
Epidemia: Variable Consistency for Transactional Cloud

Databases

Itziar Arrieta-Salinas, José Enrique Armendáriz-Iñigo

(Departamento de Ingenieŕıa Matemática e Informática

Universidad Pública de Navarra, 31006 Pamplona, Spain

{itziar.arrieta, enrique.armendariz}@unavarra.es)

Joan Navarro

(Research Group of Internet Technologies and Storage

La Salle - Ramon Llull University, 08022 Barcelona, Spain

jnavarro@salleurl.edu)

Abstract: Classic replication protocols running on traditional cluster-based databases
are currently unable to meet the ever-growing scalability demands of many modern
software applications. Recent cloud-based storage repositories overcome such limita-
tions by fostering availability and scalability over data consistency and transactional
support. However, many applications that cannot resign from their transactional na-
ture are unable to benefit from the cloud paradigm. This paper presents Epidemia,
a distributed storage architecture featuring a hybrid approach that combines classic
database replication with a cloud-inspired infrastructure to provide transactional sup-
port and high availability. This architecture is able to offer different consistency levels
according to the client demands, thanks to a replication strategy based on epidemic
updates in which the replicas of each data partition are organized hierarchically. Addi-
tionally, the behavior of a prototype implementation under different workload scenarios
is evaluated. Conducted experiments verify that (1) configuration parameters such as
the partitioning scheme or the replication protocol play a crucial role on system’s
throughput, and (2) the existence of replica hierarchies that are asynchronously up-
dated is able to alleviate the scalability limitations of traditional replicated databases
by directing transactions that tolerate a certain staleness in the versions of retrieved
data items to these replicas.

Key Words: Distributed Databases, Transaction Processing, Cloud Computing, Elas-
ticity, Data Consistency, Transactions

Category: H.2.4

1 Introduction

The ambitious requirements regarding availability and fault tolerance demanded

by many modern software applications entail the need for replicating immense

amounts of data. Cluster-based databases have traditionally been considered as

the proper choice [Daudjee & Salem(2006), Wiesmann & Schiper(2005)] despite

the scalability limitations derived from the cost of maintaining strong consistency

among replicas. [Gray et al.(1996)]. This represents a considerable drawback, as

many modern systems (e.g., Web 2.0 applications) require high availability and

scalability to cope with an ever-growing storage demand.

Journal of Universal Computer Science, vol. 20, no. 14 (2014), 1876-1902
submitted: 28/3/14, accepted: 11/11/14, appeared: 1/12/14 J.UCS

This context has motivated a new class of data storage systems called NoSQL

(Not only SQL), which operate in cloud platforms and therefore come in hand

with a promise of high scalability at a low cost. First NoSQL systems (ranging

from raw data storage systems such as HDFS [HDFS(2014)] to key-value data

stores such as Dynamo [DeCandia et al.(2007)], including table-oriented solu-

tions like Bigtable [Chang et al.(2008)]) are able to achieve high performance

and scalability levels by relaxing traditional ACID (Atomicity, Consistency, Iso-

lation and Durability) properties and relying on weak consistency models such as

eventual consistency [Vogels(2009)], which entails that queries may obtain out-

dated (though consistent) values until an unknown point in time. The data se-

mantics considered in this kind of systems are commonly called BASE (Basically

Available, Soft state and Eventual consistency) [Brewer(2012)] in opposition to

the ACID properties.

Although the functionality provided by these cloud stores suffices for their

target applications (e.g., web indexing, multimedia storage or content delivery

networks), there are still many use cases which cannot take advantage of the

cloud paradigm because they are unable to resign from their transactional na-

ture.

Latest trends derived from NoSQL systems attempt to overcome this draw-

back by providing transactional support to a certain extent while meeting the

principles of the cloud philosophy. Some of the most representative examples of

cloud-based systems that provide transactional functionalities include Amazon

DynamoDB [Sivasubramanian(2012)], Relational Cloud [Curino et al.(2011a)],

ElasTraS [Das et al.(2009)], Google Megastore [Baker et al.(2011)] and ecStore

[Vo et al.(2010)]. In general, these solutions restrict the scope of transactional

support in different ways to provide high availability and elasticity.

