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Abstract: In the last years, socialization of the software development process has
been proven to be an emergent practice, becoming social development platforms (such
as GitHub or GitLab) very popular among software developers. However, little is still
known about how social factors influence software development. In particular, in this
paper we focus on how socialization affects the learning of programming skills, as
developing software can be considered, in part, a continuous learning process. Aiming
to shed some light in this regard, we analyze the social interactions of almost 70,000
users and the sophistication of over 1.5 million software products authored by them
in the Scratch platform, the most popular social coding site for learning to program.
The results indicate that there is a relationship between the social conducts of users
and the improvement of their programming abilities, showing that more social actions
performed by users is positively associated with more sophistication in their programs.
Furthermore, the results also provide evidence that the relationship of social factors
with the development of software programming skills tends to grow with time.
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1 Introduction

In the last years we are witnessing a movement that places socialization as an

important factor in software development. Thus, there are studies that ana-

lyze the impact of social aspects on the way software ecosystems evolve over

time [Mens and Goeminne, 2011], on how social processes can be accounted for

the variations in software product quality [Sawyer and Guinan, 1998], on the

use of microblogs in software development [Bougie et al., 2011], on how devel-

opers collaborate in knowledge sharing sites [Surian et al., 2010, Vasilescu et al.,
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2013] and, especially, on the interactions among developers in social coding sites,

such as GitHub [Thung et al., 2013, Jiang et al., 2013, Vasilescu et al., 2013].

These social coding sites, which integrate social media features with source code

management tools, are gaining more and more popularity among software de-

velopers, as they provide a collaborative environment with high levels of social

transparency [Pham et al., 2013].

Furthermore, given the volatile environment in which software is developed,

with constant technological and organizational changes, learning-focused prac-

tices are to be considered as an essential part of software development [Hoda

et al., 2013]. Nonetheless, some development methodologies, such as the agile

ones, consider that software development is a continuous learning process [Babb

et al., 2014, Augustine et al., 2005] that involves different types of learning:

“learning new or complex technical skills, learning cross-functional skills, and

learning from the team’s own experiences, all of which fuel self-improvement.”

[Hoda et al., 2011]

However, there is a lack of studies that analyze how social factors affect

the learning of software development skills. With this paper we want to shed

some light on this regard by analyzing the social interactions of over one million

users and the evolution of the software products that learners generated during

five years in the most popular social coding site for programming learning, the

Scratch [Resnick et al., 2009] platform. This site incorporates features to share,

study and remix projects, post comments or work in teams, offering Scratch

programmers the opportunity to learn the social aspects of software development.

It is noteworthy that GitHub, the most popular social coding site, and the

Scratch platform are targeted to different audiences. The former is focused on

professional software developers, while the latter has been designed for learners.

However, most of the social functionalities can be found in both platforms: they

offer the possibility to explore the repository of projects, to follow the activity of

other users and projects, to express appreciation for a project, and to create forks

(remixes in the Scratch jargon) of projects developed by other programmers.

The Scratch platform and GitHub differ in that the former lacks support for

software evolution, as the bug tracking, code review and pull-request features

offered by GitHub can only be (partially) achieved through comments.

The remainder of this paper is structured as follows: the research goals are

described in [Section 2]. Related research, focused on social aspects of software

development, is reviewed in [Section 3]. [Section 4] presents the dataset utilized

for the analysis, which includes the activities of over a million users during the

first five years of Scratch. Results are presented in [Section 5]. [Section 6] gives

an answer to the research questions addressed in the paper, discusses implications

and points out the threats to the validity of our results. Finally, conclusions along

with ideas for future research are outlined in [Section 7].
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2 Research Goals

This work aims to identify the impact of social participation on the development

of software development skills, by performing a comprehensive study of a social

coding community for learning, Scratch. Specifically, the research questions that

we address are following:

RQ1: Is there a relationship between learners’ social participation

in the Scratch community and the improvement in software develop-

ment skills?

Actively participating in a social coding community is considered to help

programming learners to know the social aspects of software development, which,

in turn, is assumed to help them develop their coding skills. Aiming to measure

the effect size of social conducts on software development skills, we will analyze

potential differences in the improvement of project sophistication between users

who actively participate in the community and those who do not make use of

these social features. Moreover, we will establish levels of socialization to examine

possible variations in the effect size of social conducts on software development

skills.

