
 

 

Clustering for Software Remodularization by 

Using Structural, Conceptual and Evolutionary Features 
 

 

Amit Rathee 
(Department of Computer Engineering, National Institute of Technology, Kurukshetra, India 

amit1983_rathee@rediffmail.com) 

 

Jitender Kumar Chhabra 
(Department of Computer Engineering, National Institute of Technology, Kurukshetra, India 

jitenderchhabra@gmail.com) 

 

 

 

Abstract: During various phases of software development lifecycle, the internal structure of 

the software degrades which finally results in increased maintenance efforts and hence cost. 

One quick solution to this problem is software remodularization in which restructuring of 

different software elements such as classes/ packages/ methods is done (without changing their 

original meaning and functionality).  Several researchers have proposed different techniques for 

software remodularization. Each technique considers two points of view: dependency 

measurement among software elements (based on structural, conceptual and/or change history 

based relations) and performing clustering using different algorithms. So, in this paper, first of 

all, an empirical evaluation is carried out in order to test the role of different dependency 

relations in modeling dependency among different software elements. From an empirical 

evaluation, it is observed that the change history of a software system plays a major role in 

modeling dependency relations and hence must be used along with other relations for more 

accurate measures. Then, a new weighted dependency measurement scheme is proposed by 

combining structural, conceptual and change history based relations among software elements 

together, with more importance to evolutionary dependency relations. Finally, different 

dependency schemes are evaluated with six clustering algorithms by applying them to four 

standard open source Java software of variable sizes and belonging to different domains. The 

obtained results show that our proposed approach is capable of accurately determining 

dependence relations among various software elements as compared to other similar 

approaches present in literature and thus increases restructuring accuracy. 

 

Keywords: Software Remodularization, Restructuring, Cohesion, Coupling, Structural/ 

Conceptual/ Evolutionary/ Logical Dependency, Reverse Re-engineering, Clustering 

Categories: D.0, D.2, D.2.8, D.2.13 

1 Introduction  

Modularity is one of the key concepts in software engineering that helps in 

implementing the principle of Separation of Concern by dividing a large, complex 

software into smaller, more manageable modules where each module is expected to 

serve a particular business domain functionality [Baldwin, 03]. A well-modularized 

system is easier to maintain and evolve due to the lesser interdependence among 

modules. Frequent maintenance activities like new requirements, defect fixing, etc. 

make the internal structure more complex, harder to understand and makes further 

Journal of Universal Computer Science, vol. 24, no. 12 (2018), 1731-1757
submitted: 1/10/17, accepted: 15/11/18, appeared: 28/12/18  J.UCS



 

 

modification difficult and hence increased maintenance cost [Chapin, 01; Lehman, 

96]. 

In research domain, this problem is tackled by incrementally improving the 

internal structure (minimizing coupling and maximizing cohesion) of the software 

system to lower its complexity, and the technique is known as software 

remodularization or restructuring [Chikofsky, 90; Nierstrasz, 03]. The key idea behind 

this technique is to redistribute various software elements such as classes, variables, 

and functions across packages and/ or class boundaries in order to have future 

adaptations and extensions of the software system. According to [Fowler, 99], it must 

alter only the internal structure and should not affect the external behavior of the 

software system in any way. 

In literature, a large number of approaches are proposed to support software 

remodularization and quality inspection [Mishra, 09] of a software system. Many 

automated and semi-automated approaches have been proposed by [Wiggerts, 97; 

Mancoridis, 98; Anquetil, 99; Mitchell, 06; Mitchell, 08; Maqbool, 07; Abdeen, 09; 

Shtern, 09; Bavota, 10, 13; Beck, 16; Chhabra, 17; Amarjeet, 17; Hwa, 17]. Most of 

these studies utilize one or two out of three different relations viz structural, 

conceptual and evolutions of a software. However, no approach has utilized and 

tested the feasibility of taking all of these three relations together to the best of our 

knowledge. Further, different researchers have taken different clustering algorithm, 

but they did not mention which clustering algorithm will perform better during 

restructuring and under what given situations. However, from the software developer 

point of view, it is very important to know whether dependency measurement criteria, 

clustering approach or both affect the most in remodularization process.  

Hence, in this paper, a new weighted dependency measurement scheme based on 

the combined use of structural, conceptual and evolutionary relations is proposed, 

together with an empirical evaluation with 42 test cases (7 dependency schemes X 6 

clustering criteria) in order to justify our approach and to find a best clustering 

algorithm for remodularization. The proposed weighted dependency measurement 

scheme is capable of accurately predicting the actual dependency relations among 

software elements in a software system. This is because it combines all kinds of 

dependency relations with more importance given to the evolutionary relations. As 

the evolutionary relations represent co-change coupling between software elements 

and denotes the set of elements that undergo simultaneous modification. The co-

change coupling directly correlates with software defects [D’Ambros, 09]. Therefore, 

the remodularization based on the proposed dependency scheme is expected to 

improve the quality issues in software development and maintenance. The primary 

contribution of this paper includes: 

1. To empirically evaluate the role of various dependency relations in 

remodularization by formulating six different dependency schemes by 

considering them as an individual and in pairs. 

2. To propose a new weighted dependency measurement scheme based on the 

combined use of all three relations present among different software 

elements.  

3. To justify the proposed scheme by empirically evaluating it with other 

dependency schemes considered in step 1. 

1732 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

4. To study the effect of different clustering criteria under different dependency 

schemes on software remodularization.  

The rest of this paper is structured as follows: Section 2 gives the background 

study. Section 3 & 4 specifies the literature work and the proposed methodology. 

Section 5 describes the case study & Section 6 gives the experimentation details. 

Section 7 gives threat to validity and Section 8 provides the conclusion and future 

work. 

2 Background Study 

The software remodularization process being a two-step process: 1) measuring the 

dependency relations and, 2) to regroup software elements using clustering. This 

section explains these terminology & techniques. Since a lot of research volume is 

already present in literature, we have not covered each topic exhaustively; rather, the 

details relevant to our study are presented in the following subsections:  

2.1  Structural Dependency 

Structural dependency analysis has remained a key research field in software re-

engineering and remodularization. Different researchers have applied the structural 

dependency analysis at different granularity levels of the software such as statements, 

methods, classes, and architecture [STAFFORD, 01; Ferrante, 87; Vieira, 01]. It 

describes how the interaction between the software units (statement, methods, classes 

or packages) takes place that encompasses the architecture of a software system. In 

literature a total of sixteen types of structural relations is identified that may exist in 

an object-oriented software system [Briand, 99; Erdemir, 14; Maffort, 15]. Two 

software units P and Q are said to be structurally related if at least one of these 

relations exists among them. The structural relations are always directional in nature, 

i.e. if P is structurally related to another unit Q then it is not necessary that Q is also 

related to P by the same relation. Out of these sixteen structural relations, only eight 

types of relations are considered in this paper, as they majorly contribute in the 

measurement of dependency relations among software artifacts namely implements, 

extends, calls, returns, Is Of Type, Has PARAM, THROWS, and REFERENCES 

[Chhabra, 17]. 

2.2  Conceptual  Dependency 

Conceptual dependency tries to capture the domain-specific relations among software 

elements by analyzing the semantic information present in the source code in the form 

of lexemes. While coding a software system, different programmers try to use the 

domain specific names in form of names of classes, member variables, member 

functions, parameters, comments & other documentation related to software [Deissen, 

06; Caprile, 99; Arnaoudova, 10]. It means that if two classes belong to the same 

domain, then they possess higher conceptual similarity. In literature, lots of works 

have been proposed that aim at remodularization of a software system based on the 

information extracted from different parts of source code such as comments, class 

names, identifier names, method signature, etc. All such schemes are based on the 

1733Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

principle of using the concept of various Information-Retrieval (IR) techniques such 

as Vector Space Model (VSM), Latent Semantic Analysis (LSA) [William, 92].  

2.3 Evolutionary Dependency 

Nowadays, every software system is developed using some kind of Version Control 

System (CVS) that manages and stores the information about the changes made to a 

software system in the form of logs. These logs at any instant of time represent the 

snapshot of the current version of the software and what changes have been done so 

far. In literature, these logs are used to find out the evolutionary/logical/ co-change 

dependency among software. Based on the change history, two software elements are 

said to be evolutionary coupled if they have been simultaneously changed many 

times. To understand it considers a system consisting of five elements A, B, C, D, and 

E  together with commit information from change history as C1, C2, C3, C4, and C5 

of Figure 1. Each commit represents which elements are changed together at a 

particular instant of time (marked with X symbol). Here, element B and E are 

supposed to have a higher evolutionary dependency as both have a higher co-change 

relation as compared to other elements of the system. This relation is depicted with 

blue rectangles in the Figure 1. 