This paper presents Epidemia, a distributed storage architecture that im-

plements transactional support by using classic database replication techniques

over a cloud-inspired infrastructure. This hybrid approach is aimed at offering

a broad range of QoS levels according to application demands by varying the

tradeoff between consistency and availability, thanks to a replication strategy

based on epidemic updates. Thoroughly, the contributions of this paper are:

– A revision of the key challenges to provide transactional support in cloud

systems and current approaches to face them.

– A novel architecture that exploits data replication using novel cloud tenden-

cies, aiming at providing a highly available and elastic service with transac-

tional support. This architecture consists of a dynamic set of cluster-based

databases, each maintaining a hierarchy of versions where the topmost level

of the hierarchy holds the newest version and consists of a set of replicas

that are controlled by a replication protocol (which is determined depend-

ing on the current workload characteristics). The rest of hierarchy levels are

1877Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

updated in an epidemic way by asynchronously propagating updates from

one level to the next. Thus, depending on the consistency level demanded

by a transaction, it can be forwarded to replicas containing newer or older

versions.

– A set of correctness arguments that ensure the feasibility of this approach.

– An empirical evaluation using the standard benchmarks proposed by the

YCSB [Cooper et al.(2010)] over a prototype implementation of Epidemia to

assess the influence of different configuration settings (e.g., the partitioning

scheme, the replication protocols used or the arrangement of backups into

hierarchy levels) on system’s throughput.

The remainder of this paper is structured as follows. Section 2 explores the

key challenges on providing transactional support in cloud systems and extracts

the main lessons learned from current approaches. Section 3 is devoted to the

motivation and system model of Epidemia. Section 4 outlines a general correct-

ness proof that shows its feasibility. Section 5 presents the evaluation of the

implemented prototype following the proposed architecture. Finally, Section 6

summarizes the conclusions of this work.

2 Key Challenges to Provide Transactional Support in Cloud

Systems

Current solutions for providing transactional support in cloud environments can

be abstracted according to the diagram depicted in Fig. 1, which splits the main

functionalities of these systems into four logical layers: i) the Workload Manage-

ment layer, which monitors resource utilization and deals with data allocation

issues; ii) the Transaction Management layer, responsible for the correct execu-

tion of distributed transactions; iii) the Replication Management layer, devoted

to handling data replication across nodes to ensure data availability; and iv)

the Storage Management layer, which ensures data durability over physical me-

dia. In the following, we elaborate on the specificities of each layer and review

existing strategies to deal with them.

2.1 Workload Management

Cloud-based architectures feature an elastic scale-out to handle varying work-

loads [Curino et al.(2011b), Curino et al.(2010), Elmore et al.(2011)], thus en-

abling an attractive pay-as-you-go model. Therefore, a critical challenge is to

minimize the operating costs while fulfilling service level agreements. In the fol-

lowing, we highlight some of the key concepts concerning different strategies to

maximize performance while minimizing resources usage.

1878 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

Figure 1: An abstraction of a cloud-based storage architecture with transactional

support.

2.1.1 Data Partitioning

An efficient way to support transactions in the cloud is to reduce the interac-

tion among replicas to the minimum. A common solution is to partition data

in such a way that as many transactions as possible can be entirely executed

within one single partition, thus requiring no coordination with the rest of data

partitions [Curino et al.(2010), Cheung et al.(2012), Pavlo et al.(2012)].

For instance, Relational Cloud [Curino et al.(2011a)] recurs to partitioning

upon detecting that a single host is unable to handle an entire database. To par-

tition a database, the system analyzes queries to minimize the number of trans-

actions that need to access several partitions. This is done by a module called

Schism [Curino et al.(2010)], which uses a graph-based partitioning algorithm

to achieve efficient database partitions, where partitioning is done even at the

table level. On the other hand, Kairos [Curino et al.(2011b)] is the component

responsible for monitoring and consolidating databases in Relational Cloud. In

Kairos, the consolidation is stated as a non-linear optimization program, aiming

to minimize the number of servers and balance load while achieving near-zero

performance degradation.

Another approach for tackling partitioning issues is physiological partitioning

(PLP) [Pandis et al.(2011)], a transaction processing technique that logically

partitions the physical data accesses. To alleviate the difficulties imposed by page

latching and repartitioning, PLP uses a new physical access method inspired by

a multi-rooted B+Tree.