RQ2: Is there a relationship between learners’ remix conducts in

the Scratch community and the improvement in software development

skills?

Reusing code is assumed to be a good learning practice for programming

learners, as it implies the reading, understanding and modification of other, com-

monly more experienced, developers’ source code [Haefliger et al., 2008, Gross

et al., 2010]. As Scratch offers the possibility of reusing code by means of remix-

ing projects, we will study whether there are differences in the improvement in

programming skills between those users who remix other programmers’ projects

and those who do not perform forks. Furthermore, the effect size of the remix

conducts on software development skills could be compared with the effect size

of the social aspects analyzed in RQ1.

RQ3: How does time spent in the community affect the answer to

questions RQ1 and RQ2?

Our hypothesis is that, depending on the learning time, the relationship

of social and remix actions with the development of programming skills may

vary. Thus, we think that it is possible that participating very actively in the

community might not be as beneficial for novice learners as for more experienced

ones, or it could even be counterproductive for users who have just started to

learn to program. In consequence, we will study whether there are differences in

the effect size of both social and remix conducts on software development skills

over time.
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3 Related Research

Social software engineering is a relatively new, but important research area in

software engineering. The idea of social software engineering –described as a

complex socio-technical activity [Clarke et al., 2015], due to the need for shar-

ing knowledge and discussing ideas among team members– was addressed by

Ahmadi et al. by providing a literature survey in related areas [Ahmadi et al.,

2008]. Storey et al. advocate for research to understand the benefits and risks

of using social media tools and the effects they may have on the quality of soft-

ware [Storey et al., 2010]. Based on a set of interviews with light and heavy users

of GitHub, a series of social inferences that users make from the networked activ-

ity information of the site has been presented by Dabbish et al. [Dabbish et al.,

2012]; respondents stated that they infer other developer’s technical goals and

vision when they edit code, or make guesses on the possibilities of success of sim-

ilar projects, and that they combine these “inferences into effective strategies for

coordinating work, advancing technical skills and managing their reputation”.

The study of social activities in software development comprises research on

micro-blogging [Bougie et al., 2011], on the use of Q&A sites such as StackOver-

flow [Surian et al., 2010, Vasilescu et al., 2013], or on social coding platforms such

as GitHub [Thung et al., 2013, Jiang et al., 2013, Vasilescu et al., 2013], among

others. The research topics are also very wide, covering collaboration [Surian

et al., 2010], networking [Thung et al., 2013], information flow [Bougie et al.,

2011, Vasilescu et al., 2013, Jiang et al., 2013], software evolution [Mens and

Goeminne, 2011], etc. Some investigations on how to determine the develop-

ment skills of developers can also be found. So, Capiluppi et al. have identified

challenges of doing this for GitHub developers, and provide some guidelines to

be used by recruiters to evaluate potential candidates [Capiluppi et al., 2013].

If we focus on the Scratch community, social aspects are clearly identified as

key elements of the learning of programming abilities. Hence, Mitchel Resnick,

the Scratch project leader at MIT Media Lab, states that “[m]embers of the

Scratch community learn to collaborate in many different ways. They give feed-

back through comments on projects, they work together on joint projects, they

remix one another’s projects, they crowd-source artwork for their projects, they

create Scratch tutorials to share their knowledge with one another” [Resnick,

2012], presenting three examples of collaborative learning and development in

the Scratch community. Similarly, the Scratch team states that “[p]articipation

and collaboration within online communities can support, inspire, and enable

young people to become active creators (and not just consumers) of interac-

tive media.” [Brennan et al., 2010], although this statement is based on three

concrete cases that illustrate different types of collaboration that allowed more

complex and elaborated projects. In a similar vein, the Scratch team argues

that scratchers “not only learn important math and computer science concepts,
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but they also develop important learning skills: creative thinking, effective com-

munication, critical analysis, systematic experimentation, iterative design, and

continual learning” [Monroy-Hernández and Resnick, 2008], based on five cases

in which user collaboration fostered the improvement of projects.

Most of the research papers that highlight the advantages for learners of

participating in a social coding learning site are based on small case studies.

