

S

 
 
 
  

3

0.59 0.76 0.01 0.99

~ 0.39 0.06 0.03 0.99 ,

0.03 0.67 0.45 0.85

S

 
 
 
  

 

4

0.01 0.59 0.76 0.99

~ 0.06 0.39 0.03 0.99 ,

0.45 0.67 0.03 0.85

S

 
 
 
  

5

0.76 0.99 0.59 0.01

~ 0.06 0.99 0.03 0.39 ,

0.45 0.67 0.03 0.85

S

 
 
 
  

6

0.59 0.01 0.76 0.99

~ 0.99 0.39 0.06 0.03 ,

0.85 0.45 0.67 0.03

S

 
 
 
  

  

7

0.59 0.01 0.99 0.76

~ 0.06 0.99 0.03 0.39 ,

0.45 0.85 0.67 0.03

S

 
 
 
  

8

0.59 0.01 0.99 0.76

~ 0.06 0.03 0.39 0.99 ,

0.67 0.85 0.45 0.03

S

 
 
 
  

9

0.76 0.01 0.59 0.99

~ 0.03 0.39 0.99 0.06 ,

0.67 0.85 0.45 0.03

S

 
 
 
  

 

10

0.76 0.01 0.99 0.59

~ 0.03 0.99 0.39 0.06

0.85 0.03 0.45 0.67

S

 
 
 
  

 

 

A.   B.   C.  D.   

E.  F.  G.  H.   

I.  J.  K.  

Figure 4: A-C:  Share 1 to 3. D-G:  Fuzzy-OR stacks of share subsets (1,2), (1,3), 

(2,3), (1,2,3). H-K:  Fuzzy-XOR stacks of the same share subsets. 
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Figure 5:  Procedure the SA construction of RVC schemes. 
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It is clear here that, as in binary VC, XOR is superior to OR in decoding, as it 

eliminates redundant dark pixels.  Note the reordering of colours resulting in loss of 

quality particulary in F and J above, whereas D and H are stacked subsets of shares in 

prefΓ . 

5 Results and Discussion 

5.1 Parameter Constraints 

Parameters µ  and κ  can be independently set.  Indeed, any number of matrices and 

any number of shadow pixel values can be selected, ensuring: 

 1( ) ( )X X
i iH S H S +≠ , where {1,..., 1},

qual
i Xη= − ∈Γ .   (9) 

However, it turns out that not all combinations of µ , κ  and m yield valid 

schemes.  Obviously, it is preferable to have pixel expansion m as small as possible, 

resulting in smaller share sizes, but there exists a lower bound.  For example, a (2, 2)-

RVCS with 5, 2, 4mµ κ= = =  has five basis matrices, which are stacked to produce 

five four-digit binary vectors.  Each vector must have a different Hamming weight to 

satisfy equation (9), but the only possible Hamming weights here are 1, 2 ,3 or 4, so a 

valid scheme is impossible.  (Zero is clearly not a valid Hamming weight, as it 

implies a matrix comprising only zeros.) 

A valid scheme therefore clearly requires that m µ≥ , but ensuring security 

through equation (8) places further restrictions on the possible combinations and 

minimal m.  Experiments with the above parameters indicate that, in this case, 8m≥ .  

An example is the (2, 2, 5, 2)-RVCS basis, 
 

1

1 1 0 0 0 1 1 0
~ ,

1 1 0 0 0 1 1 0
S

 
 
 

2

1 0 1 1 0 1 0 0
~ ,

0 0 1 1 0 1 0 1
S

 
 
 

 
3

1 1 0 0 0 0 1 1
~ ,

1 0 0 0 1 1 1 0
S

 
 
 

4

1 0 0 0 1 1 0 1
~ ,

0 1 1 0 0 1 1 0
S

 
 
 

5

1 0 0 0 1 1 0 1
~

0 1 1 1 0 0 1 0
S

 
 
 

 

 

According to equation (3), this yields relative contrast 0.267α ≈ .  Interestingly 

and ironically, 10m =  produced the better quality 1
3α = . 

