
An Interactive Design Pattern Selection Method

Nadia Bouassida
(Mir@cl Laboratory,

Institut Supérieur d’Informatique et de Multimédia, Sfax University, Tunisia
nadbouassida@gmail.com)

Salma Jamoussi

(Mir@cl Laboratory,
Institut Supérieur d’Informatique et de Multimédia, Sfax University, Tunisia

salma.jamoussi@isimsf.rnu.tn)

Ahmed Msaed
(Institut Supérieur d’Informatique et de Multimédia, Sfax University, Tunisia

ahmed.msaed@hotmail.com)

Hanêne Ben-Abdallah
(King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia

HBenAbdallah@kau.edu.sa)

Abstract: Any inexperienced designer may not take advantage of design patterns due to their
high level of abstraction, on the one hand, and their overwhelming number, on the other hand.
In this paper, we propose a new approach that first retrieves and recommends a design pattern
that is adequate to a designer's modeling context, it then helps them in its instantiation. Our
approach learns past pattern reuse cases and it interacts with the designer through a
questionnaire to ensure that the retrieved pattern corresponds to their needs and intentions. It
uses the text mining technique Principal Component Analysis on past experiences of design
pattern reuses; the choice of this technique was based on an experimental evaluation we
conducted to determine the most adequate text representation and mining technique for our
problem. In a final assistance step, after retrieving the most appropriate design pattern, our
approach transforms the design situation at hand into the pattern constituting the solution.

Keywords: Design pattern reuse, recommendation, instantiation process, text representation
Categories: D.2.13, D.2.2, H.3.3

1 Introduction

Design patterns [Gamma, 95] provide for the development of higher quality software
and a reduced development cost. To be able to reuse design patterns and to attain their
intended benefits, designers are expected to have a good understanding and
experience with them in order to be able to select the right pattern for their context;
such high expertise is unfortunately not evident to acquire. In fact, a designer must
overcome the difficulties relative to the understanding and then to the selection and
application of the appropriate design patterns. Furthermore, face to an increasing
number of proposed design patterns in various application domains, even for an
experienced designer, the selection and instantiation/reuse of the design pattern

Journal of Universal Computer Science, vol. 21, no. 13 (2015), 1746-1766
submitted: 4/5/15, accepted: 6/7/15, appeared: 28/12/15 © J.UCS

pertinent to their application is not a trivial task. The problem is further accentuated
for an inexperienced designer who would need assistance both with the selection and
instantiation steps.

To offer such assistance, several approaches for design pattern recommendation
were proposed. Existing approaches can be classified into two categories depending
on their inputs: either a UML diagram—often the class diagram, or a textual query.
Among the UML diagram-based approaches, some works adopt Case Based
Reasoning (CBR) to learn past design experiences (e.g., [Gomes, 02], [Muangon,
13]), and others define a set rules (e.g., [Kim, 07], [Hsueh, 07], [Kim, 08],
[Bouassida, 12]). The approaches that start from a textual query adopt one of three
techniques: ontologies ([Blomqvist, 08], [Pavlic, 09]), expert systems (e.g., [Moyihan,
06], [Kung, 03], [Palma, 12], [Pavlic, 14]), or text classification techniques (e.g.,
[Hashminejad, 12]). Starting the recommendation from a UML diagram is very
convenient for designers. However, because multiple design choices/uncertainties
exist during its elaboration, an UML diagram may not encode all semantic
information that the designer has in mind; hence, relying solely on a UML diagram
for the retrieval of the appropriate design pattern often produces imprecise
recommendations. On the other hand, in the currently available text-based
recommendation systems, designers enter their queries by choosing from a fixed list
of keywords; these latter are extracted from the design pattern documentation. Being
abstract, such keywords can be hard to map to the problem description of the
application under development, which again limits the efficiency of the
recommendation. We believe that a hybrid recommendation approach is more
beneficial: the UML diagram is explored along with an interactive way of soliciting
the designer's intention through a text-based questionnaire.

In this paper, we propose to combine CBR and questionnaires to determine the
pattern that appropriately matches both the structural information encoded in the
UML diagram and the semantic intention of the designer. We use CBR to retrieve a
list of candidate patterns based on the UML diagram similarity to learned reuse cases.
In addition, to filter the list of candidates and validate the choice of a design pattern, a
questionnaire is formulated with the application's terms in order to identify the design
pattern that best matches the designer intention.

To search for the adequate patterns in the past experiences repository, we opted
for information retrieval techniques. To identify the most efficient information
retrieval method, we experimented with three widely used methods: TF-IDF [Salton,
65], Latent Semantic Indexing (LSI) [Binkley, 11], and Principal Component
Analysis (PCA) [Hotelling, 33]. Our experiment showed that PCA is the best choice
for design pattern representation and search. Hence, PCA is implemented in our
interactive design pattern assistance tool, named PRT (Pattern Recommender Tool),
which allows the designer to draw a design fragment that illustrates the problem.
PRT retrieves the list of candidate design patterns based on the cases already learned,
it then interacts with the designer through a questionnaire to narrow down the list of
candidates to the one appropriate to the context at hand. PRT uses linguistic resources
to consider the case where the designer uses a different language such as French or
different vocabularies from those of the design pattern description and past
experiences. Finally, PRT instantiates the selected design pattern by transforming the

1747Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

design problem into the pattern solution. This latter step is among the essential
advantages of using the UML diagram-based cases.

The remainder of this paper is organized as follows: Section 2 overviews current
works for design pattern recommendation, then it presents the basic principles of the
three evaluated text mining techniques: PCA, LSI and TF-IDF. Section 3 presents our
approach for pattern recommendation. Section 4 discusses the experimental results
through which we decided to use PCA as the appropriate information retrieval
technique for pattern recommendation based on past experiences. Section 5 describes
the tool PRT. Section 6 summarizes the paper and outlines our future work.

2 Related work

2.1 Existing pattern recommendation approaches

Several works examined pattern recommendation and assistance with pattern
selection (e.g., [Guéhéneuc, 07], [Gomes, 02], [Suresh, 11], [Diaz, 11], [Palma, 12],
[Hashminejad, 12]). In their recommendation approach, Guéhéneuec et al.
[Guéhéneuc, 07] use an analysis of descriptive texts of design patterns in order to
extract the most important key words. These latter are used for the retrieval of a
pattern by comparing them against the set of words selected by the designer. One
disadvantage of this approach is that the designer ends up with multiple solutions to
their problem. This is partially due to the fact that the approach does not allow
designers to enter their own query words (they just select from the keywords); in
addition, because the keywords originate from the abstract documentation of the
design patterns, they are too abstract for the designer to choose a restricted set of
keywords so as to target one design pattern. Furthermore, this abstract keyword-based
approach cannot manage complex design problems. Finally, as presented, this
approach does not offer any feedback to the designer, for instance to guide them in a
pattern instantiation.

Gomes et al. [Gomes, 02] recommend patterns through a CBR technique that
relies on past design experiences designed with UML diagrams. Cases are stored in a
library and indexed using WordNet [Miller, 95]. The main drawback of this approach
is that cases are described with class diagrams which may not be available for some
patterns; e.g., security patterns have just textual descriptions. Moreover, as argued in
the introduction, the class diagram may not encode all semantic information needed to
apply a particular pattern like the pattern context and intention.

Also adopting a CBR approach, Muangon et al. [Muangon, 13] propose to adapt
design patterns recommendation systems based on Formal Concept Analysis. FCA
[Ganter, 96] is a mathematical approach that uses a data analysis method based on a
concept lattice. The aim of FCA is to organize indexes in order to retrieve more
appropriate design patterns. By using only the class diagrams, this approach has the
same drawbacks as the approach of [Gomes, 02].

Hashminejad et al. [Hashminejad, 12] propose to recommend design patterns
using an automatic two phase approach based on a text classification technique. The
first phase learns one classifier for each design pattern class. The second phase uses a
text classification method to retrieve a design pattern class similar to the textual query
describing the design problem. This approach relies only on a textual description, and

1748 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

does not allow the designer to propose a model of the problem; consequently, the
approach cannot transform the pattern problem in a model of a pattern solution. In
addition, the quality of the description of the design problem has a decisive impact on
the overall quality of the proposed method.

Palma et al. [Palma, 12] present an expert system named DPR (Design Pattern
Recommender) that suggests patterns based on a simple Goal-Question metric
(GQM). GQM is a ranking based selection approach. DPR operates in four steps: first
it performs knowledge acquisition through the identification of circumstances in
which patterns can be applied (pattern intent), second it refines the circumstances with
sub-conditions (pattern applicability); third it formulates questions to the designers;
finally, it formulates GQM model with the defined questions. This system can be
beneficial for patterns that are described textually like security patterns. This
approach is very interesting since it relies on questions, however it does not learn
from past experiences. In addition, it does not transform the solution by adapting the
pattern problem to the application problem.

All of the aforementioned approaches present different views for pattern
recommendation; some of them focus only on learning cases, others on keywords
retrieval. Based on our analysis of the results of these approaches, we noticed that it
would be interesting to have an approach combining efficiently the Case Based
Reasoning technique with a text mining technique and that filters the results thanks to
a questionnaire about the design intent and context.

2.2 Basic principles of TF-IDF

TF-IDF (term frequency-inverse document frequency) [Salton, 1965] combines two
criteria: TF and IDF. TF is a statistical measure used to evaluate how important a
word is to a document in a collection or corpus. The importance increases
proportionally to the number of times a word appears in the document. IDF: Inverse
Document Frequency gives a more representative weight to each term according to its
relative rarity in the set of documents. Thus, it weights down the terms appearing in
all documents while scaling up the rare ones. TF-IDF assigns a weight to a term j in a
document i as follows:

(m/(D(j)))tf * idftfw ijijij log*

where:
 wij is the weight of the word j regarding the document i
 tfi,j is the frequency of the word j in the document i
 m is the total number of documents in the collection; and
 D(j) is the number of documents where the word j occurs.

Many variants of the TF-IDF weighting exist in the literature. The most known
case is the normalized TF which is used to account for documents of different lengths.
In our case, we do not consider the pattern length (in terms of words) because of the
relatively reduced number of terms in each design pattern. For this reason, we do not
consider this issue in our work and we use the basic TF-IDF form aforementioned.

When a query is entered, its numerical representation is created as a document
using the TF-IDF technique. This representation is then compared with the cosine-
distance to the other documents. The calculus of this similarity distance is as follows:

1749Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

 (,) cos(,) = ∑ 	∈∑ 2 ∑ 2∈∈ 	 ∈ (0,1)

where:
 di is the document i
 q is the query (corresponding to the pattern class names candidates);
 cos(di,q) is the angle between the vectors di and q;
 wij is the weight of the term tj in di;
 wqj is the weight of the term tj in q; and
 T is the set of terms contained in the documents.

2.3 Basic principles of LSI

LSI (Latent Semantic Indexing) [Dumais, 93] assumes that words that always appear
together are related and that words that are used in the same contexts tend to have
similar meanings. A key feature of LSI is its ability to extract the conceptual content
of a body of text by establishing associations between those terms that occur in
similar contexts. The context of a word is defined as the set of words that appear
together with it.

 After the construction of the occurrence matrix (the term-document matrix), LSI
uses singular value decomposition (SVD) and finds a low-rank approximation to
the initial matrix. In that case, the initial matrix A is decomposed as the product of
three other matrices as: A=TSDT. The matrices obtained during the singular value
decomposition are then reduced to a given number k of dimensions to result in the
truncated matrices Tk, Dk and Sk of the latent semantic space (see figure1).

Figure 1: The process for calculating LSI

Figure 1 illustrates the process for calculating the LSI. When the matrices Tk,Sk

and Dk are multiplied, they generate a new matrix Ak =TKSKDK T which is considered
as the approximation of A with a reduced number of dimensions. Ak represents then
the information in this new subspace of K dimensions.

1750 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

2.4 Basic principles of PCA

Principal Component Analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a
set of values of linearly uncorrelated variables called principal components. It reduces
the number of variables to significant factors. These factors define a new subspace
where similarity between individuals is better exposed.

The new factors are the eigenvectors, ordered by eigenvalues in descending order,
of the data covariance matrix. In other words, they are the main dispersion axis of the
data, in decreasing order of importance; the corresponding eigenvalues indicate the
share of variance expressed by each axis. Principal components are linear
combinations of the original variables expressed as follow:

PC(i)=w1i . x1 + w2i . x2 + w3i . x3 + …. + wqi . xq

where w1i is the weight of the first variable in the ith principal component and q is the
number of the original variables.

The principal axes thus calculated allow, in the same time, a reduction of data and
an easier interpretation in the treated domain. Indeed, as the new dimensions are often
very significant, only k (k<q) dimensions will be retained to better describe the data.

Mathematically, PCA seeks the axes (directions) of the data points where the
variance is maximal, i.e. calculating the square matrix of covariance of the input data
and its values and eigenvectors. To do this, we must first calculate the average of
our data points with the following function: 	 (1)	
where n is the number of data points. The covariance matrix C of our input data is:

 (2)

 (3)

where represents the covariance between variables i and j in our input data.
Finding the principal components of our data implies determining the eigenvalues

and eigenvectors of the matrix C. The eigenvectors of C define in R the orientations
of the principal components of our input data when the origin of the vector space is
moved to . The eigenvalues represent the significance of each of these
components. They correspond to the variances of the data when projected on each of
these directions. Let Z be the matrix whose columns are the q eigenvectors of C (z1,
z2, ..., zq,). Subsequently, the principal components analysis consists of choosing the
first k eigenvectors associated with the biggest eigenvalues, i.e., those that
maximize the variance. To reduce the size of the space of representation of our data, it
suffices to construct the matrix W as follows: = , , … , 	; 	 < 	 (4)	

1751Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

3 Our design pattern selection approach

Our design pattern selection approach (illustrated in Figure 2) operates according to
the following steps:

 Pattern cases repository construction: this step starts from a set of past
experiences containing design pattern instances and constructs a repository
of pattern cases that will be used in the recommendation steps.

 Design query formulation: the user inputs a design fragment in the form of a
UML diagram. Then, the terms in the diagram are extracted automatically
and used as the query in the following step.

 Pattern retrieval based on learning: to handle this task, first the cases
(pattern participant's names, their roles and the corresponding pattern name)
are entered in the database and a model to describe each pattern class is
learnt. Henceforth, pattern retrieval consists in searching and retrieving
cases from the case library. This is done namely by means of an information
retrieval method such as TF-IDF, LSI and PCA. Cases relevant to the target
design are identified by applying a similarity metric that ranks the learnt
cases.

 Questionnaire: asks the designer many questions to validate one of the
retrieved patterns as appropriate to the design problem.

 Design pattern instantiation: transforms the design to include the validated,
recommended pattern.

 Case retaining: learns the validated, recommended pattern. This step
enriches the pattern cases base with new experiences managed through our
approach.

3.1 Pattern cases repository construction

The pattern cases database was composed of different design patterns extracted from
well proven case studies: JHotDraw [Gamma, 07], JUnit [JUnit, 07], Jrefactory
[JRefactory, 07], Lexi, etc. Other design patterns were also extracted from proven
cases in the literature [Gamma, 95]. We next present the pattern cases repository
construction steps and the resulting learning pattern base.

3.1.1 Past pattern experiences pre-processing

The pre-processing step starts from past design experiences where various design
patterns were instantiated and it is applied to all patterns in the case base. It uses
classical Natural Language Processing operations to "clean" the names used in the
past design experiences so as to facilitate the creation of the learned pattern cases
repository; this latter is used in the pattern retrieval step.

1752 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

Pattern Retrieval (recommendation)

Query
formulation

Questionnaire
- What is the intention?
 - What is the context?

Candidate patterns

designer Design elaboration

Instantiated pattern

Design viewing

design.XMI

Pattern cases repository
construction

Pattern cases repository

Data Pre-processing

Enrichment (synonyms +
 translations)

Design query

Case retaining

Past pattern cases
(problem, adequate pattern)

Figure 2: Steps of our recommendation approach as implemented in PRT

More specifically, the pre-processing step extracts the words used to name the
elements of the past design experiences (i.e., the names of patterns, classes, roles,
methods …), and it applies on them the following three operations to extract the
linguistic units:

 Stop words elimination: For each element name, its composing words are
extracted based on spatial markers like spaces, capital letters and special
characters. Afterwards, stop words like “to”, “of”, “the”, etc. are removed
since they do not bring any additional signification. The retained words are
basic and carry meaningful information.

 Lemmatization: The objective of this morphological operation is to group
together the different inflected forms of a "basic" word so they can be
analyzed as a single word. Lemmatization, which is a morphological process,
transforms each word to its basic form also called lemma. Consequently,
different forms of a basic word that may have similar meaning are grouped
together and handled as one word (the lemma). For example, in English, the
verb 'to walk' may appear as 'walk', 'walked', 'walks', 'walking'; the form
'walk' is the lemma of all these words.

1753Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

 Filtering to retain only the most common terms: We eliminated those terms
with a frequency below a fixed threshold; in our case the threshold was set at
5. The main hypothesis is that infrequent terms are less likely to appear in
the test set also because of their random selection.

Note that the literature of Natural Language Processing offers several tools for
handling the above morphological operations. In our work, we have chosen to use the
"TreeTagger" tool [Schmidt, 15]. Thanks to this pre-processing phase, our learning
lexicon is reduced from 698 to 665 words for the same number of patterns, and then it
is further reduced to 551 words after eliminating stop words and filtering.

3.1.2 Enrichment step

The enrichment step aims to construct a description of the learned design patterns that
offers a large vocabulary in more than one language. In this step, we try to describe a
design pattern case by a maximum amount of information and features by:

- expanding the list of terms used to name the components of design patterns
in past experiences by adding their synonyms; and

- providing for different design languages such us French.

The main idea is to use linguistic resources to find synonyms and appropriate
translations. In our case, we make use of the WordNet ontology to retrieve synonyms
of words occurring in our patterns [Miller, 95]. For the French translations we use a
bilingual dictionary. Actually, there are plenty of free bilingual dictionaries available
on the net and that we can use in such case. In our work, we chose the French-English
Collins Dictionary.