However, some investigations on participation patterns in the Scratch commu-

nity use larger amounts of data. In this regard, the contributions, mechanisms of

gratification and patterns of participation of 65 young students (between 9 and

17 years old) learning to program with Scratch have been studied by Zuckerman

et al. [Zuckerman et al., 2009]. These patterns revealed two types of participants:

project creators and social participants. In addition they identified a long tail

distribution in content contribution, with active and very active users (18% of

the sample) creating 67% of the projects generated during the investigation.

100 randomly selected projects, along with their associated comments, were

analyzed by Dahotre et al. in order to evaluate how Scratch is serving as a basis

for demonstrating technical, social, and remixing skills [Dahotre et al., 2010].

Although authors acknowledge the success of the platform towards these goals,

they also identify some opportunities for improvement. Thus, in spite of the

important number of generated comments, researchers could not find a single

case in which the feedback originated some kind of online collaboration. On

the other hand, the level of code reuse was around 5%, significantly lower than

the 15% stated by the Scratch team. In addition, only 40% of the remixes

implied modifications in the code, being the majority of changes to modifying

or including images and sounds.

Aiming to assess the evolution of Scratch users, both from technical and

social points of view, data from 250 random users who had authored around

1,000 projects [Scaffidi and Chambers, 2012] was retrieved. Even though a pos-

itive progression in terms of social skills is detected, a negative progression in

the technical abilities is also observed. It must be noted, though, that these

two variables were independently analyzed, and correlation between them was

not studied. Researchers state that the downtrend in the technical skills might

be partially explained by the fact that experienced users may be less likely to

demonstrate their skills than inexperienced users.

The social activities (downloads, comments, friends and favorites) of 2,225

users who at least created 1 project across a three-month period in early 2012 are

analyzed by Fields et al. [Fields et al., 2014], identifying five classes of Scratch

users in terms of their participation in the community: low network, downloaders,

commenters, networkers and high network. In general, no correlation between

level of online participation and level of programming sophistication is detected.

However, the authors highlight that a very small and extremely active group of
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users used more complex programming instructions than the rest.

With the goal of presenting implications in the design of collaborative tools

and communities [Fields et al., 2013], the activity in the community to identify

patterns of participation is analyzed. Velasquez et al. studied the comments

generated by 5,000 users in a month, stating that comments about projects

show a richer language than other kind of comments [Velasquez et al., 2014].

Finally, three recent investigations have been published based on the same

dataset used in this paper. On one hand, the authors of this work have per-

formed a preliminary investigation to measure how social the Scratch commu-

nity is by studying user contributions in terms of number of comments, friends,

favorites and galleries. The analysis involved over one million learners who had

authored almost two million projects. The results indicate that the vast majority

of users barely make use of the social capabilities offered by the Scratch plat-

form [Moreno-León et al., 2016b]. On other hand, Matias et al. [Matias et al.,

2016] have revisited the research by Scaffidi and Chambers [Scaffidi and Cham-

bers, 2012], obtaining opposite results as Scratch users tend to share increasingly

code-heavy projects over time and use a more diverse range of code concepts. In a

similar work to the latter, the study of the whole repository shows that users who

remix more often have larger repertoires of programming commands [Dasgupta

et al., 2016].

Paper Topic Sample size

[Resnick, 2012] Collaborative learning 3

[Brennan et al., 2010] Participation in the community 3

[Monroy-Hernández and

Resnick, 2008]

Collaborative learning 5

[Zuckerman et al., 2009] Participation in the community 65

[Dahotre et al., 2010] Collaborative learning, remix-

ing, technical abilities

100

[Scaffidi and Chambers, 2012] Participation in the community,

technical abilities

1,000

[Fields et al., 2014] Participation in the community 2,225

[Fields et al., 2013] Participation in the community 5,000

[Matias et al., 2016] Technical abilities 643,246

[Moreno-León et al., 2016b] Participation in the community 2,000,000

[Dasgupta et al., 2016] Remixing, technical abilities 2,400,000

Table 1: Summary of reviewed literature on Scratch: main topic and size of

sample (in number of projects).
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Table 1 summarizes the type of investigations that have been performed on

projects shared in the Scratch community. As can be seen, a majority of in-

vestigations involve a small amount of projects with a sample of 5,000 projects

or less for 8 out of the 11 papers. Articles placing the focus on the technical

abilities of learners are a minority, as most of the works focus on other aspects

of learning, being the most frequent subject of study the participation in the

community.