2.1.2 Live migration

In line with the problem of elasticity in cloud environments, the task of live

migration [Elmore et al.(2011), Das et al.(2011)] consists in performing a data

migration process (which might be motivated by cost-saving or performance

considerations) from one or more servers to another while interfering with other

1879Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

operational processes as little as possible. Some representative approaches that

address this issue are Zephyr [Elmore et al.(2011)], dedicated to the live migra-

tion of shared-nothing transactional databases; and Albatross [Das et al.(2011)],

which delves into the case where data is stored in a network attached storage.

2.1.3 Load Balancing

Load balancing consists in forwarding incoming requests to the most appropriate

resource. This decision can be taken according to different criteria.

For instance, in [Brantner et al.(2008)], system resources can be managed ac-

cording to the economic constraints defined by the user. Likewise, a distributed

replica placement algorithm is introduced in [Shorfuzzaman et al.(2012)], which

is used to determine the position of a minimum number of replicas. This strat-

egy finds the optimal tradeoff between the overall cost of replicating an object

and the QoS satisfaction for a given traffic pattern. In a similar way, Elas-

TraS [Das et al.(2010)] includes a load balancing algorithm that adds or removes

Owning Transaction Managers (the components that own data partitions and

provide transactional guarantees) when observing a change in load and usage

patterns over a period of time.

2.2 Transaction Management

As mentioned before, one of the key challenges when partitioning a database is

maximizing the proportion of single-partition transactions. However, there may

be cases, especially in dynamic environments such as cloud applications, in which

some transactions (named multi-partition transactions) need to access several

partitions. The issue here is twofold: on the one hand, network stalls appear

since transactions are fragmented [Jones et al.(2010)] and different fragments

are executed at different partitions; and, on the other hand, some coordination

has to be provided to commit a transaction and thus maintain global consistency.

Regarding the first issue, some solutions choose to speculatively execute

transactions that are ordered after a fragment that is waiting for its commit

[Jones et al.(2010)], or to use transaction flow graphs to determine rendezvous

points along the fragments of a multi-partition transaction [Pandis et al.(2010)].

To commit a multi-partition transaction and thus give a consistent view of data

through different partitions, several techniques have been proposed so far: a

single coordinator [Jones et al.(2010)], multiple coordinators [Maia et al.(2010)],

two-phase commit [Bernstein et al.(1987)] and its variants [Aguilera et al.(2009),

Vo et al.(2010)] or rendezvous protocols [Pandis et al.(2010)].

1880 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

2.3 Replication Management

In general, cloud database systems have put aside traditional replication tech-

niques [Daudjee & Salem(2006), Wiesmann & Schiper(2005)] to overcome their

scalability limitations [Gray et al.(1996)]. Thus, instead of relying on full repli-

cation approaches, cloud storage systems typically exploit data partitioning and

replicate partitions up to a given K level, so that there exist up to K physical

copies of each data item [Das et al.(2009), Vo et al.(2010), Curino et al.(2010),

Jones et al.(2010), Maia et al.(2010)]. The most common replication technique is

the primary-backup strategy, with either an optimistic approach [Vo et al.(2010)]

or a pessimistic one [Jones et al.(2010)]. Replication can also be done by means

of state machine replication [Maia et al.(2010)] or Paxos [Aguilera et al.(2009)].

Another approach consists in relying on a fault-tolerant distributed storage sys-

tem, thus delegating replication to the lower level of its architecture as done in

ElasTraS [Das et al.(2009)].

On the subject of which partitions should be replicated and to what level,

there are different alternatives. In the case of read-only transactions, a possible

solution is to replicate their associated partitions in all replicas to exploit the ben-

efits of access locality [Vo et al.(2010)]. As for update transactions, the replica

placement policy can be defined by means of graph analysis [Curino et al.(2010)],

histogram analysis of accesses to a given range, or monitoring the workload until

the K level is met [Vo et al.(2010)].

2.4 Storage Management

Storing data to permanent media ensures data durability but may decrease sys-

tem performance since (1) access times are considerable, (2) hardware failures

are frequent [Schroeder & Gibson(2007)], and (3) the bottleneck effect appears

when several concurrent operations are issued against a single storage device.

Therefore, latest approaches in cloud-based storage systems attempt to keep as

much data as possible in main memory.