Overall, the enrichment step has remarkably changed our vocabulary, which
passed from a size S=551 to S=2125. This means that the vocabulary was expanded
for almost four times. Each word was replaced by average of 3.85 words, including
synonyms and translations. For each word we have a mean of 2.6 synonyms and 1.25
translations with a standard deviation of 1.5 in the first case and of 0.7 in the second
one.

3.1.3 The learning pattern base

In our current pattern cases repository, we actually used only the class names (pattern
participants), roles and pattern names. In future works we will include also attributes
and methods names. Note that, we did not make use of the structure of the class
diagram (relations between classes: aggregation, inheritance …) because we suppose
that the user is inexperienced with patterns and consequently the relations drawn are
probably incomplete/uncertain and they will be changed after the recommendation in
the adaptation step. However, the sequence diagrams that represent the interactions
could in the future be considered to compute similarities between the design drawn by
the user and the sequence diagrams corresponding to the patterns to recommend.

Among the 23 design patterns of the Gang of Four (GoF) [Gamma, 95], our
pattern cases repository contains the following 18 patterns:

 Creation patterns: Abstract factory, Builder, Factory and Singleton.
 Structural patterns: Adapter, Bridge, Composite, Decorator and Proxy.

1754 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

 Behavioral patterns: Command, Mediator, Observer, State, Strategy,
Template, Visitor, Iterator and Chain of Responsibility.

The remaining patterns will be addressed in future work since we estimate that the
different categories are sufficiently represented and we believe that even if we add the
remaining 5 patterns, the trend of the results would not change. An extract of the data
used for learning is presented in Figure 3.

Our learning pattern base is initially composed of 161 cases of design patterns.
We randomly divided our pattern base into 70% for the learning phase (111 pattern
cases) and 30% for the test (50 pattern cases). The set of terms is built by selecting all
the words that appear in the pattern cases.

As mentioned previously the enrichment step produced 2125 terms. However, to
avoid working with large matrices, we retained in the learning base the original 551
terms produced after the pre-processing step. The remaining terms which came from
the synonyms and translations were used in the frequency count: for each term, its
frequency is incremented at each appearance of one of its synonyms or translations.
For instance, the frequency of the word “women” will be incremented when we find
“women”, “lady”, “miss”, “madame”, etc.

Note that the number of terms depends on the number of classes participating in
each pattern. For example, the pattern Singleton contains just one class whereas the
pattern Factory contains four participating classes. Consequently, the number of
terms extracted varies from one pattern to another. Indeed, Singleton participates only
with 8 terms whereas Factory participates with 68 terms. It is also worth mentioning
that there are a lot of common terms among the different patterns. This further
decreased the number of retained terms. In fact, when omitting overlapping terms,
each pattern participates with a mean of 30.6 terms (as opposed to the original a mean
of 33.1 terms).

Figure 3: Extract of the pattern cases repository used for learning

3.2 Design pattern retrieval based on learning past experiences

As mentioned in the introduction, our pattern selection/recommendation uses an
information retrieval technique whose core tasks are learning, classification and
similarity measure. Several techniques for learning and classification exist in the
literature, but it is unclear which one is definitively better than another in our context.
This performance information shortage prompted us to experiment with different

1755Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

learning methods to find the most suitable one for the recommendation task. In our
experiments, we considered three IR methods which are: TF-IDF, LSI and PCA. We
applied the same learning phase for the three IR methods. We developed these
learning techniques using the R software [R, 05], a language and environment for
statistical computing and data analysis.

Note that one advantage of our approach is that in the learning some terms are up
weighted to reflect the relative importance of their corresponding participants in the
pattern. This weighing decision stems from the fact that, in a design pattern, the
various pattern participants play different roles with different levels of importance.
For example, in the Observer pattern, the roles played by the classes are Observer,
Subject, ConcreteSubject and ConcreteObserver; the Observer and Subject roles are
the most important since they encode the essence of this pattern. Thus, we consider
that the terms representing the Observer and subject are more significant.
Consequently, in the learning step, these terms are up weighted to reflect their
importance. In fact, we have multiplied the frequency of these terms in the learning
corpus (term-document matrix) by two.

3.2.1 Learning with TF-IDF

TF-IDF uses a matrix containing the weights of terms appearing in the documents, the
lines correspond to the patterns (n) and the columns correspond to the terms (p). The
TF-IDF weights calculation need two matrices: the first one is the matrix of
occurrences (n*p), it presents local weights determining the importance of a term in a
pattern and represented by its frequency (tf). The other matrix represents the global
weights that determine the distribution of each term in the database of patterns. Once
these matrices are calculated, we obtain the values of TF-IDF of terms (t) for a
particular pattern (d) in a set of patterns D.

The same TF-IDF computation is done for the query. The cosine similarity
between any query and the TF-IDF matrix of the database of patterns varies between
0 and 1. The pattern of the database having a cosine value close to 1 is considered the
most pertinent.

3.2.2 Learning with LSI

LSI identifies the pattern cases stored in the repository that are textually similar to the
current case. For this purpose, a similarity matrix is calculated. First, LSI creates
a term-document matrix which describes the occurrences of terms in documents; its
rows correspond to terms and its columns correspond to documents. The element (i,j)
of the matrix corresponds to the number of occurrences of the term i in the pattern
case j.

On the other hand, the query contains terms extracted from the design fragment
drawn by the designer. LSI uses each term belonging to the design fragment as a
query to retrieve all terms similar to it in the stored cases, according to a cosine
similarity. It is worth mentioning that LSI generates a new matrix Ak which represents
the patterns in the dimension K. It is calculated as Ak =TKSKDK T. Therefore, when
calculating the cosine similarities between the query and learning cases, we have to
consider the same K dimensions obtained by the LSI method. Then for a query q a
new query qK must be calculated as qK =qTTKSK

-1. The cosine measure will then be

1756 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

calculated between the new query vector qK and the reduced document vector
depicted from the DK matrix. K represents the reduced number of dimensions. In
order to determine the best value of K, we proceeded to many experiments where we
try different values for this parameter.

3.2.3 Learning with PCA

Similar to the above methods, PCA uses the term-document matrix which describes
the occurrences of terms in documents where columns correspond to terms extracted
from the learning patterns and the rows correspond to the different patterns.

The PCA technique starts by calculating the covariance matrix between all terms
where each term is described by a vector containing its occurrences in the n patterns.
Then, the eigenvectors and the eigenvalues of this matrix are determined. The
obtained eigenvectors define the orientations of the principal components of our input
data. These components are linear combinations of the p=551 considered terms of our
learning dataset. Thereby, each design pattern will have new coordinates in the new
resulting space. As the new components describe better the original patterns, only a
reduced dimension of this new space would be sufficient to find similarities between
patterns and between a query and the set of learning design patterns.
In this case similarity between a query q and a pattern d is given by the Euclidian
distance between these two elements. After determining the representative vectors of
these two elements in the new PCA sub-space we proceed to the distance calculus
then we choose the pattern having the minimal distance with the given query q. This
distance is given by:

(,) = (−)

where q=(q1, q2, …, qK) represents the query vector in the new subspace, d=(d1,
d2, …, dK) is the pattern vector in the same subspace and K represents the reduced
dimensions retained from the new PCA space.

As in the LSI case, the K value must be comprised between 2 and the number of
pattern cases; in order to determine its best value, we have to proceed to many
experiments and to depict the K value giving the best recommendation results. It is
worth mentioning that the first dimensions in the PCA space are the most important
since they account the most variation in the patterns set. Thus, neglecting the last
dimensions will not affect results and will not cause any information lost.

3.3 Questionnaire

Our approach has the advantage of validating the UML diagram-based
recommendations with an interactive set of questions about the design intention and
context. Unlike existing text-based approaches which use abstract keywords, our
approach expresses the questions with concepts taken from the application design.
The questions are reformulation of the intent and context descriptions documenting
the design patterns. The asked questions depend on the retrieval results already done
in the preceding step. Thanks to the questionnaire, more recommendation accuracy
can be achieved. Note that, unlike existing approaches that propose multiple questions
to the designer (e.g., [Kung, 03], [Palma, 12], [Pavlic, 14]), ours reduces the number

1757Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

of questions and it reformulates the questions while using the names of the elements
that were identified as pattern participants in the pattern retrieval step. The
reformulation facilitates the comprehension of the questions to the designer.

Making sure not to burden the user with many questions, our approach limits the
questions to only the three patterns with the highest similarity values. For each of the
three top-ranked patterns, three characterizing questions are presented to the user; if
one of the questions is answered negatively, we move to recommend the following
pattern and we present its own three characterizing questions, and so on so forth.
Hence, at most the user will have to answer nine questions. Evidently, the question
formulation is very important and we have prepared the characterizing questions of
the 18 patterns included in our pattern repository with care, relying on our expertise
with the patterns.

To elaborate the characterizing questions, we extracted for each pattern its intent,
its applicability and its context. We extracted this information from the book of
Gamma [Gamma, 95] which proposes a commonly used documentation format for
patterns containing: the pattern name and classification, the intent (i.e., a description
of the goal behind the pattern and the reason for using it), the motivation (i.e., a
scenario describing the problem), the applicability (i.e., situations in which the pattern
is usable), the structure (i.e., class diagrams and interaction diagrams representing the
pattern), the participants (i.e., a listing of the classes and objects used in the pattern
and their roles in the design), the collaboration and the consequences (i.e., a
description of the results).

For an example of questionnaires, suppose that the Strategy pattern was retrieved
as a candidate in a design where the NetPayable class was identified as playing the
role of Strategy and the Invoice class was identified as playing the role of a Context;
then the questionnaire step will formulate the following three characterizing
questions:

Strategy questionnaire Yes No
Do you want to define a family of NetPayable?
Do you want to encapsulate each NetPayable, and
make them interchangeable?

Do you want to vary the behavior of the Netpayable
independently from the class Invoice that use it?

If any of the answers to the questions about the intention are negative, we move

to questions about the intentions of the next retrieved patterns, according to similarity
ranking; this alternative analysis is especially needed when the similarity values are
very close between the first pattern and those following it.

In order to evaluate the questionnaires formulated about the 18 design patterns,
we used our tool PRT (described in Section 5) to test the approach with ten graduate
students taking a Master's software engineering course. We proposed three case
studies to each student who used PRT to find recommended patterns and then to
answer their questionnaire; that is, a total of 30 experimentations were conducted with
PRT. Afterwards, we asked the students about the clarity and usefulness of the
questions: Only one out of the ten students said that the questions were not adapted to
the case studies. Moreover, in the 30 cases, only 4 cases needed to go to a second
round of the questionnaire based on the user responses. This shows the efficiency of

1758 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

both the retrieval step and the questionnaire formulation which assisted the user to
decide with no hesitation.

3.4 Pattern instantiation

The final step in our approach is instantiation which adapts the recommended pattern
to the domain by modifying, if needed, certain design properties. Pattern instantiation
essentially changes the design structure in order to conform it with the structure of the
recommended pattern.

To illustrate the instantiation step, let us consider the design fragment drawn in
Figure 4 which was recommended to match the Composite pattern. In the
recommendation step, it was determined that the classes Circle, Triangle Shape,
Square must play the role of a Leaf thus there must be an inheritance relation between
the class Form that plays the role of Composite and these classes. Moreover, the class
Group plays the role of Component consequently the relationship that must exist
between Group and Form is an aggregation. Thus, instantiation must remove the old
relationships and replace them with these new relations (inheritance and aggregation).

Figure 4: An example of designer input

The participants in the recommended pattern are: Form (Composite), Group
(Component), Square (Leaf), Shape (Leaf), Triangle (Leaf), and Circle (Leaf). It has
been found similar to the learned pattern case corresponding to Composite and where
GroupFigure plays the role of a component, Figure plays the role of a composite and
the leafs are (TextFigure, PolygonFigure, RoundRectangleFigure).

4 Pattern retrieval methods evaluation

In order to choose the best information retrieval technique (among TF-IDF, LSI,
PCA) for our pattern selection system, we evaluated the results of the three
experimentally. For evaluation purposes, we used the measures of precision and recall
introduced in the domain of information retrieval.

1759Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

Figure 5: The recommended Composite pattern instantiated in Figure 4

In our experiment, precision and recall are computed separately for each design
pattern type. In this case, precision assesses the number of design patterns correctly
recommended by our tool for a given type among all the recommended patterns for
that type. In the same way, recall assesses the number of correct design patterns
recommended by our tool for a given pattern type among all the existing patterns in
this type. We also used the F-measure, which takes into account the two evaluations
(recall and precision). In fact, it is a measure of overall efficiency which is given by:

Recall) (Precision

Recall) Precision (2
 measure-F

Seeking a detailed and complete evaluation of the three proposed methods, we

performed two series of experiments. The first one is dedicated to a detailed
evaluation according to the above explained steps. In that, we split our database into
two parts. One part containing 111 design pattern cases and it is devoted to the
learning step and the second part contains 50 cases and it is used for the test step.
Thus, the same cases are used to evaluate the three methods.

In the second series of experiments, and for more accurate results, we consider a
5-fold cross-validation where our dataset is divided in 5 folds. A fold contains 32
design patterns selected randomly. Each time, one of the folds is used for testing and
the rest for training. Therefore, the evaluation step is repeated 5 times with different
learning and test sets. The final result is calculated as average of the 5 obtained F-
measures. This way, the obtained F-measure values are more statistically significant.

Table 1 presents the evaluation results for the different patterns when using TF-
IDF in the first series of experiments. After calculating the obtained F-measure value
for each class, the overall value of efficiency is 68.4%. This efficiency is obtained as
an average of all F-measure values and it is considered as a relatively low value. Note
that, the zeroes in Table 1 are explained by the fact that the data distribution for these
patterns is unbalanced and inequitable, which makes TF-IDF non efficient in these
cases. More specifically, for these two patterns, TF-IDF produced bad results since
there is no direct similarity with existing cases. In fact, despite the extension of the

1760 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

vocabulary of both patterns, their low number of occurrences did not help to improve
the results of TF-IDF. In contrast, the results of these patterns with LSI and PCA are
slightly better since these techniques exploit the context-based similarity.

 R P

Abstract Factory 0 0
Adapter 1 0.625
Bridge 1 0.666
Builder 1 1

Chain of responsibility 1 1
Command 0.666 1
Composite 0.5 0.285
Decorator 0.666 1
Factory 0.666 0.666
Iterator 1 1

Mediator 1 1
Observer 1 0.6

Proxy 1 1
Singleton 1 0.333

State 0.666 1
Strategy 0.333 1
Template 0 0
Visitor 0.5 1

Average (R/P) 0.657 0.660
Average efficiency 0.684

Table 1: Evaluation results with the TF-IDF technique

For the LSI technique, we tried several values of K to adjust this parameter to its
best value. Table 2 presents the evaluation results for the different design pattern
classes when using LSI. The best value of the overall efficiency is 93.2% obtained
with K=30.

Table 3 presents the evaluation results for the different design pattern classes
when using PCA. In the same manner, we vary the value of K to depict the best
results. In this case, K=28 gives the best overall efficiency which is calculated as the
average F-measure value and it is equal to 95.6%.

In the evaluation (illustrated in Table 3), the value of precision is 97.2 % which is
explained by the fact that we found some false positives (i.e., incorrectly
recommended patterns). The average Recall value is 95.8 % indicates that we have
some false negatives (i.e., true patterns not recommended). However, the obtained F-
measure value is very encouraging and it shows the capacity of the PCA method to
retrieve the hidden relations between terms and to fulfil the semantic requirements
needed when searching for similar pattern cases.

When performing the second series of experiments with 5-fold cross validation,
the performances of the three methods were confirmed. Indeed, the final average F-
measure value obtained with the TF-IDF method is 68.1% which is very close to the
value of 68.4% obtained in the first series of experiments. For LSI, the best results
were given when K is equal to 30 with an average F-measure value of 93.8%. Finally,

1761Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

the PCA method achieved the best performances with an average F-measure value of
95.1% with a reduced number of dimensions (average value of K=29).

K=10 K=20 K=30 K=40 K=25 K=35

 R P R P R P R P R R R P

Abstract
Factory

0.666 0.5 1 1 1 1 0.333 1 0.666 0.666 0.666 1

Adapter 1 0.714 1 0.714 1 1 1 0.833 1 1 1 0.714

Bridge 1 1 1 1 1 1 1 0.666 1 1 1 0.4

Builder 1 1 1 1 1 1 1 1 1 1 1 1

Chain of
responsibility

1 1 1 1 1 1 1 1 1 1 1 0.75

Command 1 1 1 1 1 1 1 1 1 1 1 1

Composite 0.75 0.75 0.75 1 0.75 1 0.75 1 0.75 0.75 0.5 0.666

Decorator 0.666 1 1 0.75 0.666 1 0.666 1 0.666 0.666 0.333 1

Factory 0 0 0.666 0.5 1 0.75 0.666 0.666 0.666 0.666 0.333 0.5

Iterator 1 1 1 1 1 0.666 1 1 1 1 1 1

Mediator 1 1 1 1 1 1 1 0.666 1 1 0.5 1

Observer 0.666 1 1 1 1 1 0.666 1 1 1 1 0.75

Proxy 1 0.6 1 0.75 1 1 1 1 1 1 1 1

Singleton 1 1 1 1 1 0.5 1 0.333 1 1 0 0

State 1 1 1 1 1 1 0.666 1 1 1 1 0.75

Strategy 0.666 1 0.666 1 0.666 1 0.666 1 0.666 0.666 0.666 1

Template 0 0 0 0 1 1 1 1 1 1 1 1

Visitor 1 1 0.5 1 1 1 1 1 0.5 0.5 0.5 1

Average(R/P) 0.800 0.809 0.865 0.873 0.949 0.939 0.856 0.898 0.884 0.884 0.749 0.807

Average
efficiency 0.794 0.857 0.932 0.845 0.866 0.87

Table 2: Evaluation results with the LSI technique

Through the different evaluations, we noticed that the results of TF-IDF are far
from those of PCA and LSI, this is explained by the fact that TF-IDF suffers from the
sparse representation problem. In fact, as query contains only few words, its
corresponding TF-IDF vector will be sparse. It is the same for patterns vectors.
Therefore the cosine similarity will only rely on scarce common words and similarity
values will be distorted. In contrast, LSI and PCA do not rely on words but rather on
concepts, in that, words having same contexts can be revealed similar. It is this
propriety that makes all the difference between the two kinds of techniques.

Henceforth, the similarity measure can be properly calculated between queries
and patterns even they do not share enough words. The obtained results show that it is
possible to define a kind of “concepts” as design patterns. In fact, combination of
words with corresponding weights can define latent composition of a design pattern.
This justifies the good results especially with the PCA and the LSI methods. In
contrast, TF-IDF based only on existing words in the design pattern achieves lower
performances. The most likely explanation is that terms with a low frequency will not
appear in the test cases and cannot participate in the design pattern detection step.
Note that the concepts constitute good solutions in this case because they are not
limited to only one term. Moreover, we notice that for example the template pattern
gives bad results with LSI and PCA when using low values for K, this is explained by
the fact that when reducing k, the coverage of the lexicon becomes insufficient since
it is very extended and since the frequency is low. Finally, the fact that PCA gave the
best results is explained by the efficiency of the pre-processing step initiated by this

1762 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

method. Indeed, while the singular value decomposition: SVD is applied on the term-
document matrix with the LSI method, it is applied on the covariance matrix with the
PCA method and this makes difference. Thus, the obtained PCA space reflects the
variance between data points and allows to better describing similar and dissimilar
patterns and queries.

 K=2 K=10 K=20 K=28 K=40
 R P R P R P R P R P

Abstract
Factory

0.333 0.5 1 1 1 1 1 1 1 1

Adapter 0.4 0.666 1 1 1 0.833 1 0.833 1 0.833

Bridge 0.5 0.5 0.5 0.5 1 1 1 1 1 1

Builder 0.333 1 1 1 1 1 1 1 1 1

Chain of
responsibility

0.666 0 .666 1 1 1 1 1 1 1 1

Command 0 0 1 1 1 1 1 1 1 1

Composite 0.5 1 0.75 1 0.75 0.75 0.75 1 0.75 1

Decorator 0.333 0.5 1 1 1 1 1 1 0.666 1

Factory 0.333 0.25 0.666 1 1 1 1 1 1 1

Iterator 0 0 1 0.5 1 1 1 1 1 0.666

Mediator 0.5 0.142 1 1 1 1 1 0.666 1 0.666

Observer 0.333 0.25 1 1 1 1 1 1 1 1

Proxy 0.666 0.5 1 1 1 1 1 1 1 1

Singleton 0 0 1 1 1 0.5 1 1 1 1

State 0 0 1 1 1 1 1 1 1 1

Strategy 0 0 1 0.75 1 1 1 1 1 1

Template 0 0 0 0 0 0 1 1 1 1

Visitor 1 0.666 1 1 1 1 0.5 1 0.5 1

Average
(R/P)

0.327

0.351 0.884 0.875 0.93 0.893 0.958 0.972 0.939 0.953

Average
Efficiency 0.32 0.87 0.906 0.956 0.934

Table 3: Evaluation results with the PCA technique.

In order to compare our work against state of the art, we consider the work of
Hasheminejad et al. [Hashminejad, 12] which is based on textual queries and which
has the best results in design patterns selection. Its evaluation results for learning GoF
patterns using 19 real design problems when using the learning technique Support
Vector Machine (SVM) produced a precision of 89%, a Recall of 84% and an
efficiency of 86%. Our technique has a precision of 97.2% and our evaluation shows
that our design pattern recommendation approach has an average improvement of
8.2% in terms of precision over the best known approach. In order to have a fair
comparison with other existing approaches; one must evaluate all the approaches on
the same corpus. We believe that it is necessary to have a benchmark for design
pattern recommendations and that this would be an interesting research axis.

5 Tooling

The functional architecture of our Pattern Recommendation system Toolset (PRT)
contains five modules: Design query formulation, Patterns retrieval with PCA,
Questionnaire, Pattern instantiation, and Design viewing. The designer first draws
with the ArgoUML editor the application design. PRT imports class diagrams drawn

1763Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

according to the UML language and saved in XMI files. From the design saved as
XMI file, PRT extracts the names of the classes and formulates with them a query that
is passed to the retrieval module. This latter applies the PCA technique and
recommends a list of appropriate patterns. Each recommended pattern in this list is
described in terms of: the pattern name, and a set of pairs of pattern element-
corresponding design element. The questionnaire module takes this list of
recommended patterns and starts reformulating their characterizing questions in terms
of the design elements. In the example of Figure 4, three cases were identified as
having the highest textual similarity; this is done using the learnt models. The first
pattern to recommend is Composite with a similarity value that equals 0.92. To
validate this recommendation, PRT asks the designer the questions characterizing this
pattern; Figure 6 illustrates the question relative the pattern intention. If any of the
questions is answered negatively, PRT re-conducts the questionnaire phase with the
pattern ranked next on the list of recommended patterns.

Figure 6: PRT Questionnaire for Figure
4: The intention part

Figure 7: PRT report for the
recommended pattern of Figure 4

Once a recommended pattern is validated by the designer, PRT produces a
recommendation report; Figure 7 shows the recommendation report for the validated
Composite pattern for the example of Figure 4. Finally, the instantiation module
transforms the design into the pattern solution by modifying the XMI file thanks to
the API JDOM and to the tag DOM Builder and the design viewing module displays
the structure of the recommended pattern with ArgoUML.

6 Conclusion

In this paper, we presented a pattern recommendation approach and its interactive
toolset. The approach assists the designer in choosing the appropriate design pattern
and instantiating it. In the presented work, the recommendation of a design pattern is
guided by the use of the PCA technique (using the UML diagram) and a questionnaire
(expressing in a textual form the design intent). Compared to TF-IDF and LSI, PCA
was experimentally shown to be the best retrieval technique to identify a list of
candidate patterns from past pattern experiences. Compared to existing
questionnaire-based approaches, our approach has the merit of validating the PCA-

1764 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

based suggestions by formulating questions about the recommended pattern context
and intention in terms of the design terminology.

As future works, we plan to include more case studies to cover a richer
terminology containing methods and attributes names. In addition, we plan to apply
the approach on all GoF design patterns and other domain specific design patterns
(e.g. Service Oriented Architecture (SOA) patterns) in order to judge its effectiveness.
Furthermore, we plan to conduct a study on other learning algorithms such as the K-
nearest neighbors.

References

[Binkley, 11] Binkley, D., Lawrie, D.: Information retrieval applications in software
maintenance and evolution. In: Encyclopedia of Software Engineering, 454–463, 2011.

[Blomqvist, 08] Blomqvist, E.: Pattern ranking for semi-automatic ontology construction. In:
Proceedings of the ACM Symposium on Applied Computing, 2248–2255, 2008.

[Bouassida, 12] Bouassida, N., Koas, A., Ben-Abdallah, H.: A design pattern recommendation
approach. In: 2nd IEEE International Conference on Software Engineering and Service
Sciences, 15-17 July, Beijing China, 2012.

[Díaz, 11] Díaz, P., Aedo, I., Navarro, I.: Using recommendation to help novices to reuse
design knowledge. In: International Symposium for End User Development, IS-EUD, LNCS
6654, 331-336, 2011.

[Deerwester, 90] Deerwester S.: Indexing by latent semantic analysis. Journal of the American
Society for Information Science 41, 391-407, 1990.

[Dumais, 93] Dumais, S. T.: LSI meets TREC: A status report. In: D. Harman (Ed.), The First
Text REtrieval Conference (TREC1), National Institute of Standards and Technology, Special
Publication, 137-152, 1993.

[Gamma, 95] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pattern - Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

[Gamma, 07] Gamma, E., Eggenschwiler, T.: http://www.jhotdraw.org (2007), Accessed
February 2015.

[Ganter, 96] Ganter B., Wille R.: Formal concept analysis: Mathematical foundations.
Springer-Verlag, 1996.

[Gomes, 02] Gomes, P., Pereira, F.C., Paiva, P., Seco, N., P. Carreiro, Ferreira, J., Bento, C.:
Using CBR for automation of software design patterns. In: Proceedings of the 6th European
Conference on Advances in Case-Based Reasoning, 534- 548, 2002.

[Guéhéneuc, 07] Guéhéneuc, Y., Mustapha, R.: A simple recommender system for design
patterns. In: Proceedings of the 1st EuroPLoP Focus Group on Pattern Repositories, 2007.

[Hasheminejad, 12] Hasheminejad, S. M. H., Jalili, S.: Design patterns selection: An automatic
two-phase method. The Journal of Systems and Software 85, 408– 424, 2012.

[Hotelling, 33] Hotelling, H.: Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24, 417-441, 1933.

[JRefactory, 07] JRefactory, htstp://jrefactory.sourceforge.net/(2007). Accessed February 2015

1765Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

[JUnit, 07] JUnit, http://www.junit.org, (2007). Accessed 26 February 2015

[Kim, 07] Kim, D.K., Khawand, C.E.: An approach to precisely specifying the problem
domain of design patterns. Journal of Visual Languages and Computing, 18, Elsevier, 560–
591, 2007.

[Kim, 08] Kim, D.K., Shen, W.: Evaluating pattern conformance of UML models: a
divide- and-conquer approach and case studies. Software Quality Journal, Springer, 16 (3),
329–359, 2008.

[Kung, 03] Kung, D. C., Bhambhani, H., Shah, R., Pancholi G.: An Expert system for
suggesting design patterns: A methodology and a prototype. The Springer International Series
in Engineering and Computer Science (731), 287-318, 2003.

[Hsueh, 07] Hsueh, N.-L., Kuo, J.-Y., Lin, C.: Object-oriented design: a goal-driven and
pattern-based approach. Software and Systems Modeling (springer), 8(1), 1–18, 2007.

[Moynihan, 06] Moynihan, G. P., Suki, A., Fonseca, D. J.: An expert system for the selection
of software design patterns. Expert Systems 23(1), 39-52, 2006.

[Maher, 95] Maher, M.L., Balachandran, M., Zhang, D.: Case-Based reasoning in design.
Lawrence Erlbaum Associates, 1995.

[Miller, 95] Miller, G. A., WordNet: a lexical database for English, Communication of the
ACM 38 (11), 39–41, 1995.

[Muangon, 13] Muangon, W., Intakosum, S.: Case-Based reasoning for design patterns
searching system. International Journal of Computer Applications 70 (26), 2013.

[Muangon, 09] Muangon, W., Intakosum, S.: Adaptation of Design pattern retrieval using CBR
and FCA. In: Fourth International Conference on computer sciences and convergence
Information technology, 2009.

[Palma, 12] Palma F., Farzin, H., Guéhéneuc, Y.G., Moha N.: Recommendation system for
design patterns in software development: a DPR overview. In: Third International Workshop on
Recommendation Systems for Software Engineering (RSSE), Zurich, 2012.

[Pavlič, 09] Pavlič, L., Heričko, M., Podgorelec V., Rozman, I.: Improving Design Pattern
Adoption with an Ontology-Based Repository, Informatica 33, 189–197, 2009.

[Pavlič, 14] Pavlic L, Podgorelec V., Hericko M.: A question-based design pattern advisement
approach. Comput. Sci. Inf. Syst. 11(2), 645-664, 2014.

[Robertson, 04] Robertson, S.: Understanding Inverse Document Frequency: On theoretical
arguments for IDF. Journal of Documentation 60 (5), 503–520, 2004.

[R, 05] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Austria. ISBN 3-900051-07-0, 2005.

[Salton, 65] Salton, G., Buckley, C.: Term-weighing approach in automatic text retrieval.
Information Processing & Management 24(5), 513-523, 1965.

[Suresh, 11] Suresh, S., Naidu, M., Asha Kiran, S.: Design Pattern Recommendation System
Methodology (Data Model and Algorithms). In: International Conference On Computational
Techniques and Artificial Intelligence, 2011.

[Schmidt, 15] Schmidt, H.: Treetagger, www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
(2015). Accessed 26 February 2015

1766 Bouassida N., Jamoussi S., Msaed A., Ben-Abdallah H. ...