4 Data Set

For this investigation we have worked with several datasets that include the first

five years, approximately from 2007 to 2012, of public data from the Scratch

online community website1.

The set of datasets is divided into Core datasets, which describe the major

objects and relationships captured by the Scratch website, including the main

information on users, projects, galleries or favoriters; Text and Code datasets,

which contain text generated by the programmers; and Project Analytics Datasets,

such as the project blocks table, which holds the blocks used in each project.

In our study we have combined and analyzed data included in the Core

datasets and Project Analytics Datasets. Specifically, we have worked with the

information on 1,056,951 users, 1,928,699 projects, 120,097 galleries, 1,313,200

friends, 1,041,387 favorites and 7,788,414 comments on projects.

Although there is more than 1 million active users in the dataset, only 304,793

have published at least one project. As we are interested in comparing differences

in learning and progression, we have selected those learners who have published

at least 5 projects to study their social behavior. This process resulted in a new

subset with the information of 67,799 users as presented in Table 2.

In a previous investigation, Scaffidi and Chambers [Scaffidi and Chambers,

2012] adapted a model proposed by Huff et al. [Huff et al., 1992] to measure

the sophistication of Scratch projects. The authors derive sophistication from

three different concepts: breadth, depth and finesse. Breadth refers to the range

of different features that programmers use; depth represents the amount with

which programmers use those features; while finesse captures the user’s ability

to solve programming problems effectively and creatively.

From the information in the datasets we could directly assign blocks to depth

and block.types to breadth. To calculate finesse, instead of using the proposed

framework by Scaffidi and Chambers [Scaffidi and Chambers, 2012], we have

adapted Dr. Scratch, a free/libre static code analyzer for Scratch projects, to

work with the data stored in the project blocks table.

1 Access to the datasets can be requested at https://llk.media.mit.edu/scratch-data/
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Field Description

user.id User id in the Scratch community

first Date of the first published project

last Date of the last published project

time Days between the first and the last published project

number.projects Amount of published projects

blocks.mean Mean of the number of blocks (Scratch programming

instructions) in the projects

block.types.mean Mean of the number of types of blocks in the projects

favorited Amount of projects marked as favorite by the user

galleries.created Amount of galleries created by the user

friends Amount of friends made by the user

pcomments Amount of comments posted in projects by the user

forks Amount of remixes (forks) created by the user

forks.code Amount of remixes (forks) created by the user in which

there are modifications in the code of the project

blocks.first Number of blocks in the first published project

blocks.max Maximum of number of blocks in all published projects

blocks.improve Difference between blocks.first and blocks.max

block.types.first Number of type of blocks in the first published project

block.types.max Maximum of number of types of blocks in all published

projects

block.types.improve Difference between block.types.first and block.types.max

Table 2: Description of the information available for each user involved in the

investigation

The effectiveness of assessing computational thinking skills using

Dr. Scratch, which is based on Hairball [Boe et al., 2013] and inspired by

Scrape [Wolz et al., 2011], has been previously reported [Moreno-León et al.,

2015]. In addition, given that the assessment provided by Dr. Scratch is, to

some degree, a complexity value, its measurements have been compared with

other, classic software engineering metrics that measure the complexity of a pro-

gram, such as McCabe’s Cyclomatic Complexity [McCabe, 1976] and Halstead’s

metrics [Halstead, 1977], finding a statistically significant, positive, moderate

correlation [Moreno-León et al., 2016a].

Dr. Scratch requires access to the source code file to be able to perform

a complete analysis, which is not the case in this research. Consequently, we

have performed some modifications in the analysis algorithm of Dr. Scratch to

assign a mastery score, which ranges from 0 to 10 points, by studying the blocks

included in the projects in terms of user interactivity, synchronization, logic,
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data representation, flow control and other advanced instructions, as described

in Table 32.

Category Blocks adding 1pt Blocks adding 2pts

Logic if, if else logic operations (and, or,

not)

Data representation variables lists

Synchronization wait, touching message passing

Flow control forever, repeat forever if, repeat until,

wait until

User interactivity keyboard, mouse, ask &

answer

Other features timer, random numbers

Table 3: Description of the mastery score measurement, which is calculated based

on the types of blocks used in the project. The score ranges from 0 to 10 points.

By performing the mastery analysis, we could add the information described

in Table 4 to the dataset for the 1,539,197 projects finally under study.