These in-memory solutions are used for enhancing the performance and scal-

ability of both SQL databases [Stonebraker et al.(2007)] and key-value stores

[Lakshman & Malik(2010), Vo et al.(2010)]. In these solutions, each replica mai-

ntains all its partitions in main memory, therefore avoiding intensive writing to

disk [Stonebraker et al.(2007)], plus saving disk stalls and the cost of a dis-

tributed storage [Das et al.(2009)]. In this case, the replication degree needs to

be high enough to ensure durability. Other systems [Lakshman & Malik(2010),

Vo et al.(2010)] rely on in-memory data structures to reduce response time, but

periodically dump this information to disk to ensure durability.

On the other hand, the thread-to-data policy has been shown to be effec-

tive through exploiting the regular pattern of data accesses [Jones et al.(2010),

1881Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

Pandis et al.(2010)]. Together with this, the use of stored procedures avoids any

interaction with the user during the transaction execution [Cheung et al.(2012)],

hence removing client stalls and allowing to trivially serialize single-partition

transactions.

3 Design Rationales of Epidemia

This section describes the system architecture proposed in this work, which

combines a cloud inspired scheme with traditional database replication concepts

to provide transactional support as well as high data availability by offering

different consistency levels according to the demands of client applications.

3.1 Motivation

It is well known that database replication protocols perform differently de-

pending on the workload characteristics. For instance, a read intensive appli-

cation will probably obtain a higher throughput using a primary-backup pro-

tocol [Daudjee & Salem(2006)] than with other techniques. In primary-backup

approaches, only the replica that acts as primary is in charge of executing all

updates. Hence, the protocol has to concern only about propagating updates

to the backups. However, the throughput of update operations in primary-

backup solutions is limited by the capacity of the primary [Gray et al.(1996)].

In contrast, a database whose items are frequently updated might benefit from

an update-everywhere replication strategy that relies on total order broadcast

[Wiesmann & Schiper(2005)]. In this kind of protocols, updates can be per-

formed by any available replica, thus avoiding the potential bottleneck and

single point of failure phenomena derived from having a single primary. Nev-

ertheless, update-everywhere approaches can only scale up to a certain limit,

as the cost of propagating updates increases with the number of involved repli-

cas. In other words, database clusters do not scale due to the strong consis-

tency maintained among replicas, thus leading to network and database stalls

[Armendáriz-Iñigo et al.(2007)].

This problem could be alleviated if some (let us say M) of the replicas in-

volved in the replication protocol acted as primaries for other backup replicas

(K − M), which would asynchronously receive updates from their respective

primaries. At the same time, backup replicas could act as primaries for other

replicas, thus creating a hierarchy where updates would be propagated in an

epidemic way. Therefore, replicas closer to the core will have the most recent

values for data items, whereas replicas of lower levels will have older versions

of the data items as shown in Fig. 2, which depicts an example of a primary-

backup partition (i.e., M = 1) with K = 15 replicas. Initially, a client executes a

transaction that updates the primary replica, which will propagate the changes

1882 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

(a) t1 commits and gets propagated

(V = 1).

(b) t2 commits (V = 2)

Figure 2: Example of the epidemic propagation of two update transactions t1

and t2.

to its associated secondaries (Fig. 2.a). The secondaries respectively behave as

pseudo-primaries to their associated replicas. Meanwhile, the client can execute

another update transaction (Fig. 2.b).

This concept of a hierarchy of database replicas resembles the architecture

of OceanStore [Kubiatowicz et al.(2000)], an object storage system targeted at

providing global-scale persistent storage for file systems or streaming multimedia

applications, among others. OceanStore features a two-tier hierarchy of replicas:

when an object is updated, the primary tier performs a Byzantine agreement

protocol, whereas the secondary replicas propagate the update among themselves

epidemically. The result of the agreement protocol is then multicast down the

tree to the rest of secondaries.

If applied to a distributed database, this hierarchical architecture entails

the possibility of offering a range of consistency guarantees to applications. In

general, variable consistency solutions aim at providing high availability and

scalability by distinguishing between transactions that demand strong consis-

tency and those that admit a relaxation in consistency guarantees, and ex-

ecuting the latter in a more efficient manner. For example, consistency ra-

tioning [Kraska et al.(2009)] allows the consistency level to be automatically

switched between session consistency and serializability depending on the spec-

ified policies. It is also worth mentioning RedBlue [Li et al.(2012)] consistency,

which defines two types of operations: blue operations, which can be executed

optimistically and lazily replicated; and red operations, which demand strong

consistency and are serialized with respect to each other.

