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Abstract: This paper discusses grammar systems that have only terminals, work in
the leftmost way, and generate their languages under the regulation by control lan-
guages over rule labels. It establishes three results concerning their generative power.
First, without any control languages, these systems are not even able to generate all
context-free languages. Second, with regular control languages, these systems, hav-
ing no more than two components, characterize the family of recursively enumerable
languages. Finally, with control languages that are themselves generated by regular-
controlled context-free grammars, these systems over unary alphabets generate nothing
but regular languages. In its introductory section, the paper gives a motivation for in-
troducing these systems, and in the concluding section, it formulates several open
problems.
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1 Introduction

Indisputably, context-free grammars are central to formal language theory as a

whole (see [Rozenberg and Salomaa 1997, Dassow and Păun 1989, Meduna 2000,

Salomaa 1973]). It thus comes as no surprise that this theory has introduced a

broad variety of their modified versions, ranging from simplified and restricted

versions up to fundamentally generalized systems based upon these grammars.

Grammar systems (see [Csuhaj-Varjú et al. 1994]), regulated context-free gram-

mars (see [Dassow and Păun 1989, Mart́ın-Vide et al. 2004]), pure context-free

grammars (see [Maurer et al. 1980, Mäkinen 1986, Martinek 1998] and page 242

in [Rozenberg and Salomaa 1997]), and context-free grammars with leftmost

derivations (see [Meduna 2007] and Section 5.1 in [Meduna 2000]) definitely be-

long to the key modifications of this kind. Next, we give an insight into these

four modifications.

I. Grammar systems consist of several context-free grammars, referred to as

their components, which mutually cooperate and, in this way, generate the

languages of these systems.
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II. Regulated context-free grammars prescribe the use of rules during deriva-

tions by some additional regulating mechanisms, such as control languages

over the label of grammatical rules.

III. Pure context-free grammars simplify ordinary context-free grammars by us-

ing only one type of symbols—terminals. There exist pure sequential versions

of context-free grammars as well as pure parallel versions of context-free

grammars, better known as 0L systems (see [Rozenberg and Salomaa 1980,

Rozenberg and Salomaa 1986, Rozenberg and Salomaa 1997]).

IV. Context-free grammars that perform only leftmost derivations fulfill a key

role in an principal application area of these grammars—parsing (indeed, see

[Meduna 2007, Aho et al. 2006, von zur Gathen and Gerhard 2003]).

Of course, formal language theory has also investigated various combina-

tions of I through IV. For instance, combining I and III, pure grammar sys-

tems have been studied (see [Bensch and Bordihn 2007], [Bordihn et al. 1999],

and [Aydin and Bordihn 2003]). Similarly, based upon various combinations of I

and II, a number of regulated grammar systems were defined and discussed

(see [Beek and Kleijn 2002, Fernau and Holzer 2002, Csuhaj-Varjú et al. 1993,

Lukáš and Meduna 2006, Păun 1993, Goldefus 2009, Lukáš and Meduna 2010]

and [Csuhaj-Varjú and Vaszil 2001]). Following this vivid investigation trend,

the present paper combines all four modifications mentioned above.

More specifically, this paper introduces pure grammar systems that gener-

ate their languages in the leftmost way, and in addition, this generative process

is regulated by control languages over rule labels. The paper concentrates its

attention on investigating the generative power of these systems. It establishes

three major results. First, without any control languages, these systems are

not even able to generate all context-free languages (Theorem 11). Second, with

regular control languages, these systems characterize the family of recursively

enumerable languages, and this result holds even if these systems have no more

than two components (Theorems 13 and 14). Finally, this paper considers con-

trol languages as languages that are themselves generated by regular-controlled

context-free grammars; surprisingly enough, with control languages of this kind,

these systems over unary alphabets generate nothing but regular languages (The-

orem 15).

The paper is organized as follows. First, Sections 2 and 3 give all the neces-

sary terminology. Then, Section 4 rigorously establishes the results mentioned

above. In the conclusion, Section 5 formulates several open problems.
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2 Preliminaries

In this paper, we assume that the reader is familiar with formal language the-

ory (see [Dassow and Păun 1989, Meduna 2000, Rozenberg and Salomaa 1997]).

For a set P , card(P ) denotes the cardinality of P . For a finite set of integers I,

max(I) denotes the greatest integer in I. For an alphabet (finite nonempty

set) V , V ∗ represents the free monoid generated by V under the operation of

concatenation. The unit of V ∗ is denoted by ε. Set V + = V ∗−{ε}; algebraically,
V + is thus the free semigroup generated by V under the operation of concate-

nation. If card(V ) = 1, then V is a unary alphabet. For x ∈ V ∗, |x| denotes
the length of x, rev(x) denotes the reversal of x, and alph(x) denotes the set

of symbols occurring in x. For K ⊆ V ∗, we define alph(K) =
⋃

x∈K alph(x). If

card(alph(K)) = 1, then K is a unary language.

A finite automaton is a quintuple, M = (W , Σ, R, s, F ), where W is a finite

set of states, Σ is an input alphabet, Σ ∩ W = ∅, R ⊆ W × (Σ ∪ {ε}) × W is

a finite relation, s ∈ W is the start state, and F ⊆ Q is a set of final states.

Members of R are referred to as rules, and instead of (p, a, q) ∈ R, we write

pa → q throughout the paper. The direct move relation over WΣ∗, symbolically

denoted by �, is defined as follows: pax � qx in M if and only if a ∈ Σ ∪ {ε},
x ∈ Σ∗, and pa → q ∈ R. Let �m and �∗ denote the mth power of �, for
some m ≥ 1, and the reflexive-transitive closure of �, respectively. The language
accepted by M is denoted by L(M) and defined as L(M) = {w ∈ Σ∗ | sw �∗ f

with f ∈ F}.
An extended pushdown automaton is a septuple, M = (W , Σ, Ω, R, s, #,

F ), where W , Σ, s, and F are defined as in a finite automaton, Ω is an alphabet

such that Σ ⊂ Ω, R ⊆ Ω∗ ×W × (Σ ∪ {ε})× Ω∗ ×W is a finite relation, and

# ∈ Ω − Σ. The components Ω, R, and # are called the pushdown alphabet,

the set of rules, and the initial pushdown symbol, respectively. By analogy with

finite automata, instead of (b, p, a, w, q) ∈ R, we write bpa → wq throughout

the paper. The direct move relation over Ω∗WΣ∗, symbolically denoted by �, is
defined as follows: ybpax � ywqx in M if and only if ybpax, ywqx ∈ Ω∗WΣ∗ and

bpa → wq ∈ R. Let �m and �∗ denote the mth power of �, for some m ≥ 1, and

the reflexive-transitive closure of �, respectively. The language accepted by M is

denoted by L(M) and defined as L(M) = {w ∈ Σ∗ | #sw �∗ f with f ∈ F}.
A context-free grammar is a quintuple, G = (N , T , Ψ , P , S), where N , T ,

and Ψ are three alphabets such thatN∩T = ∅, S ∈ N , and P ⊆ Ψ×N×(N∪T )∗
is a finite relation such that if (r, A, y), (s, A, y) ∈ P , then r = s. Set V = N ∪T .

The components V , N , T , Ψ , P , and S are called the total alphabet, the alphabet

of nonterminals, the alphabet of terminals, the alphabet of rule labels, the set of

rules, and the start symbol, respectively. Each (r, A, y) ∈ P is written as r : A →
y throughout this paper. The direct derivation relation over V ∗, symbolically

denoted by ⇒, is defined as follows: uAv ⇒ uyv [r] in G, or, simply, uAv ⇒ uyv
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if and only if u, v ∈ V ∗ and r : A → y ∈ P . In the standard manner, we extend ⇒
to ⇒m, where m ≥ 0; then, based on ⇒m, we define ⇒∗. The language of G is

denoted by L(G) and defined as L(G) = {w ∈ T ∗ | S ⇒∗ w}.
Let G = (N , T , Ψ , P , S) be a context-free grammar. If r : A → y ∈ P implies

that y ∈ T ∗(N ∪{ε}), then G is a right-linear grammar, and instead of G = (N ,

T , Ψ , P , S) and r : A → y ∈ P , we write just G = (N , T , P , S) and A → y ∈ P ,

respectively (i.e. we omit rule labels).

Let G = (N , T , Ψ , P , S) be a context-free grammar, and let Ξ ⊆ Ψ∗ be

a regular control language. The language generated by G with Ξ (see page 97 in

[Dassow and Păun 1989] and page 251 in [Mart́ın-Vide et al. 2004]) is denoted

by L(G, Ξ) and defined as L(G, Ξ) = {w ∈ T ∗ | S ⇒∗ w [�] with � ∈ Ξ}. Less
formally, L(G, Ξ) consists of all strings over T for which there is a derivation

from S according to a control string from Ξ. The pair (G, Ξ) is called a regular-

controlled grammar.

The families of regular languages, context-free languages, and recursively

enumerable languages are denoted by L (REG), L (CF), and L (RE), respec-

tively. Let L (rC) denote the language family generated by regular-controlled

grammars. Recall that right-linear grammars and finite automata character-

ize L (REG), extended pushdown automata and context-free grammars char-

acterize L (CF), and recall that L (REG) ⊂ L (CF) ⊂ L (rC) ⊂ L (RE) (see

[Mart́ın-Vide et al. 2004]).

We will have a use of the following lemma.

Lemma1. (See Theorem 1 in [Mart́ın-Vide et al. 2004].) All languages in L (rC)

over a unary alphabet are regular.

Next, we slightly modify the notion of a queue grammar (introduced in

[Kleijn and Rozenberg 1983]). A left-extended queue grammar (see [Meduna 2004,

Kolář and Meduna 2000, Meduna 2003]) is a sextuple, Q = (W , V , T , R, s, F ),

whereW and V are two disjoint alphabets, T ⊆ V , R ⊆ (V ×(W−F ))×(V ∗×W )

is a finite relation, s ∈ (V −T )(W−F ), and F ⊆ W . The componentsW , V , T ,R,

s, and F , are called the set of states, the total alphabet, the alphabet of terminals,

the set of rules, the start configuration, and the set of final states, respectively.