Field Description

mastery.first Level of mastery demonstrated in the first published

project

mastery.max Maximum of level of mastery demonstrated in all pub-

lished projects

mastery.improve Difference between mastery.first and mastery.max

Table 4: Description of the information on finesse generated for each user by

performing the mastery analysis to the projects in the dataset.

5 Results

Our dataset allows to study relationships between social and remix conducts

with improvements in programming skills. The social contributions are analyzed

in terms of number of projects marked as favorite, amount of galleries created,

number of friends made and amount of comments posted in projects. Regarding

2 The program used to perform the mastery analysis is publicly available at http:
//gsyc.urjc.es/~grex/repro/2016-jucs-socialization
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Social Action Do not Do

Favorites 37,914 (55.9%) 29,885 (44.1%)

Galleries 42,508 (62.7%) 25,291 (37.3%)

Friends 29,358 (43.3%) 38,411 (56.7%)

Comments 20,911 (30.8%) 46,888 (69.2%)

Table 5: Amount of learners who perform each of the social actions.

As shown, there is a very significant difference in favour to the social users in all

the cases, both for depth (blocks), breadth (block types) and finesse (mastery).

However, the biggest effect size is produced on the improvements of types of

blocks and, in a slightly lesser way, on mastery; the effect size on number of

blocks is much lower for every analyzed social aspect.

Another approach is to create a new variable, sociability, as the sum of the

social actions: number of favorites, galleries, friends and comments. The median

of this sociability variable is 9; we use the median to divide the set of users into

non social (n=34,496) and social (n=33,303) learners. If the previous analysis

is performed for these new groups, very significant differences are found for all

improvements variables in favour to the social group, being the effect sizes d =

0.14 for the improvement in number of blocks, d = 0.60 for types of blocks, and

d = 0.50 for mastery.

However, these differences could be attributed to the time spent in the com-

munity, as social users could tend to participate for longer periods of time than

non social ones. Therefore, using the quartiles of the time variable, we divided

users in four new groups, based on the number of days that they spend in the

community (see Table 7).

When the improvements in learning of social and non social users are com-

pared for each of these time groups, very significant differences are detected in

favour of the social groups in all cases. Figures 2 and 3, which respectively il-

lustrate the improvements in number of blocks, different types of blocks and

mastery score, show that the differences in favour of the social group tend to

increase over time.

Finally, a different approach to study the levels of social participation in the

Scratch community can be addressed by codifying a new variable, sociability.bis,

as the sum of each of the dichotomized social conducts. In other words, for any

social conduct where a learner has shown activity, the sociability.bis will be

increased by 1; no activity in a conduct will result in no increase. So, a learner

with at least one friend and a gallery, but has not favorited and not posted

comments would have a sociability.bis measure of 2. Five groups of users are

obtained as a result as described in Table 8.

If the differences in the improvements indicators are studied in terms of level
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Improvement Group M SD Cohen’s d t p-value

Blocks
No favs 134.61 517.83

0.13 14.48 .000
With favs 387.75 2,986.62

Block types
No favs 6.73 8.53

0.56 69.13 .000
With favs 12.66 12.75

Mastery
No favs 1.69 2.00

0.47 58.86 .000
With favs 2.75 2.54

Blocks
No galleries 145.43 725.04

0.13 13.34 .000
With galleries 415.55 3,171.00

Blocks types
No galleries 7.06 8.91

0.58 66.52 .000
With galleries 13.18 12.93

Mastery
No galleries 1.76 2.05

0.48 56.85 .000
With galleries 2.83 2.56

Blocks
No friends 128.08 454.99

0.10 15.09 .000
With friends 336.39 2,655.17

Block types
No friends 6.48 8.22

0.47 63.82 .000
With friends 11.52 12.28

Mastery
No friends 1.63 1.94

0.41 54.19 .000
With friends 2.56 2.49

Blocks
No comments 91.73 349.20

0.11 19.53 .000
With comments 315.07 2,419.73

Block types
No comments 5.49 7.17

0.52 75.17 .000
With comments 11.06 11.93

Mastery
No comments 1.47 1.82

0.44 59.01 .000
With comments 2.47 2.44

Table 6: Differences in depth (blocks), breadth (block types) and finesse (mas-

tery) improvements in terms of social conducts.