However, if, κ  increases to to 3 or 4, schemes exist with 4m≥  and 3m≥ , 

respectively.  An example of the latter is, 

 

1

0.67 1 0
~ ,

0.33 1 0
S

 
 
 

2

0.67 1 0
~ ,

0 1 0.33
S

 
 
 

3

0 0.67 1
~ ,

0.33 0 1
S

 
 
 

 

4

0 1 0.67
~ ,

0.33 0 1
S

 
 
 

5

0.67 0 1
~

0 1 0.33
S

 
 
 
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with 0.296α ≈  according to equation (3). 

5.2 RVCS Encryptions and Decryptions 

Here, the basis matrices and resulting shadow images and stacks are demonstrated for 

two full colour images.  The first is a (2, 2, 10, 10)-RVCS with m=4.  The stochastic 

algorithm produced the following basis with 0.272α ≈  under OR-based stacking. 

 

1

0 0.89 1 0.33
~ ,

0 0.89 0.56 0.11
S

 
 
 

2

0 1 0.89 0.33
~ ,

0 0.89 0.11 0.56
S

 
 
 

3

0.33 0 0.89 1
~ ,

0.56 0.11 0 0.89
S

 
 
 

4

0 1 0.89 0.33
~ ,

0.11 0 0.89 0.56
S

 
 
 

5

1 0.33 0 0.89
~ ,

0.11 0 0.56 0.89
S

 
 
 

6

1 0.33 0.89 0
~ ,

0.56 0.89 0 0.11
S

 
 
 

7

0 0.89 0.33 1
~ ,

0.89 0.11 0 0.56
S

 
 
 

8

0 1 0.33 0.89
~ ,

0.89 0 0.11 0.56
S

 
 
 

9

0.89 0 0.33 1
~ ,

0.11 0.56 0.89 0
S

 
 
 

10

0.89 0.33 0 1
~

0 0.56 0.89 0.11
S

 
 
 

 

Figure 6 shows the resulting shares and stacks using fuzzy OR and XOR, after 

encoding the “earth” image using the above basis. 

 

A.  B.  C.   

D.  E.   
 

Figure 6:  (2, 2, 10, 10)-RVCS, 4, 0.272m α= ≈ .  A: Secret image, B: 
1

H , C: 
2

H ,  

D: 
1 2

fuz
⊗H H , E: 

1 2

fuz

LS
⊕H H  

Here, pref qualΓ = Γ , since there exists only one stack from two shares.  Figure 6D 

is the result of OR-stacking the shares, but with the luxury of computation to decrypt, 

least sensitive fuzzy XOR can be used to reveal the reconstruction in Figure 6E.  

Figure 7 shows the encryption of a second full colour test image into a (2, 4, 20, 

20)-RVCS, along with fuzzy-OR decryptions of minimal qualified subsets.  The basis 

used is, 
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1

0.95 0.16 1 0.11

0.79 0.63 0.84 0.05
~ ,

0.47 0.79 0 0.89

0.95 0.21 1 0.21

S

 
 
 
 
 
 

2

0.16 1 0.95 0.11

0.05 0.79 0.84 0.63
~ ,

0 0.47 0.89 0.79

0.21 0.95 1 0.21

S

 
 
 
 
 
 

3

1 0.95 0.11 0.16

0.63 0.84 0.05 0.79
~ ,

0.47 0.79 0 0.89

0.95 0.21 1 0.21

S

 
 
 
 
 
 

4

0.95 0.16 1 0.11

0.63 0.84 0.79 0.05
~ ,

0.47 0.79 0.89 0

1 0.21 0.21 0.95

S

 
 
 
 
 
 

5

0.95 0.11 1 0.16

0.63 0.05 0.79 0.84
~ ,

0.79 0.89 0.47 0

0.21 0.21 0.95 1

S

 
 
 
 
 
 

6

0.95 0.16 0.11 1

0.84 0.05 0.79 0.63
~ ,

0 0.89 0.79 0.47

0.95 1 0.21 0.21

S

 
 
 
 
 
 

7

1 0.95 0.11 0.16

0.63 0.84 0.79 0.05
~ ,

0.79 0.89 0 0.47

1 0.95 0.21 0.21

S

 
 
 
 
 
 

8

0.16 0.11 0.95 1

0.05 0.79 0.84 0.63
~ ,

0.89 0 0.47 0.79

0.21 0.21 0.95 1

S

 
 
 
 
 
 

9

1 0.11 0.95 0.16

0.63 0.05 0.79 0.84
~ ,

0 0.47 0.79 0.89

0.21 0.95 0.21 1

S

 
 
 
 
 
 

10

1 0.16 0.95 0.11

0.63 0.05 0.79 0.84
~ ,

0.47 0.89 0.79 0

1 0.95 0.21 0.21

S

 
 
 
 
 
 

11

0.11 1 0.16 0.95

0.63 0.05 0.79 0.84
~ ,

0.89 0 0.47 0.79

1 0.95 0.21 0.21

S

 
 
 
 
 
 

12

0.16 0.11 0.95 1

0.63 0.79 0.84 0.05
~ ,

0.79 0 0.89 0.47

0.21 0.21 0.95 1

S

 
 
 
 
 
 

 

13

0.95 0.16 0.11 1

0.05 0.63 0.84 0.79
~ ,

0.79 0.47 0.89 0

1 0.21 0.21 0.95

S

 
 
 
 
 
 

14

0.16 0.95 1 0.11

0.63 0.05 0.79 0.84
~ ,

0.47 0.79 0 0.89

1 0.95 0.21 0.21

S

 
 
 
 
 
 

15

0.16 0.95 1 0.11

0.63 0.79 0.05 0.84
~ ,

0 0.89 0.47 0.79

1 0.95 0.21 0.21

S

 
 
 
 
 
 

16

0.95 0.16 0.11 1

0.79 0.63 0.84 0.05
~ ,

0.79 0.47 0.89 0

0.21 0.95 0.21 1

S

 
 
 
 
 
 

17

1 0.16 0.11 0.95

0.63 0.84 0.79 0.05
~ ,

0.89 0.47 0.79 0

0.21 0.21 0.95 1

S

 
 
 
 
 
 

18

0.95 0.11 0.16 1

0.63 0.84 0.79 0.05
~ ,

0 0.47 0.89 0.79

0.95 0.21 1 0.21

S

 
 
 
 
 
 

19

0.16 0.95 0.11 1

0.79 0.63 0.84 0.05
~ ,

0.47 0 0.89 0.79

0.21 1 0.95 0.21

S

 
 
 
 
 
 

20

0.16 0.11 1 0.95

0.79 0.84 0.05 0.63
~

0.89 0.47 0 0.79

1 0.21 0.95 0.21

S

 
 
 
 
 
 

 

. 

A.  B.  C.  D.    

E.   F.    G.  

Figure 7:  (2, 4, 20, 20)-RVCS, 4, 0.14m α= ≈ .  A: Secret image, B-G: All fuzzy-XOR 

2-stacks 
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Figure 8  gives the equivalent fuzzy-XOR stacks. 

 

A.  B. C.   

D.  E.  F.  

Figure 8:  (2, 4, 20, 20)-RVCS,  A-F:  All possible 2-stacks combined using fuzzy-

XOR 

In this case, {1, 2}
pref

Γ = , rendering the correct colour order for 
1 2
{ , } fuz⊗ ⊕H H  but 

the aforementioned problem of colour reordering is blatant in the above example. 

So far, only graph access structure basis matrices have been obtained.  In our 

paper, [Buckley, 13], genetic algorithms were used to evolve binary basis matrices 

and limitations were conceded due to combinatorial complexity.  The problem is 

exacerbated for real-valued matrices, as the possible number of combinations vastly 

increases. 

5.3 Comparative Analysis 

The findings of this study are compared to other key studies in terms of non-binary 

encryption capability (i.e. pixel values and basis matrix count), ability to decrypt 

using both OR and XOR, pre-processing, access structures, perfect information 

theoretic security and computational cost. 

    Stacking results (of shares 1 and 2) are compared with those of conventional VC.  

Results are compared based on peak-to-signal noise ratio (PSNR) calculations, 

beginning with mean squared error, which is used to derive PSNR, i.e., 

2

1 1

1
( )

w h

channel xy xy

x y

MSE
wh = =

= −∑∑ 'I I ,

3

10 10

1

20 log 255 10 log

3

channel

channel

MSE

PSNR
=

−

=
∑

 (10) 

where w and h are the image dimensions, xy
I is the respective colour value (on a 

respective channel) for the decoded image, and likewise xy
I'  for the decoded image. 

Peak-to-signal noise ratio, however, is only a “flat” measure based on average 

distortion across the altered image.  As described in [Wang, 04], human vision is 

highly adapted to extracting structural information from an image.  To take advantage 

of this, they proposed a Structural Simiarlarity (SSIM) index.  Here, a map of 
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similarity metrics is calculated on square-sized blocks ,x y '⊂ ⊂I I .  A block size of 

10 is used in this analysis.  The map is calculated as follows, and the map average to 

arrive at the final index value. 

( )( )

( ) ( )( )
1 2

2 2

2

2 2 cov( , )
, 100.

std( ) std( )
map map

x y c x y c
SSIM SSIM SSIM

x y x y c

+ +
= =

+ + + +
    (11) 

where 7 2 7 2

1 2
(0.01.2 ) , (0.03.2 )c c= =  and overbar denotes mean. 

 

 

Unrestricted 

non-binary 

values 

No. of 

basis 

matrices 

OR and 

XOR 

decryption 

Halftoning not 

required 

Threshold 

access 

General 

access 

[Naor, 94] No 2 Yes No Yes No 

[Naor, 96] No 2 No No No No 

[Ateniese, 96:2] No 2 Yes No Yes Yes 
[Verheul, 97] No c Yes No Yes No 

[Lin, 04] Yes 2 No Yes Yes Yes 
[Blundo, 01] No Up to 5 Yes No Yes Yes 

[Liu, 10] No 2 Yes No Yes No 

[Wu, 13] No n/a No No Yes No 

[Christy, 15] No n/a Yes No Yes No 
[Sugawari, 15] Yes n/a n/a n/a Yes Yes 

RVC Yes 
2 or 

more 
Yes Yes Yes Yes 

Table 2:  Comparative analysis 1 

 
Perfect inf. 

sec. security 

Comp. Cost based on  

n

k

 
 
 

 or min( )qualΓ  
XOR Decoded 

PSNR 

XOR Decoded 

SSIM 

[Naor, 94] Yes 2

( )O n  4-9 0-13% 

[Naor, 96] Yes 2

( )O n  5-10 0-16% 

[Ateniese, 96:2] Yes 2

( )O n  4-9 0-13% 

[Verheul, 97] Yes 2

( )O n  6-11 0-13% 

[Lin, 04] Yes 2

( )O n  n/a n/a 

[Blundo, 01] Yes 2

( )O n  <10 10-20% 

[Liu, 10] Yes 2

( )O n  <12 5-20% 

[Wu, 13] Yes 2

( )O n  n/a n/a 

[Christy, 15] No n/a (stochastic) n/a n/a 

[Sugawari, 15] Yes Unknown 
n/a (only simple 

images) 
n/a (only simple 

images) 

RVC Yes 
2

( )O n  per SA 

iteration 
9-13 5-50% 

Table 3:  Comparative analysis 2 

The OR and XOR stacking results of binary and real-valued VC are compared for 

four grayscale images (A-D) of differing entropy values and colour distributions, as 
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well as three full-colour images (E-G).  The test images are given in Table 4, where 

entropy is given by, 

2

0 255 , 0

100 log

8

i

i i

i

E
ξ

ξ ξ
≤ ≤ >

−

=

∑
,      (12) 

where 
i

ξ  is the number of pixels of the ith grayscale colour. 

 

Test Image Colour Distribution 
Percentage 

Entropy 

Image A

 

 

 

37.3 

Image B

 

 

 

71.3 

Image C

 

 

 

94 

Image D

 

 

 

97.5 
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Image E

 

 

 

50.8 

Image F

 

 

 

74.6 

Image G

 

 

 

97.1 

Table 4:  Test images and colour analyses 

Each image was encrypted into a pair of binary, as well as real-valued shadow images 

using a (2, 2, 10, 30)-RVC with 4m = .  Table 5 compares the resulting binary versus 

fuzzy decryptions on, respectively, the binary and real-valued shares for both binary 

operations. 
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Img 
VC Binary-OR 

Stacks 

RVC Fuzzy-

OR Stacks 

VC Binary-

XOR Stacks 

RVC Fuzzy-

XOR Stacks 

A 

    

B 

    

C 

    

D 

    

E 

    

F 

    

G 

    

Table 5: Binary vs Real-valued VC decrypted images using the OR operations 
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In each case, similarity of the decrypted image to the secret image was calculated 

in terms of PSNR and SSIM, the results of which follow in Table 6, and in Table 7 

are the percentage increases in reconstructed image similarity of RVC over 

conventional VC. The results there clearly incidicate improved quality of 
reconstructed images using the RVC approach, as opposed to conventional VC.  