 

 C1 C2 C3 C4 C5 

A X  X X X 

B  X  X X 

C   X   

D X    X 

E  X X X X 

 

Figure 1: Evolutionary Dependency of Software Elements 

The evolutionary dependency is identified by means of association rule mining 

approach of data mining where the association among elements is represented as X 

=> Y [Agrawal, 93]. Here, X is called Antecedent and Y as Consequent. The 

association rule signifies that if event X happens then the event Y will also happen at 

the same time due to their higher possibility of occurring together. In software 

engineering, it denotes the possibility that if X changes in a commit, then Y will also 

undergo modification.  

To evaluate different association rules, two criteria are generally used, namely 

Support and Confidence. Support denotes how frequently a given set of items appears 

together in the dataset and Confidence denotes how many times a given association 

rule is found to be true. Choice of optimal minimum threshold values for support and 

confidence has a significant impact over evolutionary dependency. 

1734 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

2.4 Clustering 

Clustering may be defined as a process of dividing a set of data points/population into 

different groups. It is an important step in software remodularization because it aims 

at segregating groups having similar traits and features by assigning them to different 

clusters. Clustering can be hard, means that at any instant of time a given data point 

belongs to only one group (most suitable to remodularization) or soft, means a given 

data point can belong to multiple groups at any time. A lot of clustering techniques 

are discussed in literature viz Partition-Based, Hierarchical Agglomerate, Density-

Based & Search-Based Methods. Each of these clustering algorithms is based on an 

abstract model that represents the interdependencies among various elements 

extracted from the system to be re-engineered. The clustering process can be 

represented as an “Artifact Dependency Graph “(ADG), which is formalized as a 

quadruple (A, R, K, t), where- 

• A is a finite set of software artifacts 

• R is the finite multiset of dependencies among the software artifacts 

• K is a set of labels such as class, function, variable, function call, uses etc. 

• t is a mapping function �	 ∪ �	 → �, which provides a label for a given 

software artifact and dependency value. 

3 Literature Survey 

The key aim of this research paper is many folds: to investigate the effect of various 

dependency approaches and clustering criteria on the software remodularization by 

conducting an empirical study and to propose a new dependency measurement 

scheme. In literature, a large number of research approaches for software 

remodularization are already proposed. So, in this paper, the related work by different 

researchers is systematically divided into the following subsections based on the 

clustering criteria used: 

3.1 Partition-Based Software Remodularization 

In literature, many different approaches are proposed that aims at grouping software 

elements with high cohesion and lower coupling quality parameters [Antoniol, 01; 

Shaw, 03; Cimitile, 95]. Most of these proposed approaches make use of clustering 

based on detection of strongly connected components in the Module Dependency 

Graph (MDG) representation of the software system. The MDG representation of a 

software system gives information about the dependency strength among different 

modules of a software system. Wiggerts et al. studied remodularization as a clustering 

problem and proposed various techniques to measure the similarity criteria among 

different software elements [Wiggerts, 97]. Wu et al. conducted a comparative study 

of various clustering algorithms in the context of the software remodularization [Wu, 

05]. They used MoJoSim metric for the measurement of the authoritativeness of 

restructuring results. Bavota et al. utilized the structural and semantic relations among 

classes to construct a dependency graph [Bavota, 10; Bavota, 13]. They further 

performed the software remodularization by identifying strongly related chains of 

classes and putting them in a separate package. Corazza et al. also proposed an 

1735Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

approach to partition object-oriented software based on K-Medoids clustering 

approach and the extracted semantic information [Corazza, 10]. [Yu, 12] used the 

complexity metrics, based on the structural relations, for building a regression model 

for predicting the fault-prone software module. Yassin et al. proposed a combined 

machine learning approach that makes use of both K-Means clustering and Naive 

Bayes Classifier to reduce false detection and increasing the accuracy rate [Yassin, 

13]. [Scitovski, 14; Tzortzis, 14] have studied the k-means algorithm and its variants 

in data clustering. 

3.2 Hierarchical-Based Software Remodularization 

Maqbool and Babri have applied hierarchical clustering in the context of 

remodularization by recovering the underlying architecture [Maqbool, 07]. They also 

investigated the different measures that are helpful in this context by categorizing 

various similarity and distance measures into groups according to their characteristics. 

Mancoridis et al. proposed a collection of hierarchical clustering based algorithm to 

automatically recover the underlying modular structure using the source-code 

[Mancoridis, 98]. [Anquetil, 99] performed a comparative analysis of various 

agglomerative hierarchical clustering algorithms along with describing the entities 

and the coupling computation among different entities. Corazza et al. proposed an 

approach for dividing the software system into semantically related classes by using 

Hierarchical Agglomerative Clustering [Corazza, 11; Zhong, 16]. [Mitchell and 

Mancoridis, 01] proposed guidelines to compare the performance of different 

clustering algorithms for source code decomposition, while a more recent work by 

[Shtern, 09] introduced a method for the selection of a suitable clustering algorithm, 

given specific needs.  Beck et al. proposed a visualization approach that is capable of 

determining the current modularization criteria of a software system and 

simultaneously capable of comparing it with other software clustering criteria’s 

commonly being used in the literature [Beck, 16].  Sanner et al. Used hierarchical 

clustering to determine the effective placement of controllers in software-defined 

networks [Sanner, 16]. Bishnoi et al. proposed an approach for software 

remodularization that makes use of a hierarchical clustering algorithm optimized with 

PSO [Bishnoi, 16].  

3.3 Search-Based Software Remodularization 

According to the study conducted by Wu et al. when a large-sized software system is 

remodularized using classical clustering algorithms, then they are not easily 

extensible [Wu, 05]. So, in literature, the software remodularization is also studied by 

modeling the problem as search based and applying various metaheuristics to solve 

the problem. Many researchers studied the problem by modeling as a single-objective 

problem to improve the cohesion and coupling among software elements [Abdeen, 

09; Bavota, 11; Bavota, 13; Praditwong, 11]. [Abdeen, 09] proposed and implemented 

a heuristic search-based approach to automate the process of optimizing the 

dependencies. The authors also targeted minimizing the cyclic dependency among 

packages.  [Chhabra, 17] proposed an approach to improve the modular structure by 

considering lexical and structural aspects and modeling the remodularization problem 

as single and multi-objective search-based problem. Mitchell and Mancoridis 

1736 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

proposed a search-based meta-heuristic tool called Bunch that supports for various 

algorithms, namely, Hill-Climbing, Genetic and Simulated Annealing [Mitchell, 06].  

The authors further used the Bunch clustering tool to perform the reverse engineering 

task in order to infer the underlying system abstraction [Mitchell, 08]. They used a 

search-based strategy in order to check the enormous set of graph partitions. 

[Ferrucci, 13] applied the multi-objective search-based approach to help balance the 

project risk and duration against overtime planning. [Barros, 14] performed a case 

study to evaluate the applicability of search-based remodularization techniques in 

software architecture recovery context with large sized open source software. Bavota 

et al. proposed an interactive genetic algorithm (IGA) to perform the software 

remodularization by putting the software developers in the loop [Bavota, 14]. Their 

work was motivated by the work of [Praditwong, 11; Bavota, 12; Abdeen, 13]. 

Similarly, Mkaouer et al. proposed a many-objective based remodularization 

approach that makes use of NSGA-III [Mkaouer, 15]. [Amarjeet, 17] concludes that 

metaheuristic algorithms are beneficial in software remodularization and proposed a 

harmony search-based remodularization solution. The authors in the paper [Hwa, 17] 

proposed a multi-factor search-based module clustering approach. The authors also 

introduced two different search-based variations of multi-factor module clustering and 

compared them with single-factor remodularization. 

This paragraph of the paper discusses the pros and cons of different software 

remodularization approaches discussed in the above sub-sections. The partition-based 

approaches (K-Means and K-Medoids) are fast, robust, and easier to understand. But, 

the main limitations of these approaches are- the total number of clusters (modules) in 

the remodularized system must be known in advance, sensitivity to noise and the 

outliers, unable to detect hierarchical clusters (clusters within clusters) and sometimes 

these result in local optima while performing clustering. The Hierarchical-based 

remodularization approaches unlike the partition-based approaches are free from an 

initial selection of a total number of clusters in the system, and can easily detect 

nested clusters. However, these approaches are still sensitive to the noise present and 

outliers in the input data, and they are dependent on the arbitrary decision regarding 

selection of the distance metric and the linkage criteria used. Finally, the search-based 

approaches are metaheuristic in nature and they are expected to provide near optimal 

results, and they are free from local optima. However, the main limitations of these 

approaches include a dependency on the quality of the chromosomes used and this 

technique also suffer from degeneracy (multiple chromosomes representing the same 

solution). 

The most of the remodularization approaches proposed in the literature consider 

one specific dependency relation and/ or one particular clustering algorithm. 

Moreover, the literature clearly suggests and highlights the use of importance of many 

types of dependencies. Many researchers have reported the usefulness of different 

clustering approaches as well as co-change dependency relations for better 

modularization quality. However, none of the existing approaches have investigated 

the integrated effect of dependencies along with a suitable clustering technique. 

Further, no study has been carried out to identify the weights for the integration of 

three types of dependencies. These research gaps and facts motivated us to fill this 

research gap by proposing a new weighted dependency measurement approach in 

which more importance is given to evolutionary relations. 

1737Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

 

Figure 2: Proposed Methodology to Evaluate Effect of various Dependencies & 

Clustering Strategies in Remodularization 

4 Proposed Methodology 

A software remodularization process aims at rearranging the software elements into 

packages and sub-packages in order to increase the software modularity by decreasing 

coupling and increasing cohesion quality parameters. The remodularization process 

helps in minimizing the maintainability efforts at the developer's end. Choice of 

effective dependency measurement technique and clustering criteria can be very 

useful to get a good remodularization.  

In this paper, the first step of remodularization i.e. measurement of the 

dependency relation is first studied from six coupling-schemes, namely Structural 

(ST), Conceptual (CT), Evolutionary (EV), Structural + Conceptual (ST+CT), 

Structural + Evolutionary (ST+EV) and Conceptual + Evolutionary (CT+EV). This 

study helps us determine that none of the six designed coupling-schemes are perfect 

in determining the actual dependency relations among different software elements 

with higher precision and recall score. This motivates us to combine all three 

dependency relations together and formulate a new weighted dependency 

measurement metric viz Structural + Conceptual + Evolutionary (ST+CT+EV). Later 

on, the proposed metric is also considered for evaluation along with other six 

coupling-schemes. To evaluate the second step of remodularization i.e. the effect of 

clustering criteria, we studied it from six clustering-schemes, namely K-Means, K-

Medoids, (SLINK) Single Linkage Hierarchical Agglomerate Clustering (HAC), 

Clustering 

Evaluator 

Software 

Artifacts 

Inputs 

Conceptual  

Dependency Analyzer 

Structural  

Dependency Analyzer 

Evolutionary 

Dependency Analyzer 

Structural 

Dependency Matrix 

Conceptual 

Dependency Matrix 

Evolutionary 

Dependency Matrix 

1 

2 

1. K-Means 
2. K-Medoids 

3. Single-Linkage HAC (SLINK) 

4. Average-Linkage HAC 
(ALINK) 

5. Complete-Linkage HAC 

(CLINK) 

6. NSGA-III 

Clusterin

g Criteria 
Clustering 

Analyzer 

3 
4 

1738 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

(ALINK) Average Linkage HAC, (CLINK) Complete Linkage HAC and search based 

approach (NSGA-III). In this paper, each of the clustering criteria is again evaluated 

against seven coupling-schemes formulated above for determining the dependency 

among various software elements in a software system. It helps to evaluate the 

suitability of each of the clustering criteria for each of the dependency method for a 

given software system. Figure 2 diagrammatically shows the procedure adopted 

during the evaluation of the effect of various dependencies schemes and clustering 

criteria (as formulated above) regarding software remodularization.  

During the evaluation procedure, the following four steps are followed in 

sequence and finally their results are analyzed. 

 

Step 1: Extraction of the structural, conceptual and evolutionary relations among 

software elements using different software artifacts.  These relations are later 

used to model dependencies among different software elements.  

Step 2:  The extracted dependency relations are represented in the form of software 

dependency matrix (SDM) by considering different relations as an 

individual, pairwise and all together. In these SDM’s, every element of the 

matrix represents the coupling/ dependency strength between the 

corresponding pair of software elements. Here, the different combination of 

dependency relations helps in modeling their ability to capture the actual 

dependency relations. Also, while combining different dependency relations 

together, it is very important to determine, in what ratio their weights should 

be considered in order to get optimal results. In this paper, a hit and trial 

method is used to determine the weight proportion of different dependency 

relations while combining them together. The detailed description of this 

method is presented in the subsection entitled “Determining Optimal 

Weights for Combining Dependency Relations” below this section. 

Step 3:   The software system is remodularizd based on different clustering techniques 

as shown in Figure 2 and utilizing the dependency matrices obtained in step-

2. The aim of performing this step is to find out which clustering scheme will 

outperform others when studied on different software systems under 

different coupling schemes. This helps the researchers in determining which 

clustering algorithm should be used and under what situations. 

Step 4:  The obtained clustering results of step-3 are evaluated using expert criteria 

approach to have their effect on software remodularization. 

4.1  Structural Dependency Analyser 

Structural dependency analyzer helps to calculate the dependency among different 

elements by analyzing the structural relations such as method calls, variable use etc. 

present in the source code of the software. In the present study, total eight structural 

relations are considered as shown in Table-1. Each of this relation is assigned relative 

weights w1, w2 … w8 that varies between [0…1]. The weight wi is given by the 

formula: 
 

���	
���	���ℎ
	� = ��
		��. ��	�
��	
���	��	���	
��� ∈ 
ℎ�	���
� 

��
	�	��. ��	���	
��� ∈ ���
�  (1) 

1739Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

 

Relation 

ID 
Relation Name 

Relative 

Weight 

Relation 

ID 

Relation 

Name 

Relative 

Weight 

r1 IMPLEMENTS w1 r5 THROWS w5 

r2 EXTENDS w2 r6 Is Of Type w6 

r3 CALLS w3 r7 REFERENCE w7 

r4 RETURNS w4 r8 Has PARAM w8 

Table 1: Different Structural Relations under Study 

Using the frequency of each relation, ri and its corresponding weight wi, the structural 

dependency (StD) is calculated for each pair of software element Ei and Ej as:  

�
!	"#� , #%& 	= 	' �� ∗ �
)
�*+

 

Here, fi is the frequency of structural relation of type ri between Ei and Ej. The overall 

structural dependency matrix (StDM) is computed using the value of �
!"#� , #%& as: 

�
!,-�, ./ = 	''�
!	-#� , #%/
|1|

%*+

|1|

�*+
 

Here, |2| is the total number of the software elements in the system. Since, the matrix 

StDM is not symmetric due to the directional nature of structural relations. So, to do 

this, StDM (i, j) is calculated as mentioned below just to possess symmetry relation: 

 

�
!,-�, ./ =  	3"�
!,-�, ./, �
!,-., �/& 
4.2   Conceptual Dependency Analyser 

The conceptual dependency analyzer helps to calculate the dependency among 

different software elements by analyzing the underlying conceptual domain 

information embedded by the software developers. Nowadays, different software is 

developed by following proper standards and guidelines for software development. 

That means if two or more software elements belong to a similar domain, then, they 

are supposed to have similar vocabulary [Rathee, 17, Bavota, 13]. In this study, the 

conceptual information is extracted by tokenizing the source code and considering 

tokens from six parts as shown in table- 2. 

The extracted tokens are first normalized using LSI followed by removing the 

language specific keywords, removing all stopwords of English language and dividing 

tokens into their root form by applying Porter’s Stemmer Algorithm.  In this paper, a 

weighting scheme for tokens is tf-idf based and the weight of the term t present in the 

i
th

 part of the document, d Ԑ D is calculated using the following formula: 

(2) 

(3) 

(4) 

1740 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 


� − �5�-
, �, 5/ = 
�-
, �, 5/ ∗ ��� �
1 +|5 ∈ !: 
 ∈ -5, �/| 

 

 

Table 2: Different parts of source code from which tokens are extracted for a given 

source element 

Here, D = { d1, d2, …., dN} is the set of all the software elements, t Ԑ T where T is the 

set of all tokens present in the system and � = |!| is the count of a total number of 

software elements. Also, tf (t, i, d) represents the term frequency of token t present in 

the software element d belonging to i
th

 part of the source code of d. After extracting 

and weighing tokens, each software element d is represented in the form of a vector 

representing all the tokens and their corresponding weights. Here, if the token is not 

present, then its weight is taken as zero. The conceptual dependency matrix (CtDM) is 

calculated using cosine-based similarity measure as shown below: 

2
!,-�, ./ = 9� . 9%
‖9�‖ ∗ ;9%; = 	

∑ -=,� ∗ =,%>=*+ /
?∑ =,�@>=*+ ?∑ =,%@>=*+

 

Here, Vi = (wi1, wi2… win) and Vj = (wj1, wj2… wjn) is the vector representation of 

element Ei and Ej respectively. The CtDM is a square matrix and its values vary 

between [0…1]. This matrix is always symmetric in nature. 

4.3 Evolutionary Dependency Analyser 

The evolutionary dependency analyzer parses the information present in the change 

history of a software and calculates the evolutionary dependency among software 

elements. It works in two steps: 1) performing different pre-processing tasks on the 

change history log and 2) building a co-change graph from the pruned information by 

applying association rule mining as discussed in Section 2. 

 

Step 1: Pre-Processing Tasks 
 

To effectively study the dependency relations following pre-processing tasks is 

performed on the information extracted from the repository: 

S.No. 
Source- Code 

Part Name 
Description 

1 Comments 
includes comments and Javadoc part of the source 

code 

2 Class Names includes class declaration part of the source code 

3 Attribute Names includes attribute definition part of the source code 

4 Method Names 
includes all the method signature statements of the 

code 

5 Parameters 
attribute names passed as parameters to methods in 

the code 

6 
Source Code 

Statements 

statements present in the definition of each method 

of code 

(6) 

(5) 

1741Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

1. Considering commits associated with maintenance only. As a VCS repository 

contains a large amount of information related to changes made to software 

artifacts. However, not every information present represent the dependency 

relations. Therefore, we removed all such transactions that are not related to 

software maintenance. During the study, all the considered commits are related to 

feature change, bug fixes or other improvements in the system. 

2. Removing commits containing transactions that do not reflect the change made at 

the class level. Since remodularization is mainly related to software elements 

(classes, packages, methods etc.). Therefore, it is a good idea to leave out all 

those commits that do not involve making changes to software elements. This 

helps in measures that are more accurate.  

3. Filtering out the commits that show transactions which affect a large number of 

software elements at the same time. During our manual analysis of commits 

associated with different software, it is found out that such commits do not 

represent the actual evolutionary dependency in the system. This is because such 

commits generally represent software quality improvement tasks such as dead 

code elimination or refactoring related task such as renaming on a software 

system. So, it is better to leave out all such commits.  

4. Splitting commits that involve changes related to multiple maintenance issues 

into individual issues. Sometimes more than one maintenance issues are 

simultaneously handled by developers and all changes to such issues are stored in 

single commits. So, it is better to separate such issues into different independent 

commits in order to have a better view of an evolutionary coupling. 

5. Merging commits that are related to the same maintenance issue. By manual 

inspection of the change history, it was observed that sometimes the changes 

related to a single issue are made in parts. So, it is better to merge all such 

commits which represent a change to a single maintenance issue in order to have 

a better view of an evolutionary coupling. 

6. Removing duplicate commits. As due to splitting or merging, there are chances 

that there exists duplicity among commits. So, all such duplicity is removed. 
 

Step 2: Co-Change Graph 
 

After performing the step 1, the change history information is represented as a set C = 

{C1, C2… Cn}, where each Ci represents a commit denoting the number of elements 

that undergo modification simultaneously. In this step, an apriori association rule 

mining algorithm is applied to C. These algorithms extract sets of items that represent 

the frequently co-changed elements that are likely to be linked together. All such co-

changed sets may not be evolutionary coupled. So, to evaluate them, Support and 

Confidence measures are used based on min_support and min_confidence values. 

Support for an association rule A = B is the measure of the probability that both the 

items X and Y appears together in an event and is calculated as: 

�C����
-A = B/ = �C����
-AB/ = 2DE 

Where CXY is the total number of commits in the change history in which both X and 

Y appeared together. Similarly, Confidence for an association rule A = B denotes the 

(7) 

1742 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

probability that item Y will appear in a commit operation provided item X appears in 

that commit operation. It is calculated by using the following formula:  

2����5��F�-A = B/ = �C����
-A = B/�C����
-A/ = 2DE2D  

Where CX is the total number of commits in which item X appeared independently or 

in association with other items and CXY is the total number of commits in the change 

history in which both X and Y appeared together. For each pair of the software 

elements, we calculate both support and confidence measure and later using 

min_support and min_confidence threshold values, we created the co-change graph G 

= (V, E) where V is the set of all software elements and E is the set of edges between 

them. Finally, using the co-change graph we construct the evolutionary dependency 

matrix EvDM. 

4.4 Clustering Analyser 

The Clustering Analyser performs clustering by considering various dependency 

relations in the form of SDM and clustering criteria as inputs. Here, total 42 test cases 

(7 dependency X 6 clustering schemes) are considered and their clustering output is 

recorded. The various SDM measures the ability of different dependency schemes in 

predicting the actual dependency among software elements. Since different schemes 

have different measuring capabilities, so, clustering output is different in each case. 

4.5 Clustering Evaluator 

The clustering evaluator evaluates the clustering results obtained after considering 

each of 42 test cases. In this paper, the evaluation is done using expert criteria 

approach in which we compare obtained clustering result with the well-known gold 

standard of the corresponding software. Gold Standard/ Authoritative Partition for 

every software system is obtained by rigorous analysis by a team consisting of 

software developers having an industry background with varied experience in the 

software development and postgraduate students who are well familiar with Java-

based software development. Together they analyzed the software systems rigorously 

& calculates the gold standard by using the following rules: 

1. The original software system’s architecture as available with the Java 

Archive (JAR) file of an associated software system is taken into account in 

determining the gold standard. 

2. If a sub package in the original structure has software elements less than or 

equal to five are merged with its parent package. 

3. If, the original structure is not available, then the underlying package 

structure is used for determining the gold standard. 

4. After following step 1- 3, the same structure of the software system is 

presented to various software developers and their comments are obtained. 

5. Finally, after considering comments and opinion of software developers 

regarding software system structure, the expected gold standard is decided. 

(8) 

1743Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

4.6 Determining Optimal Weights for Combining Dependency Relations 

This subsection of the paper explains the hit and trial method used to determine the 

optimal weights used for combining different dependency relations together in order 

to model a new dependency scheme. In hit and trial method, different weighing 

schemes are decided randomly and are used to model different dependency schemes. 

Finally, the obtained dependency schemes are evaluated & the one that gives the 

overall best result is selected as an optimal weight value. In this paper the randomly 

decided weights are (0.4, 0.6); (0.6, 0.4); (0.5, 0.5); (0.2, 0.8) and (0.8, 0.2) for 

pairwise dependency schemes and (0.3, 0.3, 0.3); (0.25, 0.25, 0.50); (0.6, 0.2, 0.2); 

(0.2, 0.6, 0.2) and (0.2, 0.2, 0.6) for a scheme which combines all three dependency 

relations together. All these random weights constitute the considered weighing 

scheme, which is empirically evaluated for modeling the actual dependency relations. 

The obtained results are shown in Figure 3. Here, the y-axis denotes an F-measure 

value and x-axis represents the weighing scheme used under different dependency 

schemes. Here for independent dependency relations, no weighing scheme is used. 

For other dependency schemes, different weighing schemes are used and the 

corresponding results are obtained. 

From the results depicted in bar chart diagrams for different software systems, it 

is clear that the change history of a software plays an important role in 

remodularization & when it is combined with other forms of dependency relations viz 

SEM, ST and/ or SEM+ST then a higher weight assigned to change history relations 

is capable of accurately model the overall dependency relations. The weights mainly 

(0.4, 0.6) and (0.2, 0.8) used in dependency schemes, namely SEM+CH & ST+CH 

gives better results as compared to weights (0.6, 0.4) and (0.8, 0.2). These results 

motivate us to use the change history in a combination with conceptual & structural 

dependency relations and to propose a new dependency measurement scheme called 

SEM+ST+CH and to conclude that a weight factor of 60% or more assigned to 

evolutionary relations always helps in modeling the dependency relations with higher 

accuracy. 

The above conclusion regarding 60% or higher weight factor to evolutionary 

relation holds in our proposed dependency scheme also. Here, the weight (0.2, 0.2, 

0.6) gives more accurate results as compared to (0.2, 0.6, 0.2) and (0.6, 0.2, 0.2). 

5 Case Study 

This section describes the experimentation steps carried out to evaluate the effect of 

different dependency and clustering criteria on remodularization. It describes the 

definition and the planning done before actual experimentation is done [Yin, 03]. 

5.1 Definition and Context 

Based on the Goal Question Metric (GQM) formulation [Mashiko, 97], the goal of the 

study is to evaluate which combination of dependency and clustering criteria used 

affects most during the remodularization of the software system. The GQM 

formulation helps us in deciding the important aspects of our study well in advance 

before the actual experimentation [Wohlin, 00]. 

1744 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

The experimentation is carried out on four open source standard Java software 

systems belonging to different domains. The idea behind the selection of these 

software systems is that they are widely being used among the research community 

[Rathee, 17; Amarjeet, 17]. Moreover, these are standard software systems whose 

change history has been properly maintained by the developers. This gives us an 

opportunity to mine more accurate underlying data. Table-3 summarizes the subject 

systems together with basic metrics about them. The first column is the ID, the second 

and third column describes the name and the version of the subject system. Column 

fourth and fifth gives a total number of classes and KLOC. The sixth and seventh 

column denotes the total number of commits present in change history and the time 

slab considered for change history. The eighth column gives a short description of the 

subject system.  

Table 3: Subject Systems Considered for Experimentation 

5.2 Experimentation Planning 

In order to evaluate the effectiveness of dependency and clustering criteria in software 

remodularization on the different subject systems, the steps shown in Figure 2 are 

carried out one by one. For each of the subject system, the system is considered as a 

Java Archive (JAR) file of the specified version and both the source and binary 

version file are taken for the study. The structural information is extracted using 

Structure 101 tool and corresponding dependency matrix is determined using the 

custom-made software in Java. Similarly, the source code version of the JAR file is 

used to determine the conceptual dependency matrix by extracting the elementary 

tokens present in the source code. This step is also carried out with the help of a 

custom-made software in Java. In order to determine the evolutionary information, the 

change history information from beginning till the version taken under the study of 

different subject systems is extracted from the GitHub repository. A custom-made 

tool is designed in Java to process and analyze the extracted change logs. It creates a 

co-change graph by analyzing the change logs and finally the co-change graph is 

converted into an evolutionary dependency matrix.  

As our empirical evaluation procedure is based on the expert criteria approach & 

is widely used by researchers [Risi, 12; Scanniello, 10; Wu, 05; Bittencourt, 09]. So, 

first, it is necessary to identify an authoritative partition of each subject system. The 

approach used for this is already discussed in Section IV of this paper. The rationale 

behind this approach is simply that if a given approach is capable of repartitioning the 

ID 
Soft. 

Name 
Version 

# 

Classes 
KLOC 

# 

Commits 
Period Description 

1 JFlex 1.5 61 6.9 1254 
2006 to 

2017 

A Java lexical 

generator  

2 Junit 4.10 164 15.0 5643 
2003 to 

2017 

A Java testing 

framework  

3 
Comm

ons-io 
2.5 62 6.13 3211 

2007 to 

2017 

Apache 

library  

4 JPF 2.5.1 89 8.7 1156 
2002 to 

2017 

Plug-in 

framework  

1745Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

considered bunch of classes into its authoritative structure, then that approach is 

considered sufficient and it also performs for any other software system [Wu, 05]. 

5.3 Research Questions and Variables 

As the case study in the current paper focuses on evaluating the effect of different 

dependency schemes and clustering criteria on software remodularization, so, the 

following hypothesis and research questions are formulated:  

 

HP 0: there is no significant statistical difference between the data of various SDM 

(Null Hypothesis). 

HP 1: there is a significant statistical difference between the data of various SDM, 

which is further used for clustering, and evaluation under different schemes 

(Alternate Hypothesis). 

RQ 1: how the choice of dependency measurement criteria viz structural, conceptual, 

and evolutionary or their combination in a pair of two and three affects the 

software remodularization results? 

RQ 2: how the choice of different clustering criteria affects the results of software 

remodularization based on the choice of dependency considered in RQ1? 

 

The final clustering produced during the evaluation should closely resemble with the 

given authoritative partition [Corazza, 11]. The closeness of the obtained cluster PC 

and the authoritative partition (Gold Standard) PA are judged based on Precision, 

Recall and F-Measure metrics [Powers, 11]. These metrics are evaluated at the micro 

level by calculating these values at the package level. The overall value is obtained by 

averaging micro values for each package. The values of these metrics vary between 0 

and 1. Higher the value of the f-measure metric better the approach used for 

remodularization.  

5.4 Statistical Analysis 

To test the validity of the considered hypothesis, Mann-Whitney-Wilcoxon Test is 

performed [Conover, 98]. Using this test, we can decide whether or not the population 

distributions are identical without assuming them to follow the normal distribution. It 

helps to determine if the variations seen in the obtained results are random or are 

statistically significant. Further, if statistically significant, then they are due to the fact 

that the considered dependency schemes capture different dimensions of the actual 

dependence among different software elements. To apply this test, we randomly select 

samples from the population and then corresponding p-value obtained for the 

considered sample after applying the Wilcoxon Test are compared. Here, the obtained 

F-Measures values of a considered software system under different clustering 

schemes constitute the considered population. During the test, the obtained average p-

value is 0.00185, which is significantly less than the considered minimum threshold 

of 5% (0.05). Therefore, we rejected the null hypothesis (HP0) and supports the 

alternate hypothesis (HP1) for the obtained dependency data. The hypothesis, HP1, 

signify that the variation in the results is in fact due to the fact that different 

dependency schemes capture a different aspect of the actual dependency relations in a 

software system.  

1746 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

Figure 3: Representation of F-Measure Value of different software systems 

corresponding to different weighing schemes considered. 

0

0,1

0,2

0,3

0,4

0,5

0,6

F
-M

e
a

su
re

 V
a

lu
e

s

Weighing Schemes

JUnit 4.5

- .5,.5 .4,.6 .6,.4 .2,.8

.8,.2 .3,.3,.3 .6,.2,.2 .2,.6,.2 .2,.2,.6

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

F
-M

e
a

su
re

 V
a

lu
e

Weighing Schemes

Commons-io 2.5

- .5,.5 .4,.6 .6,.4 .2,.8

.8,.2 .3,.3,.3 .6,.2,.2 .2,.6,.2 .2,.2,.6

0

0,1

0,2

0,3

0,4

0,5

0,6

F
-M

e
a

su
re

 V
a

lu
e

Weighing Schemes

JPF 2.5

- .5,.5 .4,.6 .6,.4 .2,.8

.8,.2 .3,.3,.3 .6,.2,.2 .2,.6,.2 .2,.2,.6

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

F
-M

e
a
su

r
e
 V

a
lu

e

Weighing Schemes

JFlex 1.6.1

- .5,.5 .4,.6 .6,.4 .2,.8

.8,.2 .3,.3,.3 .6,.2,.2 .2,.6,.2 .2,.2,.6

1747Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

6 Results And Discussion 

In this section of the paper, the results obtained after empirically evaluating the 

software remodularization problem from different aspects (evaluating them from 

dependency and clustering point of view) is presented. Here, results for both the 

proposed dependency measurement metric as well as other formulated dependency 

schemes are presented for the sake of comparison. Finally, a discussion regarding the 

implications of the obtained results is presented. Table- 4 show the obtained values of 

precision, recall, and f-measure for different subject systems studied under different 

software remodularization scenarios (total 42 schemes designed by considering 

dependency and clustering criteria).   
 

RQ 1: how the choice of dependency measurement criteria viz structural, 

conceptual, and evolutionary or their combination in a pair of two and 

three affects the software remodularization results? 

Figures 4-7 show the boxplots for different F-Measure values obtained by considering 

different dependency measurement schemes (including the proposed dependency 

measurement metric). It is clear from the plots that the proposed approach that makes 

combined use of weighted structural, conceptual and evolutionary dependency 

relations performs far better than any other dependency measurement schemes 

formulated by taking dependency relations as an individual or in among different 

software elements. In the case of Figure 5, the accuracy (measured as an F-Measure 

score) in the case of the proposed dependency scheme (ST+CT+EV) is 76% and is 

much higher than the corresponding score in other dependency schemes. Moreover, 

whenever the evolutionary relations are combined with structural and conceptual 

relations, it shows an increase in F-Measure score by 15% to 8% respectively. In the 

case of JFLEX software (Figure 4), the accuracy of the proposed dependency scheme 

is highest and is 72%. Similarly, the contribution of evolutionary relations in 

combination with structural and conceptual relations separately improves the result by 

20% and 10% respectively. Similarly, with Commons-IO and JPF software system 

(Figures 6 & 7 respectively), the accuracy in the case of the proposed dependency 

scheme is highest as compared to other dependency schemes. This justifies the 

feasibility of our proposed dependency measurement scheme. 

Also, it is clear from the boxplots that the change history plays an important role 

in representing actual dependency relations among software elements. It is also clear 

that whenever the change history relation (evolutionary relations among different 

software elements) is paired with any of the other dependency relation, namely 

structural or conceptual, then the accuracy of the software remodularization process 

increases (indicated by higher values of the F-Measures in pairs as compared to 

individual scores). This justifies our finding that the change history plays an important 

role in accurately determining the dependency relations among software elements and 

also the proposed dependency measurement metric which is defined as a weighted 

combination of structural, conceptual and evolutionary relations, as it outperforms the 

other dependency measurement schemes earlier formulated in this research paper. 

1748 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

 

Figure 4: Boxplots under different 

Dependency Schemes for JFlex. 

Figure 5: Boxplots under different 

Dependency Schemes for Junit. 

Figure 6: Boxplots for Commons-io. Figure 7: Boxplots under different 

Dependency Schemes for JPF. 

1749Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

RQ 2: how the choice of different clustering criteria affects the results of 

software remodularization based on the choice of dependency considered 

in RQ1? 

 

Figure- 8 shows the boxplot between F-Measure value and different clustering 

schemes. This helps us visualize the role of different clustering algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8: Boxplot showing performance of different Clustering Schemes. 

In Figure 8, our proposed dependency scheme is considered during evaluation. 

Here, the F-Measure value against different clustering scheme denotes their ability in 

representing how close the obtained clusters matches to the clusters identified 

manually using the expert criteria approach. From the boxplot, it is clear that 

evolutionary-based clustering (NSGA-III) outperforms other clustering algorithms 

given a dependency measurement scheme. Further, the partition-based clustering 

algorithm (K-Medoids) and hierarchical-based clustering algorithms (ALINK & 

CLINK) are nearly equal in clustering different software elements given a 

dependency measurement scheme. The obtained results in these cases are comparable 

to that of NSGA-III. Whereas, the SLINK clustering algorithm performs average in 

clustering while the K-Means clustering algorithm is least in performance. Here, it is 

observed that the NSGA-III clustering algorithm outperforms the rest of the clustering 

algorithm under the proposed dependency scheme (that makes combined use of 

structural, conceptual and evolutionary relations). This is because the NSGA-III is a 

non-dominated sorting genetic algorithm and it has a slight edge as compared to K-

Medoids, ALINK & CLINK when applied to large sized software systems. 

 

 

 

1750 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

The legends used in this table are:- S-1: Structural; S-2: Conceptual; S-3: Evolutionary; S-4: 

Structural + Conceptual; S-5: Structural + Evolutionary; S-6: Conceptual + Evolutionary; S-7: Structural 

+ Conceptual + Evolutionary; P: Precision; R: Recall; F: F-Measures 

Table 4: Obtained Results under different dependencies and clustering schemes 

for different software systems under study. 

Soft. Remodul. 

Criteria 
JFlex JPF JUnit Commons-io 

Clust. Dep.  P R F P R F P R F P R F 

K
-M

ean
s 

S-1 .80 .35 .48 .54 .38 .45 .93 .72 .76 .79 .16 .34 

S-2 .69 .62 .66 .79 .37 .50 .90 .67 .69 .63 .10 .70 

S-3 .54 .64 .59 .59 .37 .46 .94 .61 .72 .10 .44 .10 

S-4 .85 .65 .72 .49 .42 .45 .92 .76 .74 .75 .15 .53 

S-5 .80 .35 .48 .51 .46 .48 .92 .68 .73 .82 .04 .35 

S-6 .90 .55 .69 .40 .39 .39 .91 .65 .71 .34 .15 .52 

S-7 .74 .57 .64 .82 .38 .52 .93 .75 .74 .57 .05 .60 

K
-M

ed
o

id
s 

S-1 .83 .36 .50 .63 .40 .49 .94 .76 .75 .85 .16 .58 

S-2 .95 .59 .73 .82 .37 .51 .91 .64 .75 .45 .21 .56 

S-3 .91 .39 .55 .59 .36 .45 .92 .56 .59 .86 .15 .64 

S-4 .92 .68 .73 .51 .35 .42 .93 .63 .74 .83 .14 .56 

S-5 .83 .36 .50 .59 .39 .47 .91 .65 .64 .39 .14 .56 

S-6 .94 .56 .70 .50 .40 .44 .93 .67 .71 .37 .12 .50 

S-7 .66 .56 .60 .82 .39 .53 .93 .70 .76 .89 .13 .73 

S
L

IN
K

 

S-1 .83 .36 .50 .62 .35 .45 .86 .38 .53 .80 .10 .65 

S-2 .95 .59 .73 .84 .37 .51 .96 .59 .73 .84 .09 .62 

S-3 .91 .39 .55 .59 .36 .45 .92 .40 .56 .86 .14 .61 

S-4 .88 .56 .69 .85 .36 .51 .92 .58 .71 .80 .13 .55 

S-5 .80 .35 .48 .84 .37 .51 .91 .62 .72 .90 .10 .52 

S-6 .94 .56 .70 .59 .39 .47 .93 .63 .72 .72 .13 .55 

S-7 .90 .58 .71 .88 .37 .52 .94 .67 .75 .89 .11 .72 

A
L

IN
K

 

S-1 .83 .36 .50 .49 .38 .43 .83 .35 .49 .89 .18 .65 

S-2 .95 .59 .73 .82 .37 .51 .84 .61 .70 .70 .20 .70 

S-3 .91 .39 .55 .59 .37 .46 .92 .40 .56 .69 .04 .64 

S-4 .88 .56 .69 .84 .37 .51 .85 .65 .72 .72 .09 .57 

S-5 .80 .35 .48 .84 .37 .51 .86 .53 .68 .77 .11 .55 

S-6 .94 .56 .70 .72 .41 .52 .90 .67 .73 .80 .15 .56 

S-7 .87 .59 .70 .82 .37 .51 .93 .72 .76 .87 .17 .72 

C
L

IN
K

 

S-1 .86 .38 .52 .61 .38 .47 .93 .72 .76 .81 .14 .57 

S-2 .90 .64 .75 .82 .37 .51 .90 .67 .69 .63 .11 .70 

S-3 .91 .39 .55 .59 .36 .45 .94 .61 .72 .87 .38 .60 

S-4 .87 .58 .70 .66 .38 .48 .92 .76 .74 .66 .10 .56 

S-5 .91 .64 .75 .82 .37 .51 .92 .68 .73 .91 .45 .58 

S-6 .83 .36 .50 .47 .40 .43 .91 .65 .71 .65 .13 .56 

S-7 .87 .58 .70 .78 .41 .54 .93 .75 .74 .89 .15 .72 

N
S

G
A

-III 

S-1 .90 .67 .69 .86 .38 .53 .88 .54 .62 .86 .38 .53 

S-2 .94 .61 .72 .96 .59 .73 .93 .65 .73 .96 .59 .73 

S-3 .92 .64 .70 .92 .40 .56 .92 .64 .70 .92 .40 .56 

S-4 .91 .66 .70 .92 .58 .71 .92 .68 .71 .92 .58 .71 

S-5 .91 .66 .70 .91 .62 .72 .93 .66 .70 .91 .62 .72 

S-6 .92 .69 .72 .93 .63 .72 .92 .64 .70 .93 .63 .72 

S-7 .94 .72 .75 .94 .67 .75 .94 .75 .78 .94 .67 .75 

1751Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

Based on the obtained values of precision, recall and f-measure for different 

studied software systems, it is concluded that the proposed weighted dependency 

measurement scheme, to measure the dependency relations by combined use of 

structural, conceptual and evolutionary relations among software elements, 

significantly improves the software remodularization results. The obtained results are 

much better as compared to other dependency measurement schemes formulated by 

considering structural, conceptual and evolutionary as an individual or as pairs. The 

proposed dependency measurement scheme performs well with different clustering-

schemes taken into consideration. In addition, based on the results, the evolutionary 

search-based clustering algorithm (NSGA-III) outperforms the other clustering 

techniques, whereas the results of hierarchical clustering techniques (ALINK & 

CLINK) and K-Medoids are comparable with it. The least performer clustering 

algorithm is K-Means. The reasons behind getting a high value of precision and low 

value of recall that results in slightly improved values of the F-Measure is that the 

proposed weighted dependency scheme is capable of better capturing the actual 

dependency relations among different software elements. 

7 Threats to Validity 

Three threats to validity [Maxwell 2014] to our proposed research methodology are 

identified. First, the obtained results are based on the authoritative partition of a 

software system, which is a subjective decision and may differ from professionals, 

resulting in some deviations in the obtained authoritative partition [Arisholm, 04].  

The second threat is about the generalization of the obtained results. The proposed 

research methodology is applied to four open source software systems, and this risk 

has been minimized by taking software systems belonging to different domains and of 

variable sizes. The third threat to validity is regarding the determination of weights 

used while combining various dependency relations. Ideally, all possible 

combinations of weights should be considered, but it is practically impossible. Thus, 

the weights are determined using hit and trial method and all major possibilities have 

been considered to minimize this threat. 

8 Conclusion And Future Work 

Having modular design is always a desirable characteristic of software engineering & 

remodularization being one of the approaches to enhance the modular structure of a 

software. The accuracy of any remodularization approach is affected by two factors: 

dependency measurement and clustering criteria. In this paper, the dependency 

measurement is studied from three viewpoints viz structural, conceptual and 

evolutionary relations existing in a software. Based on these different relations, a total 

of six dependency schemes is designed by considering them as individual and 

pairwise. Further, a weighing scheme is designed to measure the contribution that 

each relation plays while combining them in pairwise. Based on the study and 

experimentation performed, it is concluded that a weight factor >= 60% for 

evolutionary relations always enhance the quality of a remodularization. This 

motivates us to give more importance to evolutionary relations during dependency 

1752 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

measurement and to propose a new dependency measurement scheme that combines 

three dependency relations together with suitable weights. Furthermore, 

remodularization is also studied by considering six different clustering algorithms. 

Finally, different combinations of dependency and clustering schemes are empirically 

evaluated using expert criteria approach. The obtained results show that the proposed 

approach, significantly increase modularity by enhancing accuracy in dependency 

measurement.  

In the future, the proposed dependency approach can be utilized for the recovery 

of the underlying architecture in legacy systems. There is also a scope to apply our 

proposed approach for software refactoring by applying the approach at the more 

granularity levels. Other future works involve the evaluation of the proposed 

approach against its capability in the identification / extraction of reusable software 

components. Moreover, as the proposed weighted dependency approach considers 

assigning arbitrary weights, so another possible direction is to calculate absolute 

weights by performing the empirical evaluation. 

References 

[Abdeen, 09] Abdeen, H., Ducasse, S., Sahraoui, H. A., Alloui, I.: Automatic package coupling 

and cycle minimization, In Proceedings of the 16th Working Conference on Reverse 

Engineering. IEEE, 103–112, 2009. 

[Abdeen, 13] Abdeen, H., Sahraoui, H., Shata, O., Anquetil, N., Ducasse, S.: Towards 

automatically improving package structure while respecting original design decisions, In proc. 

of the 20th Working Conference on Reverse Engineering (WCRE). pp. 212–221, 2013. 

[Agrawal, 93] Agrawal, R., Imieliski, T., Swami, A.: Mining association rules between sets of 

items in large databases, In Proc. ACM SIGMOD, 22(2): 207 – 216, 1993. 

[Amarjeet, 17] Amarjeet, Chhabra, J.K.: Harmony search based remodularization for object-

oriented software systems, Computer Languages, Systems & Structures, 47 (2), 153-169, 2017. 

[Anquetil, 99] Anquetil, N., Lethbridge, T.: Experiments with clustering as a software 

remodularization method, In Proceedings of the sixth Working Conference on Reverse 

Engineering. IEEE, 235–255, 1999. 

[Arisholm, 04] Arisholm, E., Sjoberg, D.: Evaluating the effect of a delegated versus 

centralized control style on the maintainability of object-oriented software, IEEE Transactions 

on Software Engineering 30 (8), 521–534, 2004. 

[Arnaoudova, 10] Arnaoudova V., Eshkevari L., Oliveto R., Guéhéneuc Y.-G. And Antoniol 

G.: Physical and conceptual identifier dispersion: Measures and relation to fault proneness, In 

26th IEEE Inter. Conf. on Software Maintenance (ICSM'10), Timisoara, Romania, 1-5, 2010. 

[Baldwin, 03] Baldwin, C., Clark, B.: Design Rules: Power of Modularity. MIT Press, 2003. 

[Barros, 14] Barros, M., Farzat, F.A., Travassos, G.H.: Learning from optimization: a case 

study with Apache Ant, Inf. Softw. Technol. 57, 684–704, 2014. 

[Bavota, 10] Bavota, G., Lucia, A. D., Marcus, A., Oliveto, R.: Software remodularization 

based on structural and semantic metrics, In Proceedings of the Working Conference on 

Reverse Engineering. 195–204, 2010. 

1753Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

[Bavota, 12] Bavota, G., Carnevale, F., Lucia, A. De, Penta, M. Di, and Oliveto, R.: Putting the 

developer in the loop: An interactive GA for software re-modularization, In Proceedings of the 

4th International Symposium on Search Based Software Engineering (SSBSE’12). 75–89, 

2012. 

[Bavota, 13] Bavota, G., Lucia, A. De, Marcus, A., and Oliveto, R.: Using structural and 

semantic measures to improve software modularization, J. Empirical Softw. Eng. 18, 5, 901–

932, 2013. 

[Beck, 13] Beck, F., Diehl, S.: On the impact of software evolution on software clustering, 

Empirical Software Engineering, 18(5), 970– 1004, 2013. 

[Beck, 16] Beck, F., Melcher, J., and Weiskop, D.: Identifying Modularization Patterns by 

Visual Comparison of Multiple Hierarchies, ICPC 2016, Austin, Texas.  

[Bishnoi, 16] Bishnoi, M., Singh, P.: Modularizing Software Systems using PSO optimized 

Hierarchical Clustering, International Conference on Computational Techniques in Information 

and Communication Technologies (ICCTICT), IEEE, 2016. 

[Bittencourt, 09] Bittencourt, R.A., Guerrero, D.D.S.: Comparison of graph clustering 

algorithms for recovering software architecture modular views. In: Proceedings of the 

European conference on software maintenance and reengineering. IEEE Computer Society, pp 

251–254, 2009. 

[Briand, 99] Briand, L. C., Daly, J. and W¨ust, J.: A unified framework for coupling 

measurement in object-oriented systems, IEEE Trans. on Soft. Eng., 25 (1), 91–121, 1999. 

[Caprile, 99] Caprile, C. and Tonella, P.: Nomen EST Omen: Analysing the Language of 

Function Identifiers, 6th IEEE Working Conference on Reverse Engineering (WCRE'99), 

Atlanta, Georgia, USA, 112-122, 1999. 

[Chapin, 01] Chapin, N., Hale, J. E., Khan, K. Md.: Types of software evolution and software 

maintenance, Jour. of Soft. Mainten. And Evo. Research and Practice, 13:3–30, 2001. 

[Chhabra, 17] Amarjeet, Chhabra, J.K.: Improving modular structure of software system using 

structural and lexical dependency, Information and Software Technology, 82, 96–120, 2017. 

[Chikofsky, 90] Chikofsky, E. J., and Cross II, J. H.: Reverse engineering and design recovery: 

A taxonomy, IEEE Software, 7(1):13–17, 1990. 

[Conover, 98] Conover, W.J.: Practical nonparametric statistics, 3rd. Wiley, 1998. 

[Corazza, 10] Corazza, A., Di Martino, S., Scanniello, G.: A probabilistic based approach 

towards software system clustering, In: 14th European Conference on Software Maintenance 

and Reengineering (CSMR), IEEE, 88–96, 2010.  

[Corazza, 11] Corazza, A., Di Martino, S., Maggio, V., Scanniello, G.: Investigating the use of 

lexical information for software system clustering, In: Proceedings of European conference on 

software maintenance and reengineering. IEEE Computer Society, 35–44, 2011. 

[D’Ambros, 09] D'Ambros, M., Lanza, M., and Robbes, R.: On the Relationship Between 

Change Coupling and Software Defects, In 16th Working Conference on Reverse Engineering, 

Lille, 135-144, 2009. 

[Deissen, 06] Deissenboeck, F., and Pizka, M.: Concise and Consistent Naming, Software 

Quality Journal 14(3): 261-282, 2006. 

[Erdemir, 14] Erdemir, U., Buzluca, F.: A learning-based module extraction method for object-

oriented systems, J. Syst. Software 97, 156–177, 2014. 

1754 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

[Ferrante, 87] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and 

Its Use in Optimization, ACM Trans. on Programming Lang. and Systems 9, 319–349, 1987. 

[Ferrucci, 13] Ferrucci, F., Harman, M., Ren, J., and Sarro, F.: Not going to take this anymore: 

multi-objective overtime planning for software engineering projects. In Proceedings of the 

International Conference on Software Engineering. IEEE, 462–471, 2013. 

[Fowler, 99] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: improving 

the design of existing code, Addison Wesley, Boston, 1999. 

[Gunasekara, 14] Gunasekara, R.P.T.H., Wijegunasekara, M.C.: Comparison of major 

clustering algorithms Using Weka Tool, Inter. Conf. On Adv. in ICT for Emerging Regions, 

IEEE, 2014. 

[Hwa, 17] Hwa, J., Yoo, S., Seo, Y.S., Bae, D.H.: Search-Based Approaches for Software 

Module Clustering Based on Multiple Relationship Factors. International Journal of Software 

Engineering and Knowledge Engineering, vol. 27 (07), pp. 1033 – 1062, 2017.  

[Lehman, 96] Lehman, M.: Laws of software evolution revisited, In European Workshop on 

Software Process Technology, pages 108–124, Berlin, Springer, 1996. 

[Maffort, 15] Maffort, M., Valente, M.T., Terra, R., Bigonha, M., Anquetil, N., Hora, A.: 

Mining architectural violations from the version history. In: Emp. Soft. Eng. Springer, 1–42, 

2015. 

[Mancoridis, 98] Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y. F., and Gansner, E. R.: 

Using automatic clustering to produce high-level system organizations of source code. In 

Proceedings of the International Workshop on Program Comprehension. 45–55, 1998. 

[Maqbool, 07] Maqbool, O., and Babri, H. A.: Hierarchical clustering for software architecture 

recovery. IEEE Trans. Soft. Eng. 33(11), 759–780, 2007. 

[Mashiko, 97] Mashiko, Y., Basili, V.: Using the GQM paradigm to investigate influential 

factors for software process improvement. J Syst Softw 36(1):17–32, 1997. 

[Maxwell, 04] Maxwell, J.: Qualitative research design: An interactive approach. Sage 

Publications Inc., 2004. 

[Mishra, 09] Mishra, D., Mishra, A.: Simplified software inspection process in compliance with 

international standards, Computer Standards & Interfaces, 31 (4), 763-771, 2009. 

[Mitchell, 06] Mitchell, B. S., and Mancoridis, S.:  On the automatic modularization of 

software systems using the bunch tool. IEEE Trans. Softw. Eng. 32, 3, 193–208, 2006. 

[Mitchell, 08] Mitchell, B. S., and Mancoridis, S.: On the evaluation of the bunch search-based 

software modularization algorithm. Softw. Computing 12, 1, 77–93, 2008. 

[Mkaouer, 15] Mkaouer, W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh, S., Deb, K., 

and Ouni, A.: Many-objective software remodularization using NSGA-III. ACM Transactions 

on Software Engineering Methodology 24, 3, 17:1–17:45, May 2015. 

[Nierstrasz, 03] Nierstrasz, O., Ducasse, S., and Demeyer, S.: Object-Oriented Reengineering 

Patterns, Morgan Kaufmann Publishers, 2003. 

[Powers, 11] Powers, David M. W.: Evaluation: From Precision, Recall and F-Measure to 

ROC. Journal of Machine Learning Technologies. 2 (1): 37–63, 2011. 

[Praditwong, 13] Praditwong, K., Harman, M., and Yao, X.: Software module clustering as a 

multi-objective search problem, IEEE Trans. on Soft. Eng., vol. 37, no. 2, 264–282, Mar. 2011. 

1755Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

[Rathee, 17] Rathee, A., Chhabra, J.K.: Software Remodularization by Estimating Structural 

and Conceptual Relations among Classes and Using Hierarchical Clustering. In: Advanced 

Informatics for Computing Research. Communications in Computer and Information Science, 

vol 712. Springer, Singapore, 2017. 

[Risi, 12] Risi, M., Scanniello, G., Tortora, G.: Using fold-in and fold-out in the architecture 

recovery of software systems, Formal Asp Comput 24(3):307–330, 2012. 

[Sanner, 16] Sanner, J. M., Hadjadj-Aoul, Y., Ouzzif, M., Rubino, G.: Hierarchical clustering 

for an efficient controllers’ placement in software defined networks, Global Information 

Infrastructure and Networking Symposium (GIIS), IEEE, 2016. 

[Scanniello, 10] Scanniello, G., D’Amico, A., D’Amico, C., D’Amico, T.: Using the Kleinberg 

algorithm and Vector Space Model for software system clustering, In: Proceedings of 

international conference on program comprehension. IEEE Computer Society, 180–189, 2010. 

[Scitovski, 14] Scitovski, R., and Sabo, K.: Analysis of the k-means algorithm in the case of 

data points occurring on the border of two or more clusters,’ Knowl. Based Syst., 57, 1–7, Feb. 

2014. 

[Shtern, 09] Shtern, M., and Tzerpos, V.: Methods for selecting and improving software 

clustering algorithms. In Proceedings of 17th IEEE International Conference on Program 

Comprehension. IEEE, 248–252, 2009. 

[STAFFORD, 01] Stafford, J.A, Richardson, D.J, Wolf, A.L.: Architecture-Level Dependence 

Analysis for Software Systems. Int. Journal of Soft. Eng. and Knowledge Eng. 11, 431-451, 

2001. 

[Swanson, 76] Swanson, E. B.: The dimensions of maintenance. In Proceedings of the 2nd 

International Conference on Software Engineering. 492–497, 1976. 

[Tzortzis, 14] Tzortzis, G., Likas, A.: The MinMax k-means clustering algorithm, Pattern 

Recognit. , vol. 47, pp. 2505–2516, Jul. 2014. 

[Vieira, 01] Vieira, M., Dias, M., Richardson, D.J.: Describing Dependencies in Component 

Access Points. In: Proceedings of 4th ICSE Workshop on CBSE, 2001. 

[Wiggerts, 97] Wiggerts, T. A.: Using clustering algorithms in legacy systems 

remodularization, In Proceedings of the 4th Working Conference on Reverse Engineering. 

IEEE, 33–43, 1997. 

[William, 92] Frakes, William B.: Information Retrieval Data Structures & Algorithms. 

Prentice-Hall, Inc. ISBN 0-13-463837-9, 1992. 

[Wohlin, 00] Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wessl´en, A.: 

Experimentation in software engineering - an introduction, Kluwer, 2000. 

[Wu, 05] Wu, J., Hassan, A. E., Holt, R. C.: Comparison of clustering algorithms in the context 

of software evolution. In: Proceedings of international conference on software maintenance. 

IEEE Computer Society, 525– 535, 2005. 

[Yassin, 13] Yassin, W., et al.: Anomaly-based Intrusion Detection Through K-means 

Clustering and Naives Bayes Classification, Proc. of ICOCI 2013, 298-303.  

[Yin, 03] Yin, R. K.: Case Study Research: Design and Methods. SAGE Publications, 3rd 

edition, 2003. 

[Yu, 12] Yu, L., Mishra, A.: Experience in predicting fault-prone software modules using 

complexity metrics, Quality Technology & Quantitative Management 9 (4), 421-434, 2012. 

1756 Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...



 

 

[Zhong, 16] Zhong, L., He, J., Zhang, N., Zhang, P., Xia, J.: Software Evolution Information 

Driven Service-Oriented Software Clustering, IEEE International Congress on Big Data, 2016. 

1757Rathee A., Chhabra J.K.: Clustering for Software Remodularization ...