Number of days Label Number of learners

0 - 21 days Very short time 16,956

22 - 79 days Short time 17,068

80 - 264 days Long time 16,829

> 264 days Very long time 16,946

Table 7: Groups of users based on the number of days that they spent in the

community.

of socialization using an ANOVA analysis3, very significant differences are de-

3 A complete results report can be accessed in the replication package at http://
gsyc.urjc.es/~grex/repro/2016-jucs-socialization
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5.2 Relationships between remix conducts and improvements in

programming skills

For the remix conducts, by dichotomizing between users who performed forks

that implied modification to the source code of the original project and those

who never did, two groups of users were created: no forks (n=20,698) and with

forks (n=47,101). Table 9 shows the differences in improvements for both groups;

there is a very significant difference in favour of the users who created forks in

all cases. The biggest effect size is found for the improvements of breadth and

finesse, while the effect size on depth is notably smaller.

Improvement Group M SD Cohen’s d t p

Blocks
No forks 122.80 506.67

0.09 15.28 .000
With forks 300.41 2,403.26

Block types
No forks 6.92 8.21

0.32 44.06 .000
With forks 10.41 11.86

Mastery
No forks 1.75 1.96

0.26 33.25 .000
With forks 2.34 2.43

Table 9: Differences in depth, breadth and finesse improvements in terms of

forks.

When the time spent in the community is considered as a moderator variable

that affects the relationship between the independent and the dependent vari-

ables, as done in [Section 5.1], and users are therefore separated in very short

time, short time, long time and very long time groups, the differences in the

improvements of learning are slightly distinct. Thus, when the time spent in the

community is very short, there are differences in favour of the no forks group

when it comes to breadth and finesse. However, as time increases, the differences

are in favour of the with forks group. Figures 6 and 7 illustrate the differences in

improvements of number of blocks, different types of blocks and mastery score,

and show that the relationship of remixing with the improvement of program-

ming skills tends to increase over time.

6 Discussion

In this section we will answer the research questions that this papers targets,

discuss implications and point out the threats to the validity of our results.
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are created based on the level of social participation (no sociability, very low

sociability, low sociability, high sociability and very high sociability), very signifi-

cant differences are detected between groups for the improvement measurements.

The results show that more social activities users perform is positively associated

with more improvements in sophistication.

It must be noted that our results contradict, to some degree, the conclusions

by Scaffidi et al. [Scaffidi and Chambers, 2012] and by Fields et al. [Fields et al.,

2014]. On one hand, the results by Scaffidi et al., which state that a negative

progression in terms of technical skills were detected for users of the Scratch

community, are based on a sample of 250 users [Scaffidi and Chambers, 2012].

Therefore, the difference in the size of the sample can justify the discrepancies

in the conclusions. In fact, Matias et al. [Matias et al., 2016] recently revis-

ited [Scaffidi and Chambers, 2012] by studing a much bigger number of projects,

and their conclusions are in line with ours, as they proved that Scratch users

tend to share increasingly code-heavy projects over time and use a more diverse

range of code concepts. In the study by Fields et al., where no link between of

online participation and level of programming sophistication had been found,

the sample is notably bigger, being formed by 2,225 users [Fields et al., 2014],

although far from the 67,799 users analyzed in our investigation. Nonetheless, a

possible explanation for the differences in the results could be based, not only

on the number of users of the sample, but also on the selection process. While

we selected those users who had published at least five projects during a 5 years

span, Fields et al. included users who had published at least one project in a

3 months period. It is plausible that the relationships between social conducts

and programming skills were not presented in their dataset since that connection

emerges over time on learners with a minimum level of project production, as

discussed in [Section 6.3].

6.2 RQ2: Is there a relationship between learners’ remix conducts

in the Scratch community and the improvement in software

development skills?

Our results indicate that there is a relationship between the remix conducts

of learners and the improvement in the sophistication of their projects, both in

number of blocks, amount of types of blocks and mastery score, as very significant

differences in the three cases in favour to the users who performed forks have been

detected. These results are consistent with the conclusions of an investigation

that also studied the whole Scratch repository showing that users who remix

more often have larger repertoires of programming commands [Dasgupta et al.,

2016]. However, the effect sizes are noticeably smaller in comparison with those

of the social conducts, both for depth, breadth and finesse.
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6.3 RQ3: How does time spent in the community affect the answer

to questions RQ1 and RQ2?

Although results show that the relationship of social and code reuse activities

with the improvement in sophistication tend to grow with time, there are slight

differences among activities depending on the time the user spends in the com-

munity that are worth noting. For the social conducts, in all cases (very short

time, short time, long time and very long time) there are significant differences

in sophistication in favour to the social groups. However this is not the case for

the remix conducts, as the differences are in favour of the group who does not

perform forks when the time spent in the community is very short. As the time

in the community increases, the differences are in favour of the group that per-

forms remixes. Thus, the bigger differences in depth, breadth and finesse between

social and non social groups, as well as between forks and no forks groups, are

detected for users who spend a very long time in the community.

6.4 Implications

Taking into account that computer programming is being introduced in the na-

tional curriculum of primary and secondary education of several countries around

the world [Balanskat and Engelhardt, 2015], these findings, if confirmed in con-

trolled studies, could have an impact on the teaching of software development

skills in schools, high schools and universities alike. Educators could discriminate

between programming platforms in terms of the social, remix, and software evo-

lution features that are offered, and could also plan the right time to encourage

learners to put into play the different social and remix features provided by the

programming platform.

But not only the education sector could exploit these findings. Companies and

organizations building different types of tools to support programming activities,

both focused on learners and professional developers, could also take them into

account to include new and diverse social functionalities, which could have an

impact on the progression of the developers using the platform. In a similar

vein, both individual programmers and software development teams could try

to encourage social participation as a mean to enhance learning.

Our results, which show a positive correlation between the development of

software programming skills and the amount of social conducts of the learner in

the Scratch platform, may contradict a widespread idea (almost a stereotype):

excellent programmers do not like social interaction [Schott and Selwyn, 2000]. In

fact, we have found some literature, prior to the year 2000, which supported the

idea of the tendency of programmers to introversion. So, in [Ketler and Smith,

1992] programmers were characterized as more introverted than the general pop-

ulation; [Kagan, 1984] reported that extroversion is negatively correlated with
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achievement in computer programming exams; and in [Bush and Schkade, 1985]

most programmers were identified as being introverted, serious, quiet and log-

ical. However, some other studies did not find relationship between introver-

sion/extroversion and computer programming [Kagan and Douthat, 1985, New-

sted, 1975].

A second body of research, especially from the year 2008 onwards and coin-

ciding with the raise of social software development platforms (such as GitHub or

GitLab) and social coding site for learning to program (such as Scratch), started

to find evidence of the contrary: the superiority of extroverts in programming

task. Hence, in [Law et al., 2010] extrovert students outperformed introvert stu-

dents when learning Java; results in [Yilmaz and O’Connor, 2012] indicate that

there are more individuals in software teams, who may perceive to be extro-

verted not only in a classroom environment but also in an industrial setting.

Moreover, in [Licorish and MacDonell, 2014] top global software practitioners

demonstrated more openness to experience than the other practitioners did; ad-

ditionally, top practitioners involved in usability-related tasks were found to be

highly extroverted. Even more, Bazelli et al. analyze the Q&A website Stack-

Overflow for personality traits of participants [Bazelli et al., 2013]: using textual

analysis of posts, they found that authors with higher reputation are more extro-

verted compared to those with medium and lower reputation. Finally, a recent

research has found a positive correlation between computational thinking, which

is supposed to be the problem-solving ability that underlies programming tasks,

and the extroversion personality factor in a sample of Spanish middle-school

students [Román-González et al., 2016b]. Our results are consistent with this

emerging second body of research.

Moving the discussion to educational environments for learning program-

ming, it is plausible that the first wave of programming languages in schools (e.g.,

Logo) could fit better to introverted learners, while the second wave with visual

programming languages (e.g., Scratch) is better suited to the extroverted ones.