In our proposal, variable consistency can be provided thanks to the hi-

1883Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

erarchical structure of data partitions: transactions demanding strong consis-

tency will be directed to the core level of the hierarchy, whereas transactions

tolerating a certain staleness in their retrieved data will use the lower lev-

els. Furthermore, versions can be associated with timestamps, so that trans-

actions can execute queries stating the level of freshness of the returned data

[Lomet et al.(2012), Cipar et al.(2012)].

Apart from providing variable consistency, the proposed architecture is tar-

geted at ensuring elasticity and high scalability by taking into account workload

characteristics to configure not only the hierarchical structure, but also other

parameters such as the partitioning scheme and the replication protocol used in

the core level of the hierarchies.

Following the cloud philosophy, a “Consistency as a Service” (CaaS) model

could be defined, where clients specify their staleness limit on a per-transaction

basis. For instance, this can be applied to web pages in which some elements

are seldom updated and do not have strong consistency guarantees (such as

translations of interface messages or some multimedia files), whereas other items

have critical consistency requirements (e.g., account balances or the availability

of an item to be purchased) and thus their associated queries must return the

last updated value.

3.2 System Model

Taking the aforementioned motivation of having a tree of consistent versions

for each data partition as a starting point, we propose Epidemia, whose system

model (depicted in Fig. 3), can be divided into the following components: i) a

set of client applications that interact with the system, ii) a metadata manager

(MM) that holds the system state (which is stored in the metadata repository)

and orchestrates the communication with both clients and replicas and iii) a set

of replication clusters (RCs), each storing one data partition.

The asynchronous communication among the different components is per-

formed via message-exchange. In order to ensure that messages are neither lost

nor reordered with respect to the order in which they were sent, we assume FIFO

quasi-reliable point-to-point channels [Schiper(2006)]. Furthermore, the propa-

gation of updates among the replicas of the core level of each RC is done by

means of the multicast primitive provided by a Group Communication System

(GCS) [Schiper(2006)]. In what follows, the different system components and

their interactions are described in more detail.

3.2.1 System clients

Client applications interact with Epidemia by means of a custom client library

that acts as a wrapper for the management of connections with both the MM

and the replicas that serve the transactions.

1884 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

Figure 3: Epidemia’s system model.

Each transaction tij is identified by the identifier of the client ci that sub-

mits tij and an increasing local sequence number j generated by ci. Transac-

tions are non-interactive, in the sense that all the operations of each transac-

tion are sent and processed together (as it usually happens in stored proce-

dures [Cheung et al.(2012)]), in order to avoid client stalls. Moreover, transac-

tions in Epidemia can demand a specific freshness degree, where the higher the

freshness value, the more recent the versions of the retrieved data items must

be. This freshness level can be established in terms of absolute values, version

numbers or timestamps.

Each ci holds a cache that matches the most used transaction types to the

replicas that can execute those transactions. This cache has to be refreshed

by querying the MM periodically, and also every time a cached replica fails to

execute a request.

In order to issue a new transaction tij , the client first checks whether the

cache contains information about the replica (or replicas in the case of a multi-

partition transaction) that can handle the corresponding transaction type so

that tij can be directly submitted there. Otherwise, cij must query the MM to

know the replica/replicas that can execute tij . To this end, tij will be submitted

to one of the MM nodes, which will determine the partition (or partitions in the

case of multi-partition transactions) involved in the execution of tij and select

one of the replicas of the RC storing each of the partitions participating in the

transaction. In response to the client request, the MM will send the address of

1885Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

the selected replica/replicas.

Once the replica/replicas that must execute tij are known, tij is submitted

to the replica rk selected from each involved partition pk (where k ∈ {1, · · · , n},

being n the number of partitions involved in tij). After executing tij , each rk

will send the result back to the client. The received results must be merged in

case n > 1 to form the final result.

The client library also deals with failed requests to the MM (by sending a

request to another MM node when a timeout expires without a request being

answered), as well as with failed requests to replicas (by sending another request

to the MM to get the address of another replica that can execute the transaction).

3.2.2 The Metadata Manager

The metadata manager (MM) is in charge of maintaining the metadata reposi-

tory, which contains:

– Amapping between each data item and the partition it is stored in, which can

be established using different granularity levels depending on the partitioning

scheme, e.g., by associating each table to a data partition or by horizontally

splitting subsets of items belonging to the same table into different partitions.

– A set of available replicas. Replicas can be added (or removed) to Epidemia

by modifying this data structure on the fly.

– A mapping between each data partition and the replicas that belong to the

corresponding RC. For each replica, it is also necessary to store the level in

the hierarchy of versions it is located in.

– Status of each replica, including parameters such as number of transactions

per second executed, average number of pending transactions, rate of read-

only transactions executed or CPU usage.

Since the information stored in the MM is relatively small and less fre-

quently updated in comparison with the data of the applications stored in

the system, it can be distributed among a small set of nodes and synchro-

nized using a Paxos-like protocol [Lamport(1998)] to provide fault tolerance

while ensuring data consistency and leveraging system scalability. More specif-

ically, following the approach taken in ElasTraS [Das et al.(2010)], we rely on

Zookeeper [ZooKeeper(2014)] (an open source variant of Paxos) to ensure the

consistent replication of the MM.

The information of the metadata repository is used and updated by the

functional modules included in the MM (see Fig. 3): the workload manager, the

transaction manager and the replication manager.

1886 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

The workload manager monitors the set of active replicas in the RCs. Ev-

ery active replica must periodically send a heartbeat message to the workload

manager attaching information regarding its status (such as CPU usage or num-

ber of pending transactions). Using this information, the workload manager is

able to make decisions on the optimal system configuration. Thus, the workload

manager must include a set of rules to dynamically adapt the system configura-

tion to the current workload. Note that the definition and implementation of the

decision-making tool that defines and applies these rules is out of the scope of

this work [Curino et al.(2010)]. Upon deciding that a certain change in the con-

figuration must be performed, the workload manager will send a message to the

involved replicas to reconfigure them in the appropriate manner. The different

configuration message types that the workload manager can send to a replica

rn are: i) join, to ask rn to become part of an RC (rn will have to obtain all

the necessary data items from its parent replica or from one of the replicas that

already belong to the core level in case rn is also assigned to the core level); ii)

leave, to tell rn to become offline; ii) upgrade, to move rn to a hierarchy level

with a more recent version of the data partition; iv) downgrade, to change rn

to a hierarchy level with a staler version of data items; v) add-child, to notify

a parent replica that, from then on, it will have to asynchronously propagate

all the updates it applies to a given replica and vi) remove-child, to indicate a

parent replica that it will no longer have to propagate its updates to a given

child replica.

Furthermore, the workload manager is in charge of handling request messages

from clients. Upon receiving a request for a transaction tij , the workload manager

must identify the partitions involved in the execution of tij and choose one replica

from each partition. This election must take into account the requirements of tij
(i.e., the demanded freshness degree and whether it is a read-only or an update

transaction) and include load balancing mechanisms to distribute client requests

among the replicas.

The workload manager also determines the partitioning scheme and adapts

it to the current demands by dynamically splitting and merging partitions. This

requires to find the optimal strategy that minimizes multi-partition transactions

while making the best possible use of available resources by means of a parti-

tioning algorithm [Curino et al.(2010), Cheung et al.(2012), Pavlo et al.(2012)],

which falls out of the scope of this work.

On the other hand, the transaction manager deals with the coordination

of multi-partition transactions. As mentioned in Section 2.2, there are differ-

ent ways of coordinating multi-partition transactions to maintain global con-

sistency. In particular, we have devised an approach based on the proposal

of [Pandis et al.(2010)]. Upon detecting a dependency between actions of a trans-

action tij accessing data of different partitions, the transaction manager asso-

1887Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

ciates a rendezvous point (RVP) to tij . RVPs separate the execution of tij into

different phases. Actions belonging to different phases of tij cannot be executed

concurrently. The transaction manager also designates one replica from each par-

tition involved to act as a coordinator with the replicas of the other partitions

to transfer the necessary information and resolve the RVP.

Finally, the replication manager is responsible for choosing the most adequate

replication protocol for each RC depending on workload patterns. Note that the

characteristics of the involved replication protocols must be taken into account

in order not to compromise data consistency. For instance, the transition from a

primary-backup replication protocol to an update-everywhere one can be done

straightforwardly: the replication manager will send a protocol change request

to the primary, which will multicast a FIFO message to the rest of replicas of

the core level using the GCS; this message acts a synchronization point, since

replicas will change their protocol after having received and applied all previous

updates from the primary. In contrast, to change an update-everywhere protocol

for a primary-backup one, it is necessary to ensure that updates from other

replicas are not inconsistently executed with respect to the sequence of updates

executed at the new primary. For example, the assigned primary can multicast a

synchronization message using total order so that replicas will start the primary-

backup protocol when delivering that message (all updates from other replicas

different than the primary delivered after the synchronization message will have

to be discarded).

3.2.3 Replication Clusters

Data items are distributed among a set of disjoint partitions, each managed by a

different replication cluster (RC). The replicas that form each RC are organized

in a hierarchical way. Each hierarchy level is associated to a freshness degree

where the higher the freshness degree, the more recent the versions of stored

data items are.

The core level of each hierarchy comprises a set of replicas that propagate

updates among themselves by means of a traditional replication protocol (as

determined by the replication manager) that makes use of a GCS to handle the

messages among replicas and monitor the replicas belonging to the group. On

the other hand, the replicas that do not belong to the core level are distributed

into several levels forming a tree whose root is the aforementioned core level,

where a replica of a given level acts as a backup for a replica of its immediately

upper level and may also act as a primary for replicas of its lower level.

With the aim of exploiting the advantages of in-memory approaches (see

Section 2.4), such as avoiding disk stalls and using the thread-to-data policy,

we assume that every replica keeps all its data in main memory. Consequently,

replicas are stateless in the sense that, in case a replica leaves the system and then

1888 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

joins again, it must obtain all the data items of the partition it belongs to. This

is done by transferring the whole state from one or more replicas to the new one.

In case the requirements of a client application demanded stringent durability

guarantees, this solution could be adapted to force replicas to transfer their data

to a persistent storage device, either on a regular basis or upon receiving an

order from the MM.

When a replica rl receives a transaction tij from a client, it first checks that

the partition where the client intends to execute tij is the same as the one

managed by the RC that rl belongs to.

In case tij is a read-only transaction, the freshness related to the hierar-

chy level to which rl belongs must be capable of fulfilling the freshness limit

demanded by tij . If it is satisfied, rl executes tij and sends the result to the

client. Here we are assuming that read-only transactions are executed without

delay, although their execution could be delayed to meet different consistency

constraints and add complexity to the notion of freshness. For instance, in case

tij demanded read-your-writes consistency [Vogels(2009)], before executing tij

the replica would have to apply all update transactions tik such that k < j.

On the other hand, if tij is an update transaction, it can only be processed if

rl belongs to the core level of the hierarchy and is not a read-only replica. In case

this is true, tij is delegated to the replication protocol. Once tij is committed,

each replica of the core level will be able to asynchronously propagate the changes

to its children through the point-to-point connections. Upon receiving an update

from its parent, the child replica must apply it and then propagate it to its own

children. Transaction updates are propagated in the form of writesets (the set

of tuples that are created, modified or deleted by the transaction), instead of

sending the whole SQL statement.

Although in this proposal the propagation of updates throughout the hi-

erarchy is done in a structured way (i.e., the parent replica transfers updates

to its assigned children), other alternatives based on gossip protocols could be

implemented [Hopkinson et al.(2009)]. An unstructured method for propagat-

ing updates among hierarchy levels would facilitate the management of parent

replica failures, as in the current approach, the MM has to reassign children

replicas to a new parent (which might have to transfer lost updates to their new

children) upon detecting that a parent replica might have failed.

3.3 Interaction between the Metadata Manager and Replicas

As pointed out before, the workload manager periodically receives heartbeat

messages from replicas, which include information such as average number of

requests per second received, ratio of read-only transactions, average freshness

level demanded by transactions, and so on. These messages allow the MM to

make decisions on the best system configuration.

1889Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

Figure 4: Example of interaction between the metadata manager and system

replicas.

Fig. 4 will help us illustrate some of the possible scenarios that the MM

may encounter, and the steps it should take upon detecting certain situations

in order to adapt the system configuration to current demands. In particular,

the three graphics show the evolution across time of (a) number of requests

per second submitted to the system, (b) average freshness level demanded by

transactions (where the lower the freshness level is, the more tolerant to accept

outdated values the transaction is) and (c) rate of transactions including write

operations.

The initial configuration (Scenario I) consists of three replicas managed by a

primary backup replication protocol in the core hierarchy layer (v0), along with

two more replicas in the lower hierarchy layer (v1) that serve as backups for

two replicas of the upper layer. Hence, the only replica that can execute update

transactions is the primary of the core layer.

An elastic service should dynamically add the necessary resources while in-

terfering with other running processes as little as possible upon detecting a

workload increase. In Fig. 4, when the MM detects a relevant increment in the

number of requests per second, it adds two more replicas (Scenario II). Since the

number of write operations is low and most transactions do not require a high

freshness level, the new replicas are incorporated to the lower hierarchy layer.

Consequently, the primary replica will not be burdened by the addition of these

new nodes.

On the other hand, it should be taken into account that the freshness level

demanded by transactions has an influence on the load of the replicas of the

core level, because transactions that require a high freshness level cannot be

1890 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

delegated to lower levels of the hierarchy. Thus, upon detecting an increase in

the average freshness level, the MM may need to add more resources to the core

level to avoid an overload situation, as in the case of Scenario III.

As the performance of replication protocols varies greatly depending on the

read/write rate of transactions, the proposed system is also capable of adapt-

ing itself to such changes. In Fig. 4, upon detecting that the number of writes

increases, the MM changes the replication protocol of the core layer from a

primary-backup scheme to an update-everywhere scheme (see Scenario IV), so

that all replicas in the core layer can execute update transactions.

Finally, it should be noted that, apart from adapting itself to tolerate in-

creasing workloads, an elastic service should also minimize resources usage. This

situation is represented in Scenario V, in which the MM removes one of the repli-

cas upon detecting an important decrease in the number of requests. Moreover,

since the rate of transactions that include write operations also decreases, the

MM changes the replication protocol to primary-backup again.

4 Correctness Arguments

In the following, we will prove the feasibility of the presented system architecture

by stating a sketch of the correctness guarantees it provides, in a similar way

as done in [Das et al.(2010)]. The different system components provide certain

guarantees that will be taken as a basis point to discuss system correctness in

terms of both safety and liveness. We assume that the system does not tolerate

Byzantine failures or malicious behavior.

As explained in Section 3.2.2, the MM is assumed to be distributed among

a small set of nodes that are synchronized by means of a Paxos-like protocol

[Lamport(1998)] to provide fault tolerance while guaranteeing consistency. This

ensures that the information stored at the metadata repository of the MM is

not lost or left in an inconsistent state even in the presence of arbitrary failures,

including network partitions. Thanks to Paxos, the following guarantees are

ensured: i) only a single MM node can own a lease (a znode in the case of

Zookeeper) at any instant of time, which gives permission to modify the data

stored in the metadata repository (MM safety); and ii) the MM progresses if a

majority of nodes are non-faulty and can communicate among themselves (MM

liveness).

The MM is in charge of determining the set of replicas that constitute the

core hierarchy level of eachRC. Thus, since at any time there exists a correct MM

node that properly controls the behavior of the core replicas (by determining the

replication protocol that is executed at the core level, as well as the replicas that

must join or leave this hierarchy level), the correctness at the core layer of each

RC depends on the behavior of the replicas that belong to it.

1891Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

The replication protocol running at the RC core level is devoted to main-

taining the consistency at this level. We can guarantee that the replication

protocol ensures data consistency of the corresponding partition as long as it

has been shown to be correct [Daudjee & Salem(2006)] and provide one copy

(1C) schedules even in the presence of replica failures [Bernstein et al.(1987),

Fekete & Ramamritham(2010)]. Therefore, if a transaction only accesses the core

nodes of a single partition, it will behave as if it were executed in a traditional

replicated database; hence, the consistency criterion fulfilled will correspond with

the consistency guarantees ensured by the replication protocol that manages

that core level, normally one-copy serializability (1CS) [Bernstein et al.(1987)]

or one-copy Snapshot Isolation (1SI) [Lin et al.(2009)] depending on the repli-

cation protocol. In case a single partition transaction accesses other levels of

the hierarchy apart from the core level, the consistency criterion fulfilled will be

1SI, as update transactions are serially executed at the replicas of the core level

whereas read-only transactions can be forwarded to lower hierarchy levels as-

suming that they might obtain a stale (but consