
Array P System with Shuffle on Trajectories

A.S. Prasanna Venkatesan

(Department of Mathematics, B.S. Abdur Rahman University

Chennai - 600 048, India

prasannaram@bsauniv.ac.in)

D.G. Thomas, T. Robinson

(Department of Mathematics, Madras Christian College

Tambaram, Chennai - 600 059, India

dgthomasmcc@yahoo.com, robin.mcc@gmail.com)

Atulya K Nagar

(Department of Computer Science, Liverpool Hope University

Hope Park, Liverpool, L16 9JD, United Kingdom

nagara@hope.ac.uk)

Abstract: In this paper, we introduce a new concept of trajectory array P system
which consists of a membrane structure in which the objects are arrays and the evolu-
tionary rules are given in terms of trajectories. We present some properties of trajectory
array P system and compare with certain families of picture languages. We consider
a variant of trajectory array P system and show that the languages generated by the
trajectory P system and its variant have common intersection.

Key Words: Membrane computing, P system, array languages, shuffle on trajecto-
ries

Category: F.4.3

1 Introduction

Membrane computing is a branch of natural computing, the broad area of re-

search concerned with computation taking place in nature with human-designed

computing inspired by nature. Membrane computing abstracts computing mod-

els from the architecture and the functioning of living cells, as well as from the

organization of cells in tissues, organs or other higher order structures such as

colonies of cells (e.g. bacteria). The initial goal was to learn from cell biology

something possibly useful to computer science, and the area quickly developed

in this direction. Several classes of computing models - called P systems - were

defined in this context, inspired from biological facts or motivated from math-

ematical or computer science point of view [Păun 1998,Păun 2002]. The main

ingredients of a P system are (i) membrane structure, (ii) multisets of objects

and (iii) evolutionary rules. Very briefly, compartments defined by a hierarchical

Journal of Universal Computer Science, vol. 18, no. 13 (2012), 1802-1820
submitted: 15/11/11, accepted: 30/3/12, appeared: 1/7/12 © J.UCS

arrangement of membranes have multisets of objects together with evolutionary

rules associated with the membranes.

On the other hand, parallel composition of words and languages seems to be

a fundamental operation in parallel computation and in the theory of concur-

rency. This operation is modeled by the shuffle operation [Păun et al. 1995] or

restrictions of this operation such as literal shuffle and insertion. A trajectory

defines how to skip from a word to another word during the shuffle operation.

Trajectory P system has been introduced in [Annadurai et al. 2008] with words

as objects. We extend this concept to arrays by introducing trajectory array P

system where the objects are arrays.

The paper is organized as follows: Section 2 deals with preliminary concepts

related to P system and array languages. In section 3 we define the new concept

of trajectory array P system and examine its generative power. In section 4 we

compare the generative power of trajectory array P system with that of array

rewriting P system. In section 5 we define a variant of trajectory array P system

and study its generative power.

2 Preliminaries

In this section we recall some of the basic concepts of P system [Păun 1998,

Păun 2002] and trajectories [Annadurai et al. 2008,Giammarresi and Restivo

1997]. P system [Păun 1998] is a new computability model of a distributed

parallel type based on the notion of a membrane structure. Such a structure

consists of computing cells which are organized hierarchically by the inclusion

relation. Each cell is enclosed by its membrane. Each cell is an independent

computing agent with its own computing program, which produces objects. The

interaction between cells consists of the exchange of objects through membranes.

The membranes are labelled in a one-to-one manner. Each membrane identifies

a region determined by it and the membranes placed directly inside it (if any).

Membranes are represented by matching parentheses. For notions and notations

of P systems, we refer to [Păun 1998].

A transition P system of degree n, n ≥ 1 is a construct

Π = (V, μ, w1, w2, . . . , wn, (R1, ρ1), (R2, ρ2), . . . , (Rn, ρn), i0) where

1. V is an alphabet and its elements are called objects.

2. μ is a membrane structure of degree n, with the membranes and the regions

labeled in a one-to-one manner with elements in a given set V . Here we use

the labels 1, 2, . . . , n.

3. wi, 1 ≤ i ≤ n are strings from V ∗ representing multisets over V associated

with the regions 1, 2, . . . , n of μ.

1803Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

4. Ri, 1 ≤ i ≤ n are finite sets of evolution rules over V associated with the re-

gions 1, 2, . . . , n of μ. ρi is a partial order relation over Ri,

1 ≤ i ≤ n specifying a priority relation over Ri. An evolution rule is a pair

(u, v), which is written in the form u → v where u is a string over V and

v = v′ or v = v′δ where v′ is a string over (V ×{here, out})∪ (V ×{inj|1 ≤
j ≤ n}) and δ is a special symbol not in V . The length of μ is called the

radius of the rule u → v.

5. i0 is a number between 1 and n which specifies the output membrane of μ.

This basic P system has been modified later and many variants of P system

have been extensively investigated [Mutyam et al. 2004,Păun et al. 2010,Păun

et al. 2000].

Definition 1. Let V be a finite alphabet. V ∗ is the set of all words over V

including the empty word λ. A picture A over V is a rectangular m×n array of

elements of the form

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

= [aij]m×n

The set of all pictures or arrays over V is denoted by V ∗∗. A picture or an array

language over V is a subset of V ∗∗.

Definition 2. Let A = [aij]m×p, B = [aij]n×q. The column concatenation AΦB

of A and B is defined only when m = n and is given by

AΦB =

a11 . . . a1p b11 . . . b1q
...

. . .
...

...
. . .

...

am1 . . . amp bn1 . . . bnq

Similarly, the row concatenation AΘB of A and B is defined only when p = q

and is given by

AΘB =

a11 . . . a1p
...

. . .
...

am1 . . . amp

b11 . . . b1q
...

. . .
...

bn1 . . . bnq

The empty array is denoted by Λ, ΛΦP = PΦΛ = P and ΛΘP = PΘA = P for

any P ∈ V ∗∗.

1804 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

Definition 3. The column shuffle operation on arrays P and Q denoted by ��c

is defined recursively by

P ��cQ = ((AΦX) ��c(BΦY))

= AΦ(X ��c(BΦY)) ∪BΦ((AΦX) ��cY)

where P = AΦX and Q = BΦY , P,Q ∈ V ∗∗, A is the first column of P and

B is the first column of Q. The operation is defined only when the number of

rows in P and the number of rows in Q are equal. If A is empty then X = P .

Likewise if B is empty then Y = Q. Also P ��cΛ = Λ ��cP = P .

The row shuffle operation on arrays P and Q denoted by ��r is defined

recursively by

P ��rQ = ((AΘX) ��r(BΘY))

= AΘ(X ��r(BΘY)) ∪BΘ((AΘX) ��rY)

where P = AΘX , Q = BΘY and P,Q ∈ V ∗∗, A is the first row of P and B is

the first row of Q.

Example 1. If P =
a b

b a
and Q =

c d

d c
then

P ��cQ =

{
a b c d

b a d c
,
a c b d

b d a c
,
a c d b

b d c a

c a b d

d b a c
,
c a d b

d b c a
,
c d a b

d c b a

}
and

P ��rQ =

⎧⎪⎪⎨
⎪⎪⎩

a b

c d

b a

d c

,

a b

c d

d c

b a

,

a b

b a

c d

d c

,

c d

d c

a b

b a

,

c d

a b

d c

b a

,

c d

a b

b a

d c

⎫⎪⎪⎬
⎪⎪⎭

Notations If X is an array, then |X |c denotes the number of columns in X ,

|X |r denotes the number of rows in X . If t is a word, then |t| denotes length of

t, and |t|x denotes the number of occurrences of x in t.

Definition 4. Let V be a finite alphabet, t a string over {r, u}, v ∈ {r, u} and

P,Q ∈ V ∗∗. The column shuffle of P with Q on the trajectory vt, denoted by

P ��c
vtQ, is recursively defined as follows:

If P = AΦX and Q = BΦY where A,B,X, Y ∈ V ∗∗, A and B are the first

columns of P and Q respectively, then

P ��c
vtQ = (AΦX) ��c

vt(BΦY)

=

{
AΦ(X ��c

t(BΦY)) if v = r

BΦ((AΦX) ��c
tY) if v = u

1805Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

If P = Λ, then Λ ��c
vt(BΦY)

=

{
φ if v = r

BΦ(Λ ��c
tY) if v = u

If Q = Λ, then (AΦX) ��c
vtΛ

=

{
AΦ(X ��c

tΛ) if v = r

∅ if v = u

and Λ ��c
tΛ =

{
Λ if t = λ

∅ otherwise

where the symbol ∅ denotes the empty set and λ denotes the empty string.

The row shuffle of P with Q on the trajectory vt, v ∈ {l, d}, t ∈ {l, d}∗ is

defined in a similar way except that the column catenation Φ is replaced by the

row catenation Θ and r is replaced by l and u is replaced by d. Also if |P |c 	= |t|r
or |Q|c 	= |t|u, then P ��c

tQ = ∅. Similarly, if |P |r 	= |t|l or |Q|r 	= |t|d, then
P ��r

tQ = ∅.

Example 2. Let V = {a, b},

P =

a a a a

a a a a

a a a a

, Q =

b b b b b

b b b b b

b b b b b

and R =

c c c c

c c c c

c c c c

.

Then P ��c
tQ =

a b b a b a b b a

a b b a b a b b a

a b b a b a b b a

if t = ur2urur2u

and P ��r
tR =

a a a a

c c c c

c c c c

a a a a

c c c c

c c c c

a a a a

if t = ld2ld2l.

Definition 5. A Siromoney matrix grammar [Siromoney et al. 1972] is a 2-tuple

(G1, G2) where G1 = (H1, I1, P1, S) is a regular, a context-free or a context-

sensitive grammar

– H1 is a finite set of horizontal non-terminals

– I1 = {S1, S2, . . . , Sk}, a finite set of intermediates, H1 ∩ I1 = ∅
– P1 is a finite set of production rules called horizontal production rules

1806 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

– S ∈ H1, is the start symbol.

G2 = (G21, G22, . . . , G2k) where

G2i = (V2i, T, P2i, Si), 1 ≤ i ≤ k are regular grammars,

– V2i is a finite set of vertical non-terminals, V2i ∩ V2j = ∅, i 	= j

– T is a finite set of terminals

– P2i is a finite set of right linear production rules of the form X → aY or

X → a where X,Y ∈ V2i, a ∈ T

– Si ∈ V2i is the start symbol of G2i.

The type of G1 gives the type of G; so we speak about regular, context-free or

context-sensitive Siromoney matrix grammars if G1 is regular, context-free or

context-sensitive respectively.

Derivations are defined as follows: First a string Si1Si2 . . . Sin ∈ I∗1 is gen-

erated horizontally using the horizontal production rules of P1 in G1. i.e., S ⇒
Si1Si2 . . . Sin ∈ I∗1 .

Vertical derivations proceed as follows: we write

Ai1 . . . Ain

⇓
ai1 . . . ain
Bi1 . . . Bin

if Aij → aijBj are rules in P2j , 1 ≤ j ≤ n. The derivation terminates if Aj → amj

are all terminal rules in G2.

The set L(G) of picture arrays generated by G consists of all m × n arrays

[aij] such that 1 ≤ i ≤ m, 1 ≤ j ≤ n and S ⇒∗
G1

Si1Si2 . . . Sim ⇒∗
G2

[aij].

We denote the picture language classes of regular, context-free, context-

sensitive Siromoney matrix grammars by RML,CFML,CSML respectively.

Definition 6. Given a picture p of size(m,n), let h ≤ m, k ≤ n. We denote by

Bh,k(p̂), the set of all blocks (or sub-pictures of p of size(h, k)). We call a square

picture of size(2, 2) as a tile.

Definition 7. Let Γ be a finite alphabet. A two-dimensional language L ⊆ Γ ∗∗

is local if there exists a finite set θ of tiles over the alphabet Γ ∪ {#} such that

L = {p ∈ Γ ∗∗|B2,2(p̂) ⊆ θ}. The family of local picture languages will be denoted

by LOC [Giammarresi and Restivo 1997]. We now give an example of a local

two-dimensional picture language.

1807Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

Example 3. Let Σ = {a} be a one-letter alphabet and let L be the subset of Σ∗∗

that contains all the rectangular pictures over Σ.

Consider the set

θ =

{
a

#
,
a #

#
,
#

a #
,
#

a
,
#

a a
,
a #

a #
,
a a

#
,
a

a
,
a a

a a

}

The language L = L(θ) is the language of all the rectangular pictures over Σ.

Hence L is a local language.

Definition 8. A tiling system (TS) is a 4-tuple T = (Σ,Γ, θ, π) where Σ and Γ

are two finite alphabets, θ is a finite set of tiles over the alphabet Γ ∪ {#} and

π : Γ → Σ is a projection.

We say that a language L ⊆ Σ∗∗ is recognizable by a tiling system (or

tiling recognizable) if there exists a tiling system T = (Σ,Γ, θ, π) such that

L = L(T). This family of tiling recognizable picture languages is denoted by

REC [Giammarresi and Restivo 1997].

Example 4. Let Σ = {a} be a one letter alphabet. The set of pictures of a’s with

three columns is a recognizable language which is not local.

i.e., L = {a a a,
a a a

a a a
,

a a a

a a a

a a a

, . . . } ∈ REC.

3 Trajectory Array P system

In this section we introduce a new concept of trajectory array P system.

Definition 9. A trajectory array P system is defined as

Π = (V, T, μ, (L1, T1, tar), (L2, T2, tar), . . . , (Ln, Tn, tar)) where

1. V is an alphabet; its elements are called objects

2. T = Tc ∪ Tr is the control alphabet where Tc = {r, u}, Tr = {l, d}.
3. μ is a membrane structure consisting of n membranes μ1, μ2, . . . , μn.

4. Li ⊂ V ∗∗, Ti = Tci ∪ Tri where Tci ⊂ T ∗
c , Tri ⊂ T ∗

r and

tar ∈ {{here, out}, {here, inj}, here, out, inj|1 ≤ j ≤ n}.
For each i, 1 ≤ i ≤ n, let (Li, Ti) be the content of ith membrane. If i is

an elementary membrane then L′
i = LTi

i is the language computed in the ith

membrane by applying the trajectory rule Ti on Li and depending on the target

it will be sent out of the membrane and no object will remain in that membrane

if tar = out or it will remain in that membrane if tar = here.

1808 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

If i is not an elementary membrane, but contains a membrane j, and if tar =

{inj, here} then one copy of the generated language will remain in the same

membrane i and another copy will be sent to jth membrane. If tar = {inj, out}
then one copy of the generated language will be sent out of the membrane and

another copy will be sent to jth membrane. If tar = {here, out} then one copy

of the generated language will be sent out of the membrane and another copy

will remain in the same membrane. This process is repeated till the language is

sent to the skin membrane and the language obtained by the computations in

the skin membrane is denoted by L(Π). The family of languages generated by

the trajectory P system is denoted by TAPSL.

We now give a trajectory array P system which generates the set of all

digitized pictures of token I.

Example 5. Consider the trajectory array P system

Π = (V, T, μ, (L1, T1, tar), (L2, T2, tar), . . . , (L6, T6, tar)) where

V = {#} ∪ {X}, # represents blank symbol,

T = Tc ∪ Tr with Tc = {r, u}, Tr = {l, d}
μ = [6[5[4]4[3[2[1]1]2]3]5]6 is the membrane structure consisting of six membranes

with skin membrane labeled 6.

1

3
2

4
5

6

Figure 1: Membrane structure of Π in Example 5

L1 = {#}, T1 = Tc1 ∪ Tr1, Tc1 = {rnum|n,m ≥ 1},
Tr1 = {lndn|n ≥ 1}, tar = {here, out}.

L2 = ∅, T2 = Tc2 ∪ Tr2, Tc2 = ∅,

1809Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

Tr2 = {lndm|n,m ≥ 1}, tar = {in1, out}.
L3 = {X}, T3 = Tc3 ∪ Tr3, Tc3 = {rnurn|n ≥ 1},

Tr3 = {lndm|n,m ≥ 1}, tar = {here, out}.
L4 =

{
X

X

}
, T4 = Tc4 ∪ Tr4,

Tc4 = {rnum|n,m ≥ 1}, Tr4 = ∅, tar = {here, out}.
L5 = ∅, T5 = Tc5 ∪ Tr5, Tc5 = ∅,

Tr5 = {ldml|m ≥ 1}, tar = {out}.
L6 = ∅, T6 = ∅.

X X X X X X X

X # #

X # #

X # #

X X X X X X X

Figure 2: I in Example 5

In membrane 1, by applying rule Tc1 (when n = 1,m = 1), we get L′
Tc1

=

{# #} and by applying rule Tr1 (n = 1), we get L′
Tr1

=
{

#
#

}
. A copy of this

will be sent to membrane 2 where by applying rule Tr2 (n = 2,m = 2) we get

L′
Tr2

=

⎧⎪⎪⎨
⎪⎪⎩

#

#
,

#

#

#

#

⎫⎪⎪⎬
⎪⎪⎭. Again a copy of the output will be sent to membrane

1. By applying the rules in membrane 1 and membrane 2 iteratively we can

generate a m× n picture

⎛
⎜⎝

. . .
...
. . .

...

. . .

⎞
⎟⎠

m×n

which will be sent out of membrane

2 to membrane 3. At the same time, in membrane 3 by applying Tr3 iteratively

we can get m × 1 picture of the form

⎛
⎜⎜⎜⎝

X

X
...

X

⎞
⎟⎟⎟⎠

m×1

. In the same membrane, by

using one of the rules in Tc3, we can get pictures of the form

X #

X #

X #

. These

pictures will be sent out of membrane 3 to membrane 5. Similarly, in membrane

1810 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

4 by applying Tc4 iteratively we can get a picture of the form

(
X X · · · X
X X · · · X

)
2×m

which will be sent to membrane 5. In membrane 5 by applying one of the rules

in Tr5 a row containing the letter X is attached to top and bottom of the picture

obtained in membrane 3 and will be sent out to membrane 6. Hence the above

system generates the set of all digitalized pictures of the token I of different

proportions which is a CFML [Siromoney et al. 1972,Siromoney et al. 1973].

Theorem 10. The class TAPSL intersects the class RML.

Proof. Consider the trajectory array P system

Π = (V, T, μ, (L1, T1, tar), (L2, T2, tar), . . . , (L6, T6, tar)) where

V, T, μ, (L1, T1, tar), (L2, T2, tar) are same as in Example 5.

L3 = {X}, T3 = Tc3 ∪ Tr3, Tc3 = {rnum|n,m ≥ 1},
Tr3 = {lnd|n ≥ 2}, tar = {here, out}.

L4 = {X}, T4 = Tc4 ∪ Tr4,

Tc4 = ∅, Tr4 = {lndm|n,m ≥ 1}, tar = {here, out}.
L5 = ∅, T5 = Tc5 ∪ Tr5, Tc5 = {run|n ≥ 2},

Tr5 = ∅, tar = {out}.
L6 = ∅, T6 = ∅.

By applying rules in membrane 1 and 2 (as in Example 5) iteratively to get

the pictures of the form

⎛
⎜⎝
. . .
...
. . .

...

. . .

⎞
⎟⎠

m×n

. These pictures will be sent out to

membrane 3 using tar = out. At the same time, in membrane 3, using rules of

Tc3 iteratively we get a row matrix of the form (X X . . . X)1×m containing the

letter X only. At any time, we can apply the rules of Tr3 which will attach this

row matrix containing the letter X at the bottom of the matrix obtained from

membrane 2 and thus we get pictures of the form

#

#

#

X X X X X

. These pictures

will be sent to membrane 5 using tar = out.

Similarly in membrane 4, the rules of Tr4 are applied iteratively to the initial

axiom present in membrane 4 to get a column matrix containing the letter X

only and it will be sent to membrane 5. In membrane 5, using a suitable rule of

Tc5, a column matrix containing the letter X only is attached as a first column

to the matrix of the form

#

#

#

X X X X X

and will be sent out of membrane 5.

Thus, in membrane 6 we get arrays describing the token L (Figure 4) which is

a RML [Siromoney et al. 1972,Siromoney et al. 1973].

1811Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

X # # # #

X # # # #

X # # # #

X # # # #

X # # # #

X X X X X

Figure 3: L in Theorem 10

Theorem 11. The class TAPSL intersects the class CFML - RML.

Proof. Consider the trajectory array P system

Π = (V, T, μ, (L1, T1, tar), (L2, T2, tar), . . . , (L6, T6, tar)) where

V, T, μ, (L1, T1, tar), . . . , (L3, T3, tar) are same as in Example 5.

L4 = {X}, T4 = Tc4 ∪ Tr4, Tc4 = {rnum|n,m ≥ 1},
Tr4 = ∅, tar = {here, out}.

L5 = ∅, T5 = Tc5 ∪ Tr5, Tc5 = ∅,
Tr5 = {ldm|m ≥ 2}, tar = {out}.

L6 = ∅, T6 = ∅.
Working of this system is similar to the system given in Example 5 except

that in membrane 5 when the rule Tr5 is applied a row containing the letter X

only is attached to the top of the matrix of the form

X

X

X

which is obtained

in membrane 3 by applying rule Tc3. Hence the above system generates m × n

arrays describing the token T (Figure 3) which is a CFML.

X X X X X

X #

X #

X #

X #

Figure 4: T in Theorem 11

Theorem 12. The class TAPSL intersects the class CSML-CFML.

Proof. Consider the trajectory array P system

Π = (V, T, μ, (L1, T1, tar), (L2, T2, tar), . . . , (L7, T7, tar)) where

1812 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

V, T, (L1, T1, tar), (L2, T2, tar) are same as in Example 5.

μ = [7[6[4[2[1]1]2[3]3]4[5]5]6]7
L3 = {X X X X }, T3 = Tc3 ∪ Tr3, Tc3 = ∅,

Tr3 = {lndm|n,m ≥ 1}, tar = {here, out}.
L4 = ∅, T4 = Tc4 ∪ Tr4, Tc4 = {runrunrunr|n ≥ 2},

Tr4 = ∅, tar = {here, out}.
L5 = {X}, T5 = Tc5 ∪ Tr5, Tc5 = {rnum|n,m ≥ 1},

Tr5 = ∅, tar = {here, out}.
L6 = ∅, T6 = Tc6 ∪ Tr6, Tc6 = ∅,

Tr6 = {ldm|m ≥ 3}, tar = {out}.
L7 = ∅, T7 = ∅.

X X X X X X X X X X

X # # X # # X # # X

X # # X # # X # # X

X # # X # # X # # X

X # # X # # X # # X

X # # X # # X # # X

X # # X # # X # # X

Figure 5: “fork” in Theorem 12

As in Example 5, we use the rules in membrane 1 and membrane 2 itera-

tively to get pictures of the form

⎛
⎜⎝
. . .
...
. . .

...

. . .

⎞
⎟⎠

m×n

. These pictures will be sent

to membrane 4 by using tar = out. At the same time, in membrane 3, us-

ing the rules of Tr3 iteratively on the initial axiom array (X X X X)1×4, we

get pictures of the form

⎛
⎜⎝
X X X X
...

...
...

...

X X X X

⎞
⎟⎠

n×4

which will be sent to membrane 4.

Now in membrane 4, using one of the rules of Tc4 we get pictures of the form
X # # X # # X # # X

X # # X # # X # # X

X # # X # # X # # X

X # # X # # X # # X

X # # X # # X # # X

X # # X # # X # # X

which will be sent to membrane 6. In membrane 5,

we get a row matrix containing the letter X only is obtained using the rules of

1813Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

Tc5 and these pictures will be sent out to membrane 6. In membrane 6, using

rules of Tr5, a row containing the letter X is attached at the top of the pictures

which we got from membrane 4. These pictures will be sent to membrane 7 using

tar = out. Thus in membrane 7, we get four-pronged fork (without handle) of

all sizes and proportion (but retaining equal intervals between forks) which is a

CSML [Siromoney et al. 1972].

Theorem 13. The class TAPSL intersects the class LOC.

Proof. Consider the trajectory array P system

Π = (V, T, μ, (L1, T1, tar), (L2, T2, tar))

where V = {a}, T = Tc ∪ Tr where Tc = {r, u} and Tr = {l, d}, μ = [2[1]1]2 is a

membrane structure consisting of two membranes with skin membrane labeled 2.

L1 = {a}, T1 = Tc1 ∪ Tr1, Tc1 = {rnum|n,m ≥ 1},
Tr1 = {lndm|n,m ≥ 1}, tar = {here, out}.

L2 = ∅, T2 = Tc2 ∪ Tr2, Tc2 = ∅, Tr2 = ∅.
Then L(Π) is the set of all rectangular pictures over {a} as in Example 3.

L(Π) ∈ LOC.

Theorem 14. The class TAPSL intersects the class REC.

Proof. Consider the trajectory array P system

Π = (V, T, μ, (L1, T1, tar))

where V = {a}, T = Tc ∪ Tr where Tc = {r, u} and Tr = {l, d}, μ = [1]1 is a

membrane structure consisting only skin membrane labeled 1.

L1 = {a a a}, T1 = Tc1 ∪ Tr1, Tc1 = ∅,
Tr1 = {lndm|n,m ≥ 1}, tar = here.

Then L(Π) is the set of all pictures of a’s with three columns as in Example 4.

L(Π) ∈ REC.

Remark. The results proved in this paper are represented in Figure 6.

4 Comparison with Array-Rewriting P Systems

Ceterchi et al. [Ceterchi et al. 2003] initially proposed array-rewriting P sys-

tems by extending the notion of string-rewriting P systems [Păun et al. 2010].

The family of all array languages generated by the array-rewriting P system is

denoted by APm[α] where α ∈ {REG,CF,#CF}. In this section, we compare

trajectory array P systems with array-rewriting P systems.

1814 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

CSML

RML

CFML

TAPSL

LOC

REC

TAPSL

Figure 6: Representation of the results

Theorem 15. The class TAPSL intersects the class APm[α] where

α ∈ {REG,CF,#CF}.

Proof. Consider the trajectory array P system

Π = (V, T, μ, (L1, T1, tar), (L2, T2, tar), . . . , (L6, T6, tar)) where

V = {a, b}, T = Tc ∪ Tr where Tc = {r, u},
Tr = {l, d}, μ = [6[5[4]4[3[2[1]1]2]3]5]6 is the membrane structure consisting of six

membranes with skin membrane labeled 6.

L1 = {b}, T1 = Tc1 ∪ Tr1, Tc1 = {rnum|n,m ≥ 1},
Tr1 = {lndn|n ≥ 1}, tar = {here, out}.

L2 = ∅, T2 = Tc2 ∪ Tr2, Tc2 = ∅,
Tr2 = {lndm|n,m ≥ 1}, tar = {in1, out}.

L3 = {a a}, T3 = Tc3 ∪ Tr3, Tc3 = {rumr|m ≥ 2},
Tr3 = {lndm|n,m ≥ 1}, tar = {here, out}.

1815Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

L4 =

{
a

a

}
, T4 = Tc4 ∪ Tr4, Tc4 = {rnum|n,m ≥ 1},

Tr4 = ∅, tar = {here, out}.
L5 = ∅, T5 = Tc5 ∪ Tr5, Tc5 = ∅,

Tr5 = {ldml|m ≥ 2}, tar = {out}.
L6 = ∅, T6 = ∅.

By applying the rules in membrane 1 and membrane 2 (as in Example 5)

iteratively, we can generate a m × n picture

⎛
⎜⎝

b . . . b
...
. . .

...

b . . . b

⎞
⎟⎠

m×n

which will be sent

to membrane 3. At the same time, in membrane 3 by applying Tr3 iteratively

we can get n × 2 pictures of the form

⎛
⎜⎜⎜⎝
a a

a a
...
...

a a

⎞
⎟⎟⎟⎠. Now using the rules of Tc3 a

column matrix containing the letter a is attached to the first and last column

of the array

⎛
⎜⎝

b . . . b
...
. . .

...

b . . . b

⎞
⎟⎠

m×n

and we get pictures of the form

a b b b b a

a b b b b a

a b b b b a

a b b b b a

a b b b b a

. These

pictures will be sent out to membrane 5. Similarly, in membrane 4 by applying

Tc4 iteratively we can get a pictures of the form

(
a a . . . a

a a . . . a

)
2×n

which will be

sent to membrane 5. Now in membrane 5 by applying one of the rules of Tr5,

a row containing the letter a is attached to the top and bottom of the matrix
a b b b b a

a b b b b a

a b b b b a

a b b b b a

a b b b b a

so that we get a solid rectangle as shown in Figure 7. These pictures

will be sent out to membrane 6 which is the skin membrane.

a a a a a a

a b b b b a

a b b b b a

a b b b b a

a a a a a a

Figure 7: Solid rectangle

1816 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

The above system generates all solid rectangles marked as suggested in Figure

7: the edges are marked with a and all the internal pixels are marked with b.

We note that the pictures of all solid rectangles can also be generated by an

array-rewriting P system [Ceterchi et al. 2003].

Remark. The trajectory array P system cannot generate the family of all L-

shaped angles with equal arms, each arm being of length at least three which

is generated by an array-rewriting P system [Ceterchi et al. 2003], since the

equality in number of rows and columns cannot be maintained by the shuffle

operation.

Hence there is a language which is in APm[α] but not in TAPSL. Also the

language given in Theorem 12 cannot be generated by an array-rewriting P

system with regular rules.

5 A Variant of Trajectory Array P System

In this section, we introduce a variant of trajectory array P system by extending

the definition of P system with catalytic-like rules given in [Niu et al. 2010].

Definition 9 uses trajectories as evolution rules. In this section, we modify that

definition and compare the languages generated by this new system with TAPSL.

Definition 16. An array P system with shuffle operation is defined as

Π = (V, T, μ, L1, L2, . . . , Lm, T1, T2, . . . , Tm, R1, R2, . . . , Rm, i0)

where

1. V is an alphabet; its elements are called objects

2. T = Tc ∪ Tr where Tc = {r, u}, Tr = {l, d}, is the control alphabet.

3. μ is a membrane structure consisting of m membranes μ1, μ2, . . . , μn.

4. Li ⊂ V ∗∗, 1 ≤ i ≤ m are initial sets of array languages respectively associ-

ated with regions 1, 2, . . . ,m of μ.

5. Ti = Tci ∪ Tri where Tci ⊂ T ∗
c , Tri ⊂ T ∗

r are sets of trajectories respectively

associated with region 1, 2, . . . ,m of μ.

6. Ri is a finite set of evolution rules associated with region i of μ. Each evo-

lution rule is in any one of the following forms:

(i) Ah1Bh2 → (C, tar), or

(ii) Ah1Bh2 → (A, here)(C, tar) or

(iii) Ah1Bh2 → (C, tar)(B, here)

1817Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

where A,B,C are array languages over V , h1, h2 ∈ Tci or h1, h2 ∈ Tri,

h1 	= h2 and tar ∈ {here, out, inj|1 ≤ j ≤ m}. If there exist A′, B′ ∈ Li

with A′ ∈ A, B′ ∈ B and A′ ��TiB
′ 	= ∅, then A′, B′ can be assigned to one

rule of the three forms (i to iii) non-deterministically and C = A′ ��Ti B′

is produced. The rule Ah1Bh2 → (C, tar) means as follows: Case (i): Let

h1, h2 ∈ Tci. Then there exist A′, B′ ∈ Li, with A′ ∈ A and B′ ∈ B such

that A′ ��Tci B′ = C. Similarly we have other cases to obtain C.

7. i0 is the output membrane.

The symbols here, out, inj, 1 ≤ j ≤ m are called target indications. The objects

can be transported through membranes due to targets. If (C, here) is present,

the array object C is placed in the same region i where the rule is applied. If

(C, out) is present, the object C is moved to the region immediately outside

membrane i. In the same way other target indicators work as in Definition 9.

Rules from sets of Ri, 1 ≤ i ≤ m are applied to sets of array languages in

corresponding region of μ synchronously, in non-deterministic maximally parallel

manner. The m-tuple of sets of languages present at any moment in the m

regions of Π constitutes the configuration of the system at that moment. The

m-tuple (L1, L2, . . . , Lm) is the initial configuration of Π . A transition between

configuration is governed by application of evolution rules all of which are based

on shuffle operation. A sequence of transitions between configurations of a given

system Π is called a computation with respect to Π . A computation is successful

if and only if it halts. i.e., there is no rule applicable to the objects present in

the last configuration. The language generated by the system is the union of

objects present in the output membrane i0. The family of languages generated

by this system with at most m membranes is denoted by STAPLm(type) where

type ∈ {cat, λ}.

Example 6. Consider the array P system with shuffle operation without catalytic-

like rules

Π = (V, T, μ, L1, L2, L3, T1, T2, T3, R1, R2, R3, 3)

where

V = {X,#},
T = {r, u} ∪ {l, d},
μ = [1[2[3]3]2]1,

L1 = {X(#)n|n ≥ 1},
L2 = {(X)n|n ≥ 2},
T1 = Tr1 = {lnd|n ≥ 1},
R1 = {X(#)n|n ≥ 1}l{X(#)n|n ≥ 1}d → {C′, {here, in}},
T2 = Tr2 = {lnd|n ≥ 1},
R2 = {X(#)n|n ≥ 1}l{(X)n|n ≥ 2}d → {C′′, in3},

1818 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

L3 = ∅,
R3 = ∅,
T3 = ∅.

Initially, arrays of size 1×n will be present in membrane 1. According to T1,

rule R1 can be applied to get a 2 × n array C′ of the form
X (#)n

X (#)n
. A copy of

this remains in membrane 1 and a copy is sent to membrane 2. If it is sent to

membrane 2, according to Tr2 , rule R2 can be applied to get a L shaped array

C′′ of the form

X (#)n

X (#)n

X (X)n
which will be sent to membrane 3.

By applying the rules R1 iteratively we get different size of L shaped arrays.

X # # # #

X # # # #

X # # # #

X # # # #

X # # # #

X X X X X

Figure 8: L in Example 6

Theorem 17. The class TAPSL intersects the class STALP3.

Proof follows from Theorem 10 and Example 6.

6 Conclusion

In this paper, we have introduced trajectory array P system and given exam-

ples which generate certain members of CSML, CFML, RML [Siromoney et al.

1972, Siromoney et al. 1973], LOC and REC [Giammarresi and Restivo 1997].

Trajectory array P systems cannot generate square pictures over singleton {a},
since the equality in number of rows and columns cannot be maintained by

the shuffle operation. We have compared this P system with Siromoney matrix

grammars, tiling systems and array-rewriting P systems. Further studies like

generative power, descriptional complexity, comparison results and universality

results can be done. A preliminary version of a part of this work has appeared

in [Prasanna Venkatesan et al. 2010].

1819Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

References

[Annadurai et al. 2008] Annadurai, S., Kalyani, T., Dare, V.R., Thomas, D.G: “Tra-
jectory P System”; Progress in Natural Science, 18 (2008), 611–616.

[Ceterchi et al. 2003] Ceterchi, R., Mutyam, M., Păun, Gh., Subramanian, K.G.:
”Array-rewriting P systems”; Natural Computing, 2 (2003), 229–249.

[Giammarresi and Restivo 1997] Giammarresi, D., Restivo, A.: “Two-dimensional lan-
guages”; In A. Salomaa and G. Rozenberg, editors, Handbook of Formal Languages,
Volume 3 (1997), 215–267, Springer-Verlag.

[Mateescu et al. 1998] Mateescu, A., Rozenberg, G., Salomaa, A.: “Shuffle on trajec-
tories: syntactic constraints”; Theoretical Computer Science, 197 (1998), 1–56.

[Mutyam et al. 2004] Mutyam, M., Jaya Prakash, V., Krithivasan, K.: “Rewriting tis-
sue P systems”; Journal of Universal Computer Science, 10(9) (2004), 1250–1271.

[Niu et al. 2010] Niu, Y., Xu, J., Subramanian, K.G.: “P systems with shuffle oper-
ation”; Proceedings of the Fifth IEEE International Conference on Bio-Inspired
Computing: Theories and Applications, 2 (2010), 1482–1486.

[Păun 1998] Păun, Gh.: “Computing with membranes”; Journal of Computer System
Sciences, 61(1) (1998), 108–143.

[Păun 2002] Păun, Gh.: “Membrane Computing. An Introduction”; Berlin, Germany;
Springer-Verlag, 2002.

[Păun et al. 1995] Păun, Gh., Rozenberg, G., Salomaa, A., “Grammars based on shuf-
fle operation”; Journal of Universal Computer Science, 1(1) (1995), 67–82.

[Păun et al. 2010] Păun, Gh., Rozenberg, G., Salomaa, A. (Eds.): “The Oxford Hand-
book of Membrane Computing”; Oxford Univ. Press., (2010).

[Păun et al. 2000] Păun, Gh., Yokomori, T.: “Simulating H systems by P systems”;
Journal of Universal Computer Science, 6(1) (2000), 178–193.

[Prasanna Venkatesan et al. 2010] Prasanna Venkatesan, A.S., Thomas, D.G., Robin-
son, T., Atulya K Nagar: “Trajectory array P system”; Proceedings of the Fifth
IEEE International Conference on Bio-Inspired Computing: Theories and Appli-
cations, 2 (2010), 1543–1549.

[Siromoney et al. 1972] Siromoney, G., Siromoney, R., Krithivasan, K.: “Abstract
Families of Matrices and Picture Languages”; Computer Graphics Image Process-
ing, 1 (1972), 234–307.

[Siromoney et al. 1973] Siromoney, G., Siromoney, R., Krithivasan, K.: “Picture Lan-
guages with array rewriting rules”; Information and Control, 22 (1973), 447–470.

1820 Venkatesan A.S.P., Thomas D.G., Robinson T., Nagar A.K.: Array ...