Grayscale images with few colours or a smooth colour value distribution produced the 

most significantly improved PSNR and SSIM metrics, although the chaotically 

distributed Image D also showed lesser improvements in real-valued versus binary 

VC decryption. 

 

  (Peak to Signal Noise Ratio %, Structural Similarity %) 

Image 
binary VC 

using OR 

binary VC 

using XOR 

RVC using 

OR 

RVC using 

XOR 

A (5.2, 1.0) (6.4, 11.2) (6.1, 5.1) (11, 25) 

B (5.9, 3.1) (5.6, 6.6) (7.3, 6.1) (11, 23.3) 

C (6.0, 2.7) (4.9, 4.0) (8.7, 8.3) (11.8, 20.8) 

D (5.4, 13.2) (6.5, 31.3) (6.2, 15.2) (10.4, 49.0) 

E (4.0, 0.7) (9.1, 45.9) (4.3, 3.2) (12.3, 18.3) 

F (5.7, 0.8) (6.5, 1.5) (6.4, 1.4) (9.5, 5.2) 

G (5.7, 4.0) (6.1, 9.2) (6.6, 5.4) (10.4, 22.7) 

Table 6:  PSNR of binary vs real-valued VC with parameters (2, 2, 10, 255), m=4 

Interestingly, there is a broad increase in quality improvement with higher entropy 
values, with some obvious exceptions.  Consider the low entropy colour Image E.  

Here, there is a huge improvement in OR-based stacking, but XOR-based stacking 

exhibits a decrease in quality versus conventional VC.  However, in this case, the 

above metric is misleading, as it is clear in Table 5 that  fuzzy-XOR decrypts the 

white background as an average gray colour, as opposed to binary-XOR, which retains 

the pure white.  Since there are so many white pixels in the secret image, this change 
produces the significant error value. 

Images A to G were then encrypted into a (2, 4, 30, 30)-RVC, producing the OR 

and XOR reconstructions in Figure 6 for {1, 2}
pref

Γ = .  The overall increases in PSNR 

and SSIM are summarized in Table 7. 
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A.  B.  C.  D.  

 E.  F.  G.  H.   

I.  J.  K.  L.   

M.  N.  

Figure 9: Fuzzy-OR and –XOR reconstructions of Images A-G from a (2, 4, 30, 255)-

RVC 

  
Mean Percentage Improvement in PSNR and 

SSIM 

Scheme 
OR 

PSNR 

XOR 

PSNR 

OR 

SSIM 

XOR 

SSIM 

(2, 2, 10, 255) 19 74 180 164 

(2, 4, 30, 255) 59 73 52 269 

Table 7:  Improvements in similarity metrics using binary vs real-valued VC with 

parameters (2, 2, 10, 255), m=4 

The improved decrypted image quality from using real-valued VC is clear here, 

particularly for computational XOR decryption.  It is surprising, in fact, that the 

improvements gained from RVC for this access structure are, on average, 80% higher 

than for the previous one. 
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5.4 Security 

Information theoretic security of conventional VC relies on the requirement, when 

calculating a scheme’s basis matrices, that 
0 1

( [ ]) ( [ ]) {1, ..., }H S j H S j j n= ∀ = .  

Equivalently, 
0 1
[ ] [ ]S j S j=∑ ∑ , because the sum and Hamming weight of a binary 

vector are equal.  For the construction of the subpixel matrix at coordinate ( , )x y  in 

the shadow image held by the jth participant, the following procedure is followed: 

1. Select basis matrix [ ],
i xy

S j i = I , 2. Randomly permutate [ ]
i

S j , 3. Reshape [ ]
i

S j  

into rectangular matrix M, and 4. Place M at coordinate ( , )x y  in 
j

H . 