Assume that # /∈ V ∪W . If u, v ∈ V ∗{#}V ∗W so that u = w#axp, v = wa#xyq,

a ∈ V , x, y, w ∈ V ∗, p, q ∈ W , and (a, p, y, q) ∈ R, then u ⇒ v [(a, p, y, q)] in G

or, simply, u ⇒ v. In the standard manner, we extend ⇒ to ⇒m, where m ≥ 0;

then, based on ⇒m, we define ⇒∗. The language of Q is denoted by L(Q) and

defined as L(Q) = {z ∈ T ∗ | #s ⇒∗ w#zf for some w ∈ V ∗ and f ∈ F}.
Less formally, during every step of a derivation, a left-extended queue gram-

mar shifts the rewritten symbol over #; in this way, it records the derivation his-

tory, which represents a property fulfilling a crucial role in the proof of Lemma 12

in the next section.

2027Meduna A., Zemek P.: Controlled Pure Grammar Systems



Lemma2. (See [Meduna 2004].) For every recursively enumerable language K,

there exists a left-extended queue grammar, Q = (W , V , T , R, s, F ), such that

L(Q) = K, T = alph(K), F = {f}, W = X ∪ Y ∪ {§}, where X,Y, {§} are

pairwise disjoint, and every (a, p, y, q) ∈ R satisfies either a ∈ V − T , p ∈ X,

y ∈ (V − T )∗, q ∈ X ∪ {§} or a ∈ V − T , p ∈ Y ∪ {§}, y ∈ T ∗, q ∈ Y .

Furthermore, Q generates every h ∈ L(Q) in this way:

#a0p0
⇒ a0#x0p1 [(a0, p0, z0, p1)]

⇒ a0a1#x1p2 [(a1, p1, z1, p2)]
...

⇒ a0a1 · · · ak#xkpk+1 [(ak, pk, zk, pk+1)]

⇒ a0a1 · · · akak+1#xk+1y1pk+2 [(ak+1, pk+1, y1, pk+2)]
...

⇒ a0a1 · · · akak+1 · · · ak+m−1#xk+m−1y1 · · · ym−1pk+m [(ak+m−1, pk+m−1,

ym−1, pk+m)]

⇒ a0a1 · · · akak+1 · · · ak+m#y1 · · · ympk+m+1 [(ak+m, pk+m, ym,

pk+m+1)]

where k,m ≥ 1, ai ∈ V − T for i = 0, . . . , k + m, xj ∈ (V − T )∗ for j = 1,

. . . , k +m, s = a0p0, ajxj = xj−1zj for j = 1, . . . , k, a1 · · · akxk+1 = z0 · · · zk,
ak+1 · · ·ak+m = xk, p0, p1, . . . , pk+m ∈ W −F and pk+m+1 = f , zi ∈ (V −T )∗

for i = 1, . . . , k, yj ∈ T ∗ for j = 1, . . . ,m, and h = y1y2 · · · ym−1ym.

Informally, the queue grammar Q in Lemma 2 generates every string in L(Q)

so that it passes through state §. Before it enters §, it generates only strings

over V − T ; after entering §, it generates only strings over T .

3 Definitions and Examples

In this section, we define controlled pure grammar systems and illustrate them

by an example. Each definition is preceded by an intuitive explanation.

Informally, these systems are composed of n components, where n ≥ 1, and

a single alphabet. Every component contains (1) a set of rewriting rules over

the alphabet, each having a single symbol on its left-hand side, and (2) a start

string, from which these systems start their computation. Every rule is labelled

by a unique label. Control languages for these systems are then defined over the

set of all rule labels.

Definition 3. An n-component pure grammar system (an n-pGS for short), for

some n ≥ 1, is a (2n+ 2)-tuple,

Γ =
(
T, Ψ, P1, w1, P2, w2, . . . , Pn, wn

)
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where T and Ψ are two disjoint alphabets, wi ∈ T ∗, and Pi ∈ Ψ × T × T ∗ for

i = 1, 2, . . . , n are finite relations such that

(1) if (r, a, x), (s, a, x) ∈ Pi, then r = s;

(2) if (r, a, x), (s, b, y) ∈ ⋃
1≤j≤n Pj , where a �= b or x �= y, then r �= s;

The components Ψ , Pi, and wi are called the alphabet of rule labels, the set of

rules of the ith component, and the start string of the ith component, respec-

tively. 
�

By analogy with context-free grammars, each rule (r, a, x) is written as

r : a → x throughout this paper.

A configuration of Γ is an n-tuple of strings. It represents an instantaneous

description of Γ . The initial configuration is formed by start strings.

Definition 4. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS, for

some n ≥ 1. An n-tuple (x1, x2, . . . , xn), where xi ∈ T ∗ for i = 1, 2, . . . , n, is

called a configuration of Γ . The configuration (w1, w2, . . . , wn) is said to be

initial. 
�

At every computational step, a rule from some component i is selected, and

it is applied to the leftmost symbol of the ith string in the current configuration.

Other strings remain unchanged. Hence, these systems work in a sequential way.

Definition 5. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS, for

some n ≥ 1, and let (x1, x2, . . . , xn), (z1, z2, . . . , zn) be two configurations of Γ .

The direct derivation relation over (T ∗)n, symbolically denoted by ⇒, is defined

as

(x1, x2, . . . , xn) ⇒ (z1, z2, . . . , zn) [r]

if and only if r : a → y ∈ Pi, xi = av, zi = yv, where v ∈ T ∗, for some i ∈
{1, 2, . . . , n}, and zj = xj for every j �= i; (x1, x2, . . . , xn) ⇒ (z1, z2, . . . , zn) [r] is

simplified to (x1, x2, . . . , xn) ⇒ (z1, z2, . . . , zn) if r is immaterial. In the standard

manner, we extend ⇒ to ⇒m, where m ≥ 0; then, based on ⇒m, we define ⇒∗.

�

In the language generated by Γ , we include every string z satisfying the fol-

lowing two conditions: (1) it appears in the first component in a configuration

that can be computed from the initial configuration, and (2) when it appears,

all other strings are empty.

Definition 6. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS, for

some n ≥ 1. The language generated by Γ is denoted by L(Γ ) and defined as

L(Γ ) =
{
z ∈ T ∗ | (w1, w2, . . . , wn) ⇒∗ (z, ε, . . . , ε)

} 
�
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To control Γ , we define a language, Ξ, over its set of rule labels, and require

that every successful computation—that is, a computation leading to a string in

the generated language—is made by a sequence of rules in Ξ.

Definition 7. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS, for

some n ≥ 1, and let Ξ ⊆ Ψ∗ be a control language. The language generated by Γ

with Ξ is denoted by L(Γ , Ξ) and defined as

L(Γ,Ξ) =
{
z ∈ T ∗ | (w1, w2, . . . , wn) ⇒∗ (z, ε, . . . , ε) [�] with � ∈ Ξ

}

If Ξ is regular, then the pair (Γ , Ξ) is called a regular-controlled n-pGS. 
�

Next, we illustrate the previous definitions by an example.

Example 1. Consider the 4-pGS

Γ =
({a, b, c}, {ri | 1 ≤ i ≤ 11}, P1, c, P2, a, P3, a, P4, a

)

where

P1 = {r1 : c → cc, r2 : c → bc, r3 : b → bb, r4 : b → ab, r5 : a → aa},
P2 = {r6 : a → aa, r7 : a → ε},
P3 = {r8 : a → aa, r9 : a → ε},
P4 = {r10 : a → aa, r11 : a → ε}.

Let Ξ = {r6r8r10}∗{r7r1}∗{r2}{r9r3}∗{r4}{r11r5}∗ be a control language. Ob-

serve that every successful derivation in Γ with Ξ is of the form

(c, a, a, a) ⇒3(k−1) (c, ak, ak, ak) [(r6r8r10)
k−1]

⇒2k (ck+1, ε, ak, ak) [(r7r1)
k]

⇒ (bck+1, ε, ak, ak) [r2]

⇒2k (bk+1ck+1, ε, ε, ak) [(r9r3)
k]

⇒ (abk+1ck+1, ε, ε, ak) [r4]

⇒2k (ak+1bk+1ck+1, ε, ε, ε) [(r11r5)
k]

for some k ≥ 1. Clearly, L(Γ,Ξ) = {anbncn | n ≥ 2}. 
�

From Example 1, we see that regular-controlled pGSs can generate non-

context-free languages. Moreover, notice that Ξ in Example 1 is, in fact, a union-

free regular language (see [Nagy 2006]).

For every n ≥ 1, let L (pGS, n) denote the language family generated by n-

pGSs. Define

L (pGS) =
⋃

n≥1

L (pGS, n)
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4 Results

In this section, we prove results I through III, given next.

I. pGSs without control languages characterize only a proper subset of the

family of context-free languages (Theorem 11).

II. Any recursively enumerable language can be generated by a regular-controlled

2-pGS (Theorems 13 and 14).

III. pGSs over unary alphabets controlled by languages from L (rC) generate

only regular languages (Theorem 15).

4.1 Power of Pure Grammar Systems

First, we show that pGSs without control languages characterize only a proper

subset of the family of context-free languages.

Lemma8. Let Γ be an n-pGS satisfying L(Γ ) �= ∅, for some n ≥ 1. Then, there

is a 1-pGS Ω such that L(Ω) = L(Γ ).

Proof. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS satisfying

L(Γ ) �= ∅, for some n ≥ 1. Let z ∈ L(Γ ). By the definition of L(Γ ), there exists

(w1, w2, . . . , wn) ⇒∗ (z, ε, . . . , ε)

Since all components are independent from each other, there is also

(w1, w2, . . . , wn) ⇒∗ (w1, ε, . . . , ε) ⇒∗ (z, ε, . . . , ε)

Therefore, the 1-pGS Ω = (T , Ψ , P1, w1) clearly satisfies L(Ω) = L(Γ ). Hence,

the lemma holds. 
�

Lemma9. Let Γ be a 1-pGS. Then, L(Γ ) is context-free.

Proof. Let Γ = (T , Ψ , P , w) be a 1-pGS. We next construct an extended push-

down automaton M such that L(M) = L(Γ ). Construct

M =
(
W,T,Ω,R, s,#, F

)

as follows. Initially, set W = {s, t, f}, Ω = T ∪ {#}, R = ∅, and F = {f}
(without any loss of generality, assume that # /∈ T ). Perform (1) through (4),

given next:

(1) add #s → rev(w)t to R;

(2) for each a → y ∈ P , add at → rev(y)t to R;
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(3) add t → f to R;

(4) for each a ∈ T , add afa → f to R.

M works in the following way. It starts from #sz, where z ∈ T ∗. By the

rule from (1), it generates the reversed version of the start string of Γ on the

pushdown, ending up in rev(w)tz. Then, by rules from (2), it rewrites rev(w) to

a string over T . During both of these generations, no input symbols are read.

To accept z, M has to end up in rev(z)tz. After that, it moves to f by the rule

from (3). Then, by using rules introduced in (4), it compares the contents of the

pushdown with the input string. M accepts z if and only if the contents of the

pushdown match the input string, meaning that z ∈ L(Γ ).

Clearly, L(M) = L(Γ ), so the lemma holds. 
�
Lemma10. There is no n-pGS that generates {a, aa}, for any n ≥ 1.

Proof. By contradiction. Without any loss of generality, by Lemma 8, we can

only consider 1-pGSs. For the sake of contradiction, assume that there exists a

1-pGS, Ω = ({a}, P , w), such that L(Ω) = {a, aa}. Observe that either (i) w = a

or (ii) w = aa. These two cases are discussed next.

(i) Assume that w = a. Then, there has to be a → aa ∈ P . However, this

implies that L(Ω) is infinite—a contradiction.

(ii) Assume that w = aa. Then, there has to be a → ε ∈ P . However, this implies

that ε ∈ L(Ω)—a contradiction.

Hence, no 1-pGS that generates {a, aa} exists, so the lemma holds. 
�
Theorem 11. L (pGS) ⊂ L (CF)

Proof. Let Γ be an n-pGS, for some n ≥ 1. If L(Γ ) = ∅, then L(Γ ) is clearly

context-free. Therefore, assume that L(Γ ) �= ∅. Then, by Lemma 8, there is a

1-pGS Ω such that L(Ω) = L(Γ ). By Lemma 9, L(Ω) is context-free. Hence,

L (pGS) ⊆ L (CF). By Lemma 10, L (CF) − L (pGS) �= ∅, so the theorem

holds. 
�

4.2 Power of Controlled Pure Grammar Systems

In this section, we prove that every recursively enumerable language can be

generated by a regular-controlled 2-pGS.

Lemma12. Let Q be a left-extended queue grammar satisfying

card
(
alph

(
L(Q)

)) ≥ 2

and the properties given in Lemma 2. Then, there is a 2-pGS Γ and a regular

language Ξ such that L(Γ,Ξ) = K.
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Proof. Let Q = (W , V , T , R, s, F ) be a left-extended queue grammar satisfying

card(alph(L(Q))) ≥ 2 and the properties given in Lemma 2. Let s = a0p0,

W = X∪Y ∪{§}, and F = {f}. Assume that {0, 1} ⊆ alph(L(Q))). Observe that

there exist a positive integer n and an injection ι from VW to {0, 1}n−1n so that

ι remains an injection when its domain is extended to (VW )∗ in the standard way

(after this extension, ι thus represents an injective homomorphism from (V W )∗

to ({0, 1}n − 1n)∗); a proof of this observation is simple and left to the reader.

Based on ι, define the substitution ν from V to ({0, 1}n− 1n) as ν(a) = {ι(aq) |
q ∈ W} for every a ∈ V . Extend the domain of ν to V ∗. Furthermore, define

the substitution μ from W to ({0, 1}n − 1n) as μ(q) = {ι(aq) | a ∈ V } for every

q ∈ W . Extend the domain of μ to W ∗.
Construct the 2-pGS

Γ =
(
T, Ψ, P1, w1, P2, w2

)

where

Ψ = { 111y | (a, p, y, q) ∈ R}
∪ { 111w | w ∈ ν(y), (a, p, y, q) ∈ R}
∪ { 121z | z ∈ μ(q), (a, p, y, q) ∈ R}
∪ { 0iε , 1iε | i = 1, 2}
∪ { 111n+1 },

P1 = { 111y : 1 → 1y | (a, p, y, q) ∈ R}
∪ { 111w : 1 → 1w | w ∈ ν(y), (a, p, y, q) ∈ R}
∪ { 01ε : 0 → ε, 11ε : 1 → ε}
∪ { 111n+1 : 1 → 1n+1},

w1 = 1,

P2 = { 121z : 1 → 1z | z ∈ μ(q), (a, p, y, q) ∈ R}
∪ { 02ε : 0 → ε, 12ε : 1 → ε},

w2 = 1n+1.

Intuitively, aiy means that a is rewritten to y in the ith component. Construct

the right-linear grammar

G =
(
N,Ψ, P, 〈f, 2〉)

as follows. Initially, set P = ∅ and N = {$} ∪ {〈p, i〉 | p ∈ W, i = 1, 2}, where $

is a new symbol. Perform (1) through (5), given next:

(1) if (a, p, y, q) ∈ R, where a ∈ V − T , p ∈ W − F , q ∈ W , and y ∈ T ∗,
add 〈q, 2〉 → 111y 111z 〈p, 2〉 to P for each z ∈ μ(p);

(2) add 〈§, 2〉 → 111n+1 〈§, 1〉 to P ;

(3) if (a, p, y, q) ∈ R, where a ∈ V − T , p ∈ W − F , q ∈ W , and y ∈ (V − T )∗,
add 〈q, 1〉 → 111w 111z 〈p, 1〉 to P for each w ∈ ν(y) and z ∈ μ(p);
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(4) add 〈p0, 1〉 → 111w $ to P for each w ∈ ν(a0);

(5) add $ → 01ε 02ε $, $ → 11ε 12ε $, and $ → ε to P .

Let G = (Γ,L(G)). Before we establish the identity L(G) = L(Q), we explain

how G works. In what follows, (x, y) p denotes that the current configuration

of Γ is (x, y) and that p is the nonterminal in the current sentential form of G.

Recall the form of the derivations of Q in Lemma 2. The regular-controlled 2-

pGS G simulates these derivations in reverse as follows. The start configuration

of G is (
1, 1n+1

) 〈f, 2〉
Rules from (1) generate h ∈ L(Q) in the first component and encoded states

pk+m, pk+m−1, . . . , pk in the second component:

(
1h, 1z1n

) 〈§, 2〉

where z ∈ μ(pkpk+1 · · · pk+m). Rules from (2) appends 1n (a delimiter) to the

first component: (
1n+1h, 1z1n

) 〈§, 1〉
Rules from (3) generate encoded symbols ak+m, ak+m−1, . . . , a1 in the first

component and encoded states pk−1, pk−2, . . . , p0 in the second component:

(
1w1nh, 1z′z1n

) 〈p0, 1〉

where w ∈ ν(a1a2 · · · ak+m) and z′ ∈ μ(p0p1 · · · pk−1). A rule from (4) generates

an encoded start symbol of Q, a0:

(
1w′w1nh, 1z′z1n

)
$

where w′ ∈ ν(a0). Notice that

w′w ∈ ν(a0a1a2 · · · ak+m)

and

z′z ∈ μ(p0p1p2 · · · pk+m)

Finally, rules from (5) check that 1w′w1n = 1z′z1n by erasing these two strings

in a symbol-by-symbol way, resulting in (h, ε).

For brevity, the following proof omits some obvious details, which the reader

can easily fill in. The next claim proves the above explanation rigorously—that

is, it shows how G generates each string of L(G).

Claim 1 The regular-controlled 2-pGS G generates every h ∈ L(G) in this way:
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(1, 1n+1)

⇒ (1ym, 1gk+m1n)

⇒ (1ym−1ym, 1gk+m−1gk+m1n)
...

⇒ (1y1 · · · ym−1ym, 1gk · · · gk+m−1gk+m1n)

⇒ (1n+1h, 1gk · · · gk+m−1gk+m1n)

⇒ (1tk+m1nh, 1gk−1gk · · · gk+m−1gk+m1n)

⇒ (1tk+m−1tk+m1nh, 1gk−2gk−1gk · · · gk+m−1gk+m1n)
...

⇒ (1t1 · · · tk+m−1tk+m1nh, 1g0 · · · gk−2gk−1gk · · · gk+m−1gk+m1n)

⇒ (1t0t1 · · · tk+m−1tk+m1nh, 1g0 · · · gk−2gk−1gk · · · gk+m−1gk+m1n)

⇒ (v1h, v1)

⇒ (v2h, v2)
...

⇒ (v�h, v�)

⇒ (h, ε)

where k,m ≥ 1; h = y1 · · · ym−1ym, where yi ∈ T ∗ for i = 1, 2, . . . ,m; ti ∈ ν(ai)

for i = 0, 1, . . . , k+m, where ai ∈ V −T ; gi ∈ μ(pi) for i = 0, 1, . . . , k+m, where

pi ∈ W − F ; vi ∈ {0, 1}∗ for i = 1, 2, . . . , �, where � = |t0t1 · · · tk+m−1tk+m1n|;
|vi+1| = |vi| − 1 for i = 0, 1, . . . , �− 1.

Proof. Examine the construction of G. Notice that in every successful com-

putation, G uses rules from step (i) before it uses rules from step (i+1), for

i = 1, 2, 3, 4. Thus, in a greater detail, every successful computation

(1, 1n+1) ⇒∗ (h, ε) [�] in G
where � ∈ L(G), can be expressed as

(1, 1n+1)

⇒ (1ym, 1gk+m1n)

⇒ (1ym−1ym, 1gk+m−1gk+m1n)
...

⇒ (1y1 · · · ym−1ym, 1gk · · · gk+m−1gk+m1n)

⇒ (1n+1h, 1gk · · · gk+m−1gk+m1n)

⇒ (1tk+m1nh, 1gk−1gk · · · gk+m−1gk+m1n)

⇒ (1tk+m−1tk+m1nh, 1gk−2gk−1gk · · · gk+m−1gk+m1n)
...

⇒ (1t1 · · · tk+m−1tk+m1nh, 1g0 · · · gk−2gk−1gk · · · gk+m−1gk+m1n)

⇒ (1t0t1 · · · tk+m−1tk+m1nh, 1g0 · · · gk−2gk−1gk · · · gk+m−1gk+m1n)

⇒∗ (h, ε)
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where k,m ≥ 1; h = y1 · · · ym−1ym, where yi ∈ T ∗ for i = 1, 2, . . . ,m; ti ∈ ν(ai)

for i = 0, 1, . . . , k + m, where ai ∈ V − T ; gi ∈ μ(pi) for i = 0, 1, . . . , k + m,

where pi ∈ W − F . Furthermore, during

(1t0t1 · · · tk+m−1tk+m1nh, 1g0 · · · gk−2gk−1gk · · · gk+m−1gk+m1n) ⇒∗ (h, ε)

only rules from (5) are used. Therefore,

1t0t1 · · · tk+m−1tk+m1nh = 1g0 · · · gk−2gk−1gk · · · gk+m−1gk+m1n

Let v = 1t0t1 · · · tk+m−1tk+m1nh. By rules from (5), G makes |v| steps to erase v.

Consequently, (vh, v) ⇒∗ (h, ε) can be expressed as

(vh, v)

⇒ (v1h, v1)

⇒ (v2h, v2)
...

⇒ (v�h, v�)

⇒ (h, ε)

where vi ∈ {0, 1}∗ for i = 1, 2, . . . , �, where � = |v| − 1, and |vi+1| = |vi| − 1 for

i = 0, 1, . . . , �− 1. As a result, the claim holds. 
�
Let G generate h ∈ L(G) in the way described in Claim 1. Examine the

construction of G to see that at this point, R contains (a0, p0, z0, p1), . . . , (ak,

pk, zk, pk+1), (ak+1, pk+1, y1, pk+2), . . . , (ak+m−1, pk+m−1, ym−1, pk+m), (ak+m,

pk+m, ym, pk+m+1), where pk+m+1 = f and zi ∈ (V − T )∗ for i = 1, 2, . . . , k, so

Q makes the generation of h in the way described in Lemma 2. Thus, h ∈ L(Q).

Consequently, L(G) ⊆ L(Q).

Let Q generate g ∈ L(Q) in the way described in Lemma 2. Then, G gener-

ates h in the way described in Claim 1, so L(Q) ⊆ L(G); a detailed proof of this

inclusion is left to the reader.

As L(G) ⊆ L(Q) and L(Q) ⊆ L(G), L(G) = L(Q). Hence, the lemma holds.


�
Theorem 13. Let K be a recursively enumerable language satisfying

card
(
alph(K)

) ≥ 2

Then, there is a 2-pGS Γ and a regular language Ξ such that L(Γ,Ξ) = K.

Proof. This theorem follows from Lemmas 2 and 12. 
�
Theorem 14. Let K be a unary recursively enumerable language, and let c /∈
alph(K) be a new symbol. Then, there is a 2-pGS Γ and a regular language Ξ

such that L(Γ,Ξ) = K.

Proof. This theorem can be proved by analogy with the proof of Theorem 13

(we use c as the second symbol in the proof of Lemma 12). 
�

2036 Meduna A., Zemek P.: Controlled Pure Grammar Systems



4.3 Power of Controlled Pure Grammar Systems Over Unary

Alphabets

In this section, we prove that pGSs over unary alphabets controlled by languages

from L (rC) generate only regular languages.

Theorem 15. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS sat-

isfying card(T ) = 1, for some n ≥ 1, and let Ξ ∈ L (rC). Then, L(Γ , Ξ) is

regular.

Proof. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS satisfying

card(T ) = 1, for some n ≥ 1, and let Ξ ∈ L (rC). We show how to convert

Γ and Ξ into an equivalent regular-controlled grammar (G, Π). Then, since

card(T ) = 1, Lemma 1 implies that L(Γ , Ξ) is regular.

Let Ḡ = (N̄ , Ψ , Φ̄, P̄ , S̄) be a context-free grammar and M̄ be a finite

automaton such that L(Ḡ, L(M̄)) = Ξ. Let T = {c}. To distinguish between the

components of Γ in G, we encode c for each component. Set

N# = {ci | 1 ≤ i ≤ n}

For each i ∈ {1, . . . , n}, define the homomorphism τi from T ∗ to N∗
# as

τi(c) = ci. For each i ∈ {1, . . . , n}, set

Ri = {r : τi(c) → τi(y) | r : c → y ∈ Pi}

Define G as

G =
(
N, {c}, Φ,R, S

)

where

N = {S} ∪ N̄ ∪ Ψ ∪N# ∪⋃
1≤i≤n Ri,

Φ = Φ̄ ∪ {s, c1} ∪ {rε | r ∈ Φ̄},
R = P̄ ∪ {s : S → S̄τ1(w1)τ2(w2) · · · τn(wn)}

∪ {c1 : c1 → c}
∪ {rε : r → ε | r ∈ Φ̄},

Λ = {rεr | r : a → y ∈ ⋃
1≤i≤n Ri}∗,

Π = {s}L(M̄)Λ{c1}∗ (the control language of G).

Without any loss of generality, we assume that {S}, N̄ , Ψ ,N#, and
⋃

1≤i≤n Ri

are pairwise disjoint, and we also assume that Φ̄, {s, c1}, and {rε | r ∈ Φ̄} are

pairwise disjoint.

In every successful derivation of every z ∈ L(G, Π) in G, s is applied to S.

It generates the start symbol of Ḡ and encoded start strings of each compo-

nent of Γ . Indeed, instead of c, we generate ci, where 1 ≤ i ≤ n. Then, rules

from P̄ are used to rewrite S̄ to a control string from L(Ḡ, L(M̄)). Using pairs of
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rules rε r ∈ Λ, G erases an occurrence of r in the current sentential form, and ap-

plies r to a symbol in a proper substring of the current sentential corresponding

to the component which would use r. This process is repeated until the control

string is completely erased. Since card(T ) = 1, the order of used rules and the

occurrence of the rewritten c are not important. Finally, G uses c1 : c1 → c to

decode each occurrence of c1 back to c, thus obtaining z. If G applies its rules

in an improper way—that is, if there remain some symbols from
⋃

1≤i≤n Ri or

from {ci | 2 ≤ i ≤ n} after the last pair from Λ is applied—the derivation is

blocked.

Based on these observations, we see that every successful derivation of ev-

ery z ∈ L(G, Π) in G with Π is of the form

S ⇒ S̄τ1(w1)τ2(w2) · · · τn(wn) [s]

⇒∗ �τ1(w1)τ2(w2) · · · τn(wn) [υ]

⇒∗ τ1(z) [λ]

⇒∗ z [γ]

where � ∈ L(Ḡ, L(M̄)), υ ∈ L(M̄), λ ∈ Λ, and γ ∈ {c1}∗. In Γ , there is

(w1, w2, . . . , wn) ⇒∗ (z, ε, . . . , ε) [�]

Hence, L(G, Π) ⊆ L(Γ ). Conversely, for every z ∈ L(Γ ), there is a derivation

of z in G with Π of the above form, so L(Γ ) ⊆ L(G, Π). Therefore, L(Γ ) = L(G,

Π), and the theorem holds. A rigorous proof of the identity L(Γ ) = L(G, Π) is

left to the reader. 
�

From Theorem 15, we obtain a corollary concerning regular-controlled n-

pGSs over unary alphabets, stated next.

Corollary 16. Let Γ = (T , Ψ , P1, w1, P2, w2, . . . , Pn, wn) be an n-pGS

satisfying card(T ) = 1, for some n ≥ 1, and let Ξ ∈ Ψ∗ be regular. Then, L(Γ ,

Ξ) is regular. 
�

Notice that this result is surprising in the light of Theorem 13, which says

that every recursively enumerable language over an alphabet with at least two

symbols can be generated by a regular-controlled 2-pGS.

5 Concluding Remarks

The next four open problem areas are related to the achieved results.

I. Let Γ be an n-pGS, for some n ≥ 1. By Lemma 9, L(Γ ) is context-free. Is

L(Γ ), in fact, regular?
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II. Consider proper subfamilies of the family of regular languages (see, for ex-

ample, [Rozenberg and Salomaa 1997, Nagy 2006, Dassow and Truthe 2008,

Bordihn et al. 2009]). Can we obtain Theorems 13 and 14 when the control

languages are from these subfamilies?

III. By Theorems 13 and 14, two components suffice to generate any recursively

enumerable language by regular-controlled pGSs. What is the power of con-

trolled pGSs with a single component?

IV. Let Γ be an n-pGS, for some n ≥ 1. If no rule of Γ has ε on its right-

hand side, then Γ is said to be propagating. What is the power of controlled

propagating pGSs?
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systems versus L systems”; In Grammatical Models of Multi-Agent Systems, vol-
ume 8 of Topics in Computer Mathematics, Amsterdam, NL. Gordon and Breach
Science Publishers (1999), 18–32.

[Bordihn et al. 2009] Bordihn, H., Holzer, M., and Kutrib, M.: ”Determination of
finite automata accepting subregular languages”; Theoretical Computer Science,
410, 35, (2009), 3209–3222.
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[Csuhaj-Varjú and Vaszil 2001] Csuhaj-Varjú, E. and Vaszil, G.: ”On context-free par-
allel communicating grammar systems: synchronization, communication, and normal
forms”; Theoretical Computer Science, 255, 1-2, (2001), 511–538.

[Dassow and Păun 1989] Dassow, J. and Păun, G.: ”Regulated Rewriting in Formal
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