It should be noted that the former had difficult syntaxes, non-significant prod-

ucts and were essentially lonely-learning environments, while the latter overcome

the aforementioned limitations providing an easy floor with easy syntax, wide

walls due to diverse and significant coding products, and social learning environ-

ment that allows remixing and high ceiling products. Maybe we are witnessing

a transformation of the programmer from a logical-formal, inside-oriented to

an expressive-communicative, outside-oriented subject. This path was already

anticipated by Capretz in 2003 (between the two waves) when warning that

if the software field continued dominated by introverted it would be difficult

to meet the user requirements and the social needs; so more extroverted were

desired [Capretz, 2003].
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6.5 Threats to validity

There are several factors that affect the validity of our investigation. On the one

hand, as this dataset does not offer access to the .sb2 files with the actual source

code of the projects developed by learners, there is no possibility of measuring

how effectively blocks are utilized in the projects. We can count the number of

blocks, add the number of different types of blocks, and check whether learners

use advanced and complex instructions, but there is no evidence that those blocks

are used correctly.

Furthermore, our analysis is based on the notion of sophistication of pro-

gramming skills, which is based on breadth, depth and finesse, may not be ideal

to measure software development learning. Other approaches based, for instance,

on bugs or on reusability of the code, could yield different results.

Moreover, there is no indication to state that users have learned in similar

circumstances. It might be possible that social users have learned in formal envi-

ronments, with help from peers and teachers, and being encouraged to share and

participate in the community. On the contrary, non social users might mainly

have learned in informal settings by their own. Although the size of the sample

mitigates this potential threat to validity, there is no information in the dataset

about the environment where users developed their programming learning.

It must be taken into account that even though we used the terms dependent,

independent and moderator variables along the text, this work is not an experi-

ment, but a posterior investigation of social interactions and products created by

a community of learners. Consequently, the relationships between the so-called

dependent and independent variables cannot be understood as causality. Future

research, as detailed in [Section 7], should validate our results and state stronger

conclusions by means of a controlled study.

In addition to dividing learners into quartiles (i.e., forming groups of same

size), we have divided learners into equal timeframes (in our case, we chose 80

days) to address the concern that from a statistical perspective the chosen day

divisions may have served to support the research hypotheses, even if inadver-

tently. The results using this second method are consistent with those presented

in the paper, since social users have a greater improvement than non-social users

in all groups. The specific results for this analysis are publicly available in the

replication package.

Finally, when it comes to generalization to other, professional environments,

these results must be treated with caution, being our investigation based on a

learning community where most of the learners are non-professional developers

under 18 years old. In this regard, although no identifiable information about

users, including age, is incorporated in the dataset, stats from the Scratch web-

site4 indicate that a vast majority of users are under 18. It should be noted as

4 See https://scratch.mit.edu/statistics/
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well that there is a difference between learning to code and professional coding,

where developers predominately already know how to code. Consequently, ob-

servations from a code learning environment such as Scratch may not transfer

directly to professional software development environments.

7 Conclusions and Future Work

This paper presents an investigation of the social and remix conducts of almost

70,000 users and the sophistication of over 1.5 million software projects authored

by them in the Scratch platform, the most popular social coding site for learning

to program. The results indicate that there is a relationship between the social

conducts of users and the improvement of their programming abilities, showing

that more social actions performed by users is positively associated with more

sophistication in their programs. The relationship between remix conducts and

coding skills is also detected, although the effect sizes on the improvement are

noticeably smaller than in the former case. Furthermore, the results also pro-

vide evidence that the relationship of both social and remix factors with the

development of software programming skills tends to grow with time.

It must be noted, though, that this work was not an experiment, but a

posterior investigation. Therefore, the relationships between the social and remix

conducts with software development skills cannot be considered as causality. In

the near future we plan to carry out a controlled experiment with two groups

of learners formed by students with similar characteristics regarding to age,

gender and computational thinking skills, measured using the CT-test [Román-

González et al., 2016a]. One of the groups will learn software development using

the offline Scratch version, while the other one will make use of social features

offered in the online community.

Since 2012, with the release the new Scratch site, important changes with the

aim of boosting participation of learners in the community have been introduced.

Access to the new dataset would allow to further study the differences in the

participation patterns and in the learning of software development skills.

Further research on the topic should address the causes of the increased so-

cialization and the corresponding improvement in programming outcomes. Other

factors such as aptitude, enjoyment (and sharing) of programming tasks or ac-

tual time devoted to programming could be reasonable causes of this behavior.

Therefore, deeper discussion, including other research approaches, should be de-

sirable.

Finally, further investigations should replicate this investigation using data

from a professional social coding site, such as GitHub, which could allow to

study differences in the impact of social activities on software development skills

between mostly young learners and professional developers.
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