An adversary possessing a share might want to retrieve the secret from that share.  

He must therefore retrieve 
xy

I  from M.  However, step 2 clearly renders this 

impossible due to Hamming weight equality.  For example, if [ ]
0
[1] 1 0 1 0S =  and 

[ ]
1
[1] 0 0 1 1S = , both could be permutated to become 

[ ]
0 1

0 1
[1] [1] 0 1 1 0

1 0
S S M∴ =

 
  

� � .  Hence the procedure is irreversible. 

A set of RVC matrices is non-binary, meaning Hamming weight is inapplicable.  
Instead, equality of row sums might be considered preferable. For example, 

[ ] [ ] [ ]
1 2 3
[1] 0 1 0.5 0.5 , [1] 1 0 1 0 , [1] 0.5 0.5 0.5 0.5S S S= = = .  However, steps 2 

and 3 do not conceal the mapping from 
,x y

I  to M, because the distribution of colour 

values in  the resulting subpixel matrices differ. 

To maintain information theoretic security in graph access structures, it is 

necessary that, given j, all [ ]
i

S j  are equal up to permutation, as in equation (8).  In 

non-graph access structures, ie. (k, n)-VC, 3k ≥ , one must also ensure that no subset 

of shares 
forb

X ∈ Γ  can access any part of the secret when they are stacked according to 

equations (4) and (5).  Here, it is necessary that 
1 2

~ ~ ... ~
X X X

S S S
κ

, i.e. all (OR’d or 

XOR’d) stacks of all subsets are equal up to column permutation. 

As noted in Section 4.4, the candidate solution is initialised such that row 
, 1, ...,i i n=  in all matrices are equal up to permutation and the only change to the 

solution comes about using Algorithm 1.  Furthermore, this algorithm guarantees to 

maintain the quality up to permutation, hence information theoretic security in the 
final constructed RVC scheme is guaranteed for graph access structures.  (As 

discussed, non-graph access is not considered in this paper.) 

6 Conclusion and Ongoing Research 

There is little prior research into the direct encoding of colours into visual secret 

sharing schemes, as opposed to preprocessing the secret image to reduce it to binary 

or using purely computational methods.  This is the first study that removes all 

restrictions from colour values that can be fed directly into a visual cryptographic 
scheme construction algorithm for schemes permitted decryption using human vision.  

In this paper, an objective function has been given to stochastically derive valid real-
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valued basis matrices, in which fractions between 0 and 1 represent grayscale values 

from 0 to 255.  In effect, this is the first true colour VC methodology 

No halftoning is required, retaining more of the information from the original 

grayscale or colour image.  This producing a better quality reconstruction evidenced 
here in the fuzzy OR and XOR decryptions of various images of differing entropies 

and colour distributions, in different access structures.  Real-valued VC has been 

compared with conventional binary VC in terms of peak-to-signal noise ratio and 

structural similarity index, and in the vast majority of cases, there is a significant 

(indeed, in many cases, a dramatic) improvement in image reconstruction quality.  

The mean improvement in quality for OR-based stacking in the examples in Section 5 
(taking both PSNR and SSIM into account) is 86%, and that for computational (XOR-

based) stacking is 145%! 

This proposal is an entirely new type of VSS presententing new computer scientific 

and mathematical challenges.  The problem of colour reordering in RVC has been 

demonstrated in Section 5.  The equivalent problem in conventional VC is production 

of a negative image, but this is only a problem when using pixel expansion reduced 
basis matrices.  Matrices with maximal expansion, produced using the cumulative 

array method [Ateniese, 96:2], although extremely space-inefficient, do not suffer 

from this effect.  It is therefore a pressing challenge to devise an equivalent technique 

for generating (k, n, µ ,κ ) schemes. 

A further unknown is the precise relationship between the bounds on parameters k, 

n, µ , κ  and m.  A governing system of formulae would help to calculate the 

feasibility of a given scheme, without having to infer infeasibility from the lack of 
successful experimental results.  For example, if a high-entropy image needs to be 

encoded into a scheme with a low pixel expansion, it would be useful to derive 

theoretical bounds on the number of colour values. 
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