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Abstract: Shuffle operation on trajectories is useful in modeling parallel composition of words
and languages. In this work, a new class of P systems with shuffle operation and catalytic-like
rules is presented. Such a system has a membrane structure, where language-objects and shuffle-
operation rules are placed in its regions. It can be used as a language generator. In this study, we
propose a variant P system with shuffle operation on string-language objects. Some comparison
results are obtained, which show that the power of shuffle operation is enlarged in the framework
of P systems. Moreover, string-language objects are extended to array-language objects, and an-
other variant P system with shuffle operation on picture-language objects is introduced. We also
illustrate how to generate picture languages by using this kind of devices.
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1 Introduction

Membrane computing was introduced by Păun in 1998, which is inspired from the struc-

ture and the functioning of living cells, as well as the organization of cells in tissues,

organs, and other higher order structures [Păun 2000]. Membrane system, also called P

system, provides a non-deterministic distributed parallel model for dealing with math-

ematical or computational problems [Gutiérrez-Naranjo et al. 2006, Pan et al. 2011a].

As we know, most P systems are proved to be universal [Păun 2002], and computation-

ally efficient [Alhazov et al. 2003, Pan and Alhazov 2006, Pan and Martı́n-Vide 2006,

Pan and Pérez-Jiménez 2010, Pan and Martı́n-Vide 2005]. Nowadays, applications of

P systems [Ciobanu et al. 2006], as well as exploring new models [Pan et al. 2011b,

Pan et al. 2012a, Pan et al. 2012b, Zhang et al. 2012], are getting more and more at-

tention. A most recent overview of the field of membrane computing can be found in

[Păun et al. 2010].
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Shuffle on trajectories is useful in modeling parallel composition of words and lan-

guages [Păun et al. 1995]. Informally, trajectory is a segment of a line in the plane,

starting in the origin of axes and continuing in parallel with the axes Ox and Oy. The

line can change its direction only in points of nonnegative integer coordinates. A tra-

jectory defines how to skip from a word to another word during the shuffle operation.

Shuffle on trajectories [Mateescu et al. 1998, Kadrie et al. 2001] provides a method of

great flexibility to handle the operation of parallel composition of processes from the

catenation to the usual shuffle of processes.

In [Annadura et al. 2008], trajectories are drawn into P system for the first time,

and a so-called trajectory P system is proposed. In a trajectory P system, shuffle oper-

ation deals with words from the same language set in each region, and this operation

is applied in a special kind of sequential way. Specifically, if i is the elementary mem-

brane and Li is the set of words in this membrane, then LTi

i =
⋃

α,β∈Li
α⊔⊔Ti

β is the

language computed in the i-th membrane. Sequences are considered as objects in mem-

branes. However, the number of each kind of objects is not considered in that kind of P

systems. Here, we introduce a new kind of P system with shuffle operation, which uses

languages as objects and contains catalytic-like rules. This kind of system has a struc-

ture of basic P systems. All the evolution rules are based on shuffle operation and ap-

plied in a maximally parallel way as usual in P systems. Results of the shuffle operation

are the only new products after applying evolution rules. It deals with words from differ-

ent languages in each region. For example, if i is the elementary membrane and Li1, Li2

are two languages in this membrane, then Li1⊔⊔Ti
Li2 =

⋃

α∈Li1,β∈Li2
α⊔⊔Ti

β is the

new product in some step of the computation. If Li1 = Li2 in our system, Li1⊔⊔Ti
Li2

is equal to LTi

i1 or LTi

i2 in trajectory P systems. In some sense, trajectory P system

[Annadura et al. 2008] can be considered as a special case of the system proposed here.

Some comparison results are given, which show that the string-language generative

power of shuffle operation is further extended in a membrane structure. Moreover, we

extend string objects to picture objects and propose another variant, a P system with

shuffle operation on picture languages. It generates languages which can be generated

by Siromoney matrix grammars [Siromoney et al. 1972] or array-rewriting P systems

[Ceterchi et al. 2003]. The picture-language generative power of P system with shuffle

operation on picture languages is illustrated with several examples. The trajectory P

system considered in [Venkatesan et al. 2010] which is an extension to arrays of tra-

jectory P system [Annadura et al. 2008] is also in some sense a special case of the P

system with shuffle operation on picture languages considered here.

2 Preliminaries

An alphabet V is a non empty set, whose elements are called symbols. An ordered

sequence of symbols is a string. The number of symbols in a string u is the length

of the string, and it is denoted by |u|. As usual, the empty string (with length 0) is
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denoted by λ. The set of strings of length n built with symbols from the alphabet V

is denoted by V n and V ∗ = ∪n≥0V
n. A language over V is a subset of V ∗. The

families of languages, which are regular, context free, context sensitive and recursively

enumerable, are denoted by REG, CF , CS and RE, respectively. A picture A over V

is a rectangular m × n array of elements of the form

A =

a11 . . . a1n

...
. . .

...

am1 . . . amn

= [aij ]m×n.

The set of all pictures or arrays over V is denoted by V ∗∗. A picture or an array language

over V is a subset of V ∗∗. The number of columns in an array A is denoted by |A|c.

The number of rows in an array A is denoted by |A|r. The empty array is denoted by

Λ, |Λ|c = |Λ|r = 0.

Let A = [aij ]m×p, B = [bij ]n×q . The column concatenation AΦB of A and B is

defined only when m = n, which is given by

AΦB =

a11 . . . a1p b11 . . . b1q

...
. . .

...
...

. . .
...

am1 . . . amp bn1 . . . bnq.

Similarly, the row concatenation AΘB of A and B is defined only when p = q, which

is given by

AΘB =

a11 . . . a1p

...
. . .

...

am1 . . . amp

b11 . . . a1q

...
. . .

...

bn1 . . . anq.

ΛΦP = PΦΛ = P and ΛΘP = PΘΛ = P for any P ∈ V ∗∗.

Definition 1 A trajectory is an elementt, t ∈ V ∗, whereV = {r, u}.

Let Σ be an alphabet and let t be a trajectory, t = t1t2 · · · tn, where ti ∈ V ,

1 ≤ i ≤ n. We define |t|r the number of r in t, and |t|u is defined as the number

of u in t. Let α, β be two words over Σ, α = a1a2 · · · ap, β = b1b2 · · · bq , where

ai, bj ∈ Σ, 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Definition 2 The shuffle ofα with β on the trajectoryt, denoted byα⊔⊔tβ, is defined
as follows: if|α| 6= |t|r or |β| 6= |t|u, thenα⊔⊔tβ = ∅; elseα⊔⊔tβ = c1c2 · · · cp+q,

ci =

{

ak1+1 if ti = r,
bk2+1 if ti = u,
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wherek1 is defined as the number ofr in t1, . . . , ti−1, andk2 is defined as the number
of u in t1, . . . , ti−1.

If T is a set of trajectories, the shuffle of α with β on the set T of trajectories,

denoted α⊔⊔T β, is α⊔⊔T β =
⋃

t∈T α⊔⊔tβ. If L1, L2 ⊆ Σ∗, then L1⊔⊔T L2 =
⋃

α∈L1,β∈L2
α⊔⊔T β [Mateescu et al. 1998].

Theorem 1. [Mateescu et al. 1998] LetL1, L2 andT , T ⊆ {r, u}∗ be three languages.

(i) If all three languages are regular, thenL1⊔⊔T L2 is regular.

(ii) If two languages are regular languages and the third oneis a context-free language,
thenL1⊔⊔T L2 is a context-free language.

Definition 3 LetV be a finite alphabet,t a string over{r, u}, v ∈ {r, u}, P, Q ∈ V ∗∗

having the same number of rows and|P |c = |t|r, |Q|c = |t|u. The column shuffle ofP
with Q on the trajectoryvt, denoted byP⊔⊔c

vtQ, is recursively defined as follows.

– If v = r, thenP⊔⊔c
vtQ = (AΦX)⊔⊔c

vtQ = AΦ(X⊔⊔c
tQ), whereA ∈ V ∗∗ is the

first column ofP .

– If v = u, thenP⊔⊔c
vtQ = P⊔⊔c

vt(BΦY ) = BΦ(P⊔⊔c
tY ), whereB ∈ V ∗∗ is the

first column ofQ.

– If v = r, thenΛ⊔⊔c
vtP = ∅, P⊔⊔c

vtΛ = (AΦX)⊔⊔c
vtΛ = AΦ(X⊔⊔c

tΛ), where
A ∈ V ∗∗ is the first column ofP .

– If v = u, thenΛ⊔⊔c
vtP = Λ⊔⊔c

vt(AΦX) = AΦ(X⊔⊔c
tΛ), P⊔⊔c

vtΛ = ∅, where
A ∈ V ∗∗ is the first column ofP .

– If t 6= λ, thenΛ⊔⊔c
tΛ = ∅; otherwise,Λ⊔⊔c

tΛ = Λ.

Definition 4 Let V be a finite alphabet,t a string over{l, d}, v ∈ {l, d}, P, Q ∈ V ∗∗

having the same number of columns and|P |r = |t|l, |Q|r = |t|d. The row shuffle ofP
with Q on the trajectoryvt, denoted byP⊔⊔r

vtQ, is recursively defined as follows.

– If v = l, thenP⊔⊔r
vtQ = (AΘX)⊔⊔r

vtQ = AΘ(X⊔⊔r
t Q), whereA ∈ V ∗∗ is the

first row ofP .

– If v = d, thenP⊔⊔r
vtQ = P⊔⊔r

vt(BΘY ) = BΘ(P⊔⊔r
tY ), whereB ∈ V ∗∗ is the

first row ofQ.

– If v = l, thenΛ⊔⊔r
vtP = ∅, P⊔⊔r

vtΛ = (AΘX)⊔⊔r
vtΛ = AΘ(X⊔⊔r

tΛ), where
A ∈ V ∗∗ is the first row ofP .

– If v = d, thenΛ⊔⊔r
vtP = Λ⊔⊔r

vt(AΘX) = AΘ(X⊔⊔r
tΛ), P⊔⊔r

vtΛ = ∅, where
A ∈ V ∗∗ is the first row ofP .
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– If t 6= λ, thenΛ⊔⊔r
tΛ = ∅; otherwise,Λ⊔⊔r

tΛ = Λ.

Definition 5 [Siromoney et al. 1972] A Siromoney matrix grammar is a 2-tuple (G1,

G2), whereG1 = (H1, I1, P1, S) is a regular, a context-free or a context-sensitive
grammar

– H1 is a finite set of horizontal non-terminals,

– I1 = {S1, S2, . . . , Sk}, a finite set of intermediates,H1 ∩ I1 = ∅,

– P1 is a finite set of production rules called horizontal production rules,

– S ∈ H1 is the start symbol.

G2 = (G21, G22, . . . , G2k), whereG2i = (V2i, T, P2i, Si), 1 ≤ i ≤ k are regular
grammars,

– V2i is a finite set of vertical non-terminals,V2i ∩ V2j = ∅, i 6= j,

– T is a finite set of terminals,

– P2i is a finite set of right linear production rules of the formX → aY or X → a,
whereX, Y ∈ V2i, a ∈ T ,

– Si ∈ V2i is the start symbol ofG2i.

The type of G1 gives the type of G. G is called regular, context-free or context-sensitive

Siromoney matrix grammars if G1 is regular, context-free or context-sensitive, respec-

tively.

Derivations are defined as follows. A string Si1Si2 . . . Sin ∈ I∗1 is generated hori-

zontally using the horizontal production rules of P1 in G1, i.e., S ⇒ Si1Si2 . . . Sin ∈

I∗1 . Vertical derivations proceed as follows. We write

Ai1 . . . Ain

⇓

ai1 . . . ain

Bi1 . . . Bin

if Aij → aijBij are rules in P2j , 1 ≤ j ≤ n, where Aij , Bij are the j-th non-terminals

of some strings. The derivation terminates if Amj → amj are all terminal rules in G2.

The set L(G) of picture arrays generated by G consists of all m × n arrays [aij ]

such that 1 ≤ i ≤ m, 1 ≤ j ≤ n and S ⇒∗
G1

Si1Si2 . . . Sim ⇒∗
G2

[aij ]. We denote the

picture language classes of regular, context-free Siromoney matrix grammars by RML,

CFML, respectively.
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3 P System with Shuffle Operation and Catalytic-Like Rules

3.1 P System with Shuffle Operation on String Languages

Definition 6 A P system with shuffle operation on string languages is defined as:

Π = (V, T, µ, L1, · · · , Lm, T1, · · · , Tm, R1, · · · , Rm, io),

where:

– V is an alphabet;

– T = {r, u} is the control alphabet;

– µ is a membrane structure consisting ofm membranes;

– L1, · · · , Lm are initial sets of languages associated with regions1, · · · , m of µ,
respectively;

– Ti ⊆ T ∗, 1 ≤ i ≤ m are sets of trajectories associated with regions1, · · · , m of µ,
respectively;

– Ri is a finite set of evolution rules associated with regionsi of µ; and evolution
rules are of the forms:Ah1

Bh2
→ (C, tar), or catalytic-like rules:Ah1

Bh2
→

(A, here) (C, tar) or Ah1
Bh2

→ (C, tar)(B, here), whereA, B, C are languages
defined over alphabetV , h1, h2 ∈ T , h1 6= h2, andtar ⊆ {here, out, inj | 1 ≤

j ≤ m}. Each language is assigned with eitherr or u, which means that it can
appear in right or up direction in the shuffle operation. If there existA′, B′ ∈

Li, A
′ ⊆ A, B′ ⊆ B, A′⊔⊔Ti

B′ 6= ∅, thenA′, B′ can be assigned to one rule of
the three forms non-deterministically, andC = A′⊔⊔Ti

B′ is produced.C is the
shuffle ofA′ with B′ on the setTi of trajectories.

– io is the output cell.

The symbols here, out, inj, 1 ≤ j ≤ m, are called target commands or target

indications. The objects can be transported through membranes according to the targets.

Specifically, suppose (C, tar) is present in the right-hand side of a rule in membrane

i. If here ∈ tar, one copy of object C is placed in the same region i where the rule is

applied. If out ∈ tar, one copy of object C is moved to the region immediately outside

membrane i. If inj ∈ tar, one copy of object C should be moved to the membrane with

label j, provided that this membrane is immediately inside membrane i.

Rules from sets of Ri, 1 ≤ i ≤ m, are applied to sets of languages in correspond-

ing region of µ synchronously, in a non-deterministic maximally parallel manner. The

m-tuple of sets of languages present at any moment in the m regions of Π constitutes

the configuration of the system at that moment. The m-tuple (L1, · · · , Lm) is the ini-

tial configuration of Π . A transition between configurations is governed by application
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of evolution rules, all of which are based on shuffle operation as defined above. The

results of shuffle operations are the only new products of each rule. A sequence of tran-

sitions between configurations of a given system Π is called a computation with respect

to Π . A computation is successful if and only if it halts: there is no rule applicable to

the objects present in the last configuration. The computational result defined here is the

union set of objects (languages) which are present in cell io in the halting configuration.

If there are some objects that exist in the output membrane in the initial configuration

and remain unchanged during the whole computation, they are not included in the com-

putational result.

The language generated by a P system with shuffle operation on string languages

Π is denoted by L(Π). The family of all languages L(Π) generated by systems Π as

above, with at most m membranes, is denoted by LLPm(FL1, FL2, type), where the

second L indicates that the objects are languages, FL1 is the family from which lan-

guages Li are taken, FL2 is the family from which the sets of trajectories are taken, and

type indicates the type of rules, type ∈ {λ, cat}; while the system is with catalytic-

like rules, it is denoted by LLPm(FL1, FL2, cat).

3.1.1 The Language Generative Power of P System with Shuffle Operation on

String Languages

In this subsection, the language generative power of P system with shuffle operation

on string languages is investigated. When comparing with Theorem 1 in Section 2, the

following theorems show that the shuffle operation has more power in the framework

of P systems than in the standard set-up.

Theorem 2. LLP3(REG, REG, cat) − REG 6= ∅.

Proof. Let us consider the system with catalytic-like rules

Π1 = (V, T, µ, L1, L2, L3, T1, T2, T3, R1, R2, R3, io),

where:

– V = {a, b}; T = {r, u};

– µ = [[ ]2[ ]3]1;

– L1 = {{a}, {b}}, L2 = {{b}}, L3 = ∅;

– T1 = {run | n ≥ 1}, T2 = {rnu | n ≥ 1}, T3 = ∅;

– R1: {a}r{an−1bn | n ≥ 1}u → (C′, inj), j = 2, 3,

R2: {anbn | n ≥ 1}r{b}u → (C′′, out){b},

R3 = ∅;

– io = 3.
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Figure 1: Initial structure of system Π1

The initial configuration of this system is shown in Fig. 1.

Initially, there are objects {a} and {b} in membrane 1. According to T1, one rule of

R1 is chosen non-deterministically, and object {ab} is sent to membrane 2 or membrane

3 in a non-deterministic way. If it reaches membrane 3, there is no rule applicable in the

next step, the computation halts, and object {ab} is obtained in the output membrane.

If {ab} reaches membrane 2, by using the rule {anbn | n ≥ 1}r{b}u → (C′′, out){b},

object {ab2} is introduced and sent to membrane 1. Object {a2b2} is sent to mem-

brane 2 or membrane 3 in a non-deterministic way by using rule {a}r{ab2}u →

(C′, inj), j = 2, 3. If it reaches membrane 3, the computation halts and there is object

{a2b2} in the output membrane. If it reaches membrane 2, the computation continues

in the same way as described above. According to the definition of the computational

result, system Π1 generates language L = {ab} ∪ {a2b2} ∪ · · · ∪ {anbn} ∪ · · · =

{anbn | n ≥ 1}. Language {anbn | n ≥ 1} is context-free, but not regular. Therefore,

LLP3(REG, REG, cat) − REG 6= ∅, and this concludes the proof.

Theorem 3. LLP2(REG, CF ) − CF 6= ∅.

Proof. Let us consider a system without catalytic-like rules

Π2 = (V, T, µ, L1, L2, T1, T2, R1, R2, io),

where:

– V = {a, b, c}; T = {r, u};

– µ = [[ ]1]2;

– L1 = {{an | n ≥ 1}, {bn | n ≥ 1}}, L2 = {{cn | n ≥ 1}};

– T1 = {rnun | n ≥ 1}, T2 = {r2nun | n ≥ 1};

– R1: {an | n ≥ 1}r{b
n | n ≥ 1}u → (C′, out),

R2: {anbn | n ≥ 1}r{cn | n ≥ 1}u → (C′′, in);
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– io = 1.

The initial configuration of this system is shown in Fig. 2.

Figure 2: Initial structure of system Π2

The computation starts from membrane 1. By using rule {an | n ≥ 1}r{bn |

n ≥ 1}u → (C′, out) object {anbn | n ≥ 1} is sent out. In the next step, by using

rule {anbn | n ≥ 1}r{cn | n ≥ 1}u → (C′′, in), language {anbncn | n ≥ 1} is

obtained as the computational result of Π2. That is, L(Π2) = {anbncn | n ≥ 1}.

As we know, {anbncn | n ≥ 1} is context-sensitive, but not context-free. Therefore,

LLP2(REG, CF ) − CF 6= ∅, and this concludes the proof.

Theorem 4. There are P systemsΠ with shuffle operation of degree two, with regular
initial languages, one regular and one context-free sets oftrajectories and catalytic-like
rules such thatL(Π) is not context-free.

Proof. Let us consider a system with catalytic-like rules

Π3 = (V, T, µ, L1, L2, T1, T2, R1, R2, io),

where:

– V = {a, b, c}; T = {r, u};

– µ = [[ ]2]1;

– L1 = {{a}, {b}}, L2 = {{b}, {cn | n ≥ 1}};

– T1 = {run | n ≥ 1}, T2 = {rnu, r2nun | n ≥ 1};

– R1: {a}r{an−1bn | n ≥ 1}u → {a}(C′, in),

R2: {anbn | n ≥ 1}r{b}u → (C′′, out){b},

{anbn | n ≥ 1}r{cm | m ≥ 1}u → C′′′{cm | m ≥ 1};

– io = 2.
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The initial configuration of this system is shown in Fig. 3. Obviously, system Π3 gen-

erates language L = {abc} ∪ {a2b2c2} ∪ · · · ∪ {anbncn} ∪ · · · = {anbncn | n ≥ 1}.

We do not describe the process in details. That is, L(Π3) = {anbncn | n ≥ 1}. Clearly,

this language is not context-free. This concludes the proof.

Figure 3: Initial structure of system Π3

3.2 P System with Shuffle Operation on Picture Languages

Definition 7 A P system with shuffle operation on picture languages is defined as:

Π = (V, T, µ, L1, · · · , Lm, T1, · · · , Tm, R1, · · · , Rm, io),

where:

– V is an alphabet;

– T = Tc ∪ Tr whereTc = {r, u}, Tr = {l, d}, is the control alphabet;

– µ is a membrane structure consisting ofm membranes;

– L1, · · · , Lm are initial sets of languages associated with regions1, · · · , m of µ,
respectively;

– Ti = Tic ∪ Tir, Tic ⊆ T ∗
c , Tir ⊆ T ∗

r , 1 ≤ i ≤ m are sets of trajectories associated
with regions1, · · · , m of µ, respectively;

– Ri is a finite set of evolution rules associated with regionsi of µ; and evolution

rules are of the forms:Ah1
Bh2

Tic−−→ (C, tar), Ah1
Bh2

Tir−−→ (C, tar), or catalytic-

like rules: Ah1
Bh2

Tic−−→ (A, here)(C, tar), Ah1
Bh2

Tir−−→ (A, here)(C, tar) or

Ah1
Bh2

Tic−−→ (C, tar)(B, here), Ah1
Bh2

Tir−−→ (C, tar)(B, here), whereA, B, C

are picture languages defined over alphabetV , h1, h2 ∈ Tc or h1, h2 ∈ Tr, h1 6=

h2, and tar ⊆ {here, out, inj | 1 ≤ j ≤ m}. If there existA′, B′ ∈ Li, A
′ ⊆
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A, B′ ⊆ B, A′⊔⊔Ti
B′ 6= ∅, thenA′, B′ can be assigned to one rule of the six forms

non-deterministically, andC = A′⊔⊔Ti
B′ is produced.C is the shuffle ofA′ with

B′ on the setTi of trajectories.

– io is the output cell.

The symbols here, out, inj, 1 ≤ j ≤ m, are target commands which are the same

as that defined in Definition 6. Rules from sets of Ri, 1 ≤ i ≤ m, are applied to sets

of languages in corresponding region of µ synchronously, in a non-deterministic maxi-

mally parallel manner. The m-tuple of sets of languages present at any moment in the

m regions of Π constitutes the configuration of the system at that moment. The m-tuple

(L1, · · · , Lm) is the initial configuration of Π . A transition between configurations is

governed by application of evolution rules, all of which are based on shuffle operation

as defined above. A sequence of transitions between configurations of a given system

Π is called a computation with respect to Π . A computation is successful if and only if

it halts: there is no rule applicable to the objects present in the last configuration. The

computational result is defined as the union set of objects (languages) which are present

in cell io in the halting configuration. If there are some objects that exist in the output

membrane in the initial configuration and remain unchanged during the whole compu-

tation, they are not included in the computational result. The language generated by a P

system with shuffle operation on picture languages Π is denoted by L(Π). The family

of all languages L(Π) generated by systems Π as above, with at most m membranes,

is denoted by LLpPm(FL1, FL2, type); while the system is with catalytic-like rules,

it is denoted by LLpPm(FL1, FL2, cat).

3.2.1 The Language Generative Power of P System with Shuffle Operation on

Picture Languages

In this subsection, the language generative power of P system with shuffle operation

on picture languages is investigated. Some examples are given to prove that this kind

of P system can generate picture languages that can be generated by Siromoney matrix

grammars [Siromoney et al. 1972] or array-rewriting P systems [Ceterchi et al. 2003].

Example 1 Consider the system

Π4 = {V, T, µ, L1, L2, L3, L4, T1, T2, T3, T4, R1, R2, R3, R4, io},

where:

– V = {a, b}; T = {r, u, l, d};

– µ = [[ ]1[ ]2[ ]3]4;

– L1 = {{

(

b

a

)

}, {b}}, L2 = {{(a, b)}, {b}}, L3 = ∅, L4 = {{

(

a

a

)

}};
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– T1r = {ldn | n ≥ 1}, T2c = {rnu | n ≥ 1}, T4c = {rnu | n ≥ 1},
T4r = {ldn | n ≥ 1}, T1c = T2r = T3c = T3r = ∅;

– R1: {b}l{











b
...
b

a











n×1

| n ≥ 2}d
T1r−−→ {b}(C′, here, out),

R2: {(a, b, . . . , b)1×n | n ≥ 2}r{b}u
T2c−−→ (C′′, here, out){b},

R3 = ∅,

R4: {

(

a

a

)

}r{

(

b

a

)

}u
T4c−−→ (C′′′, here){

(

b

a

)

},

{

(

a

a

)

}r{

(

b

a

)

}u
T4c−−→ (C′′′, in3){

(

b

a

)

},

{











a b . . . b
...

...
. . .

...
a b . . . b

a a a a











m×n

| m, n ≥ 2}r{











b
...
b

a











m×1

| m ≥ 2}u
T4c−−→ (C(4), here)

{











b
...
b

a











m×1

| m ≥ 2},

{











a b . . . b
...

...
. . .

...
a b . . . b

a a a a











m×n

| m, n ≥ 2}r{











b
...
b

a











m×1

| m ≥ 2}u
T4c−−→ (C(4), in3)

{











b
...
b

a











m×1

| m ≥ 2},

{(a, b, . . . , b)1×n | n ≥ 2}l{











a b . . . b
...

...
. . .

...
a b . . . b

a a a a











m×n

| m, n ≥ 2}d
T4r−−→

{(a, b, . . . , b)1×n | n ≥ 2}(C(5), here),

{(a, b, . . . , b)1×n | n ≥ 2}l{











a b . . . b
...

...
. . .

...
a b . . . b

a a a a











m×n

| m, n ≥ 2}d
T4r−−→
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Figure 4: Initial structure of system Π4

{(a, b, . . . , b)1×n | n ≥ 2}(C(5), in3);

– io = 3.

The initial configuration of this system is shown in Fig. 4. In membrane 1, by applying

rules in R1, pictures of the form










b
...

b

a











m×1

are generated and sent out to membrane 4. At the same time, by applying rules in R2

pictures of the form (a, b, . . . , b)1×n are generated in membrane 2 and also sent out to

membrane 4. They shuffle in the skin membrane and all kinds of tokens L (Fig. 5) can

be obtained. So the system can generate the family of all L-shaped angles, which is a

RML.

a b b b b b b b b

a b b b b b b b b

a b b b b b b b b

a b b b b b b b b

a b b b b b b b b

a a a a a a a a a

Figure 5: L in Example 1

a a a a a a a a a

b b b b a b b b b

b b b b a b b b b

b b b b a b b b b

b b b b a b b b b

b b b b a b b b b

Figure 6: T in Example 3

Example 2 Consider the system

Π5 = {V, T, µ, L1, L2, L3, L4, T1, T2, T3, T4, R1, R2, R3, R4, io},
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whereV, T, µ, L1, L2, L3, L4, T1, T2, T3, T4, R1, R2, R3, io are the same as those in
Example 1.

R4: {

(

a

a

)

}r{

(

b

a

)

}u
T4c−−→ (C′′′, here),

{

(

a

a

)

}r{

(

b

a

)

}u
T4c−−→ (C′′′, in3),

{(a, b, . . . , b)1×n | n ≥ 2}l{











a b . . . b
...

...
. . .

...
a b . . . b

a a a a











n×n

| n ≥ 2}d
T4r−−→ (C(4), here),

{











a b . . . b
...

...
. . .

...
a b . . . b

a a a a











(n+1)×n

| n ≥ 2}r{











b
...
b

a











(n+1)×1

| n ≥ 2}u
T4c−−→ (C(5), here),

{











a b . . . b
...

...
. . .

...
a b . . . b

a a a a











(n+1)×n

| n ≥ 2}r{











b
...
b

a











(n+1)×1

| n ≥ 2}u
T4c−−→ (C(5), in3).

The working of system Π5 is the same as in Example 1 except for the working in

membrane 4 by using rules in R4. The system can generate all L-shaped angles with

equal arms.

Example 3 Consider the system

Π6 = {V, T, µ, L1, . . . , L6, T1, . . . , T6, R1, . . . , R6, io},

where:

– V = {a, b}; T = {r, u, l, d};

– µ = [[ ]2[ ]3[[ ]5[ ]6]4]1;

– L1 = {{a}, {(b, b)}, {

(

b b

b b

)

}}, L2 = {{a}, {

(

a

a

)

}}, L3 = {{

(

b

b

)

}, {

(

b b

b b

)

},

{b}, {(b, b)}}, L5 = {{a}, {(a, a)}}, L4 = L6 = ∅;

– T1c = {rnurn | n ≥ 1}, T2r = {lnd | n ≥ 2}, T3c = {rnu | n ≥ 2},
T3r = {lnd | n ≥ 2}, T4r = {ldn | n ≥ 1}, T5c = {rnu | n ≥ 2},

T1r = T2c = T4c = T5r = T6c = T6r = ∅;

– R1: {







b . . . b
...

.. .
...

b . . . b







m×2n

| m, n ≥ 1}r{







a
...
a







m×1

| m ≥ 1}u
T1c−−→ (C′, here)
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{







a
...
a







m×1

| m ≥ 1},

– R2: {







a
...
a







m×1

| m ≥ 2}l{a}d
T2r−−→ (C′′, here, out){a},

– R3: {







b . . . b
...

.. .
...

b . . . b







m×n

| m, n ≥ 2}r{







b
...
b







m×1

| m ≥ 2}u
T3c−−→ (C′′′, here,

out){







b
...
b







m×1

| m ≥ 2},

{







b . . . b
...

. . .
...

b . . . b







m×n

| m, n ≥ 2}l{(b, . . . , b)1×n | n ≥ 2}d
T3r−−→ (C(4), here,

out){(b, . . . , b)1×n | n ≥ 2},

R4: {(a, . . . , a)1×n | n ≥ 3}l{







b . . . b a b . . . b
...

. . .
...

...
...

. . .
...

b . . . b a b . . . b







m×n

| m ≥ 1, n ≥ 3}d
T4r−−→

{(a, . . . , a)1×n | n ≥ 3}(C(5), in6),

R5: {(a, . . . , a)1×n | n ≥ 2}r{a}u
T5c−−→ (C(6), here, out){a},

R6 = ∅;

– io = 6.

The initial configuration of system Π6 is shown in Fig. 7. In membrane 3, m×n pictures

of the form






b . . . b
...

. . .
...

b . . . b







m×n

are generated and sent out to the skin membrane. At the same time, m × 1 pictures







a
...

a







m×1

1796 Niu Y., Xu J., Subramanian K.G., Abdullah R.: P Systems ...



Figure 7: Initial structure of system Π6

are generated in membrane 2 and also sent out to the skin membrane. So they shuffle

and produce pictures of the form







b . . . b a b . . . b
...

. . .
...

...
...

. . .
...

b . . . b a b . . . b







m×n

according to T1c. These pictures are sent into membrane 4. Pictures of the form (a, . . . ,

a)1×n are generated in membrane 5 and also sent out to membrane 4. According to T4r,

they are attached to the top of pictures







b . . . b a b . . . b
...

. . .
...

...
...

. . .
...

b . . . b a b . . . b







m×n

.

Hence, the above system can generate the set of all digitalized pictures of the tokens T

(Fig. 6), which is a CFML.

Example 4 Consider the system

Π7 = {V, T, µ, L1, . . . , L6, T1, . . . , T6, R1, . . . , R6, io},

where:

– V = {a, b}; T = {r, u, l, d};

– µ = [[ ]3[ ]6[[ ]4[ ]5]2]1;

– L2 = {{b, (b, b),

(

b

b

)

,

(

b b

b b

)

}, {(a, a),

(

a a

a a

)

}}, L3 = {{

(

a

a

)

},
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{

(

a a

a a

)

}}, L4 = {{b}, {(b, b)}, {

(

b

b

)

}, {

(

b b

b b

)

}}, L5 = {{(a, a)},

{

(

a a

a a

)

}}, L1 = L6 = ∅;

– T1r = {ldnl | n ≥ 1}, T2c = {runr | n ≥ 1}, T3c = {rnu | n ≥ 2},

T4c = {rnu | n ≥ 2}, T4r = {lnd | n ≥ 2}, T5r = {ldn | n ≥ 1},

T1c = T2r = T3r = T5c = T6c = T6r = ∅;

– R1: {

(

a . . . a

a . . . a

)

2×n

| n ≥ 3}l{







a b . . . b a
...

...
. . .

...
...

a b . . . b a







m×n

| m ≥ 1, n ≥ 3}d
T1r−−→

{

(

a . . . a

a . . . a

)

2×n

| n ≥ 3}(C′, in6),

R2: {







a a
...

...
a a







2×n

| n ≥ 1}r{







b . . . b
...

. . .
...

b . . . b







m×n

| m, n ≥ 1}u
T2c−−→

{







a a
...

...
a a







2×n

| n ≥ 1}(C′′, out),

R3: {

(

a . . . a

a . . . a

)

2×n

| n ≥ 2}r{

(

a

a

)

}u
T3c−−→ (C′′′, here, out){

(

a

a

)

},

R4: {







b . . . b
...

.. .
...

b . . . b







m×n

| m ≥ 1, n ≥ 2}r{







b
...
b







m×1

| m ≥ 1}u
T4c−−→

(C(4), here, out){







b
...
b







m×1

| m ≥ 1},

{







b . . . b
...

. . .
...

b . . . b







m×n

| m ≥ 2, n ≥ 1}l{(b, . . . , b)1×n | n ≥ 1}d
T4r−−→

(C(5), here, out){(b, . . . , b)1×n | n ≥ 1},

R5: {(a, a)}l{







a a
...

...
a a







m×2

| m ≥ 2}d
T5r−−→ {(a, a)}(C(6), here, out),

R6 = ∅;

– io = 6.
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Figure 8: Initial structure of system Π7

The initial configuration of this system is shown in Fig. 8. m × n pictures of the form







b . . . b
...

. . .
...

b . . . b







m×n

are generated in membrane 4 and sent out to membrane 2. At the same time, m × 2

pictures of the form






a a
...

...

a a







m×2

are generated in membrane 5 and also sent out to membrane 2. So they shuffle and

produce pictures






a b . . . b a
...

...
. . .

...
...

a b . . . b a







m×n

according to T2c. These pictures are sent out to the skin membrane. Moreover, 2 × n

pictures of the form
(

a . . . a

a . . . a

)

2×n

are generated in membrane 3 and also sent out to the skin membrane. They shuffle with

pictures






a b . . . b a
...

...
. . .

...
...

a b . . . b a







m×n
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according to T1r. So system Π7 can generate all solid rectangles marked as shown in

Fig. 9, which can also be generated by an array-rewriting P system [Ceterchi et al. 2003].

a a a a a a a a a

a b b b b b b b a

a b b b b b b b a

a b b b b b b b a

a b b b b b b b a

a a a a a a a a a

Figure 9: Solid rectangle

4 Conclusions and Remarks

A new kind of P system with shuffle operation and catalytic-like rules has been pro-

posed. It has a hierarchical membrane structure with language-objects in each compart-

ment delimited by membranes. Evolution rules, including catalytic-like rules are based

on shuffle operations and deal with different languages in each region. They are ap-

plied in a maximally parallel way as usual in P systems. The computational result is

defined as the union set of languages which are present in the output membrane in halt-

ing configurations. In our study, string languages and picture languages are considered

as objects of such P systems, respectively.

The language generative power of P systems with shuffle operation on string lan-

guages with or without catalytic-like rules is investigated. Comparing with Theorem 1

in section 2, the shuffle operation placed in a membrane structure is more powerful than

in the standard set-up. It remains open whether Theorem 2 can be extended to the sys-

tem without catalytic-like rules. We also illustrate the language generative power of P

system with shuffle operation on picture languages with catalytic-like rules by compar-

ing with Siromoney matrix grammars and array-rewriting P systems. This paper is an

enhanced version of [Niu et al. 2010]. Another direction which is worth investigating

is the way P system with shuffle operation on picture languages generates languages

without catalytic-like rules.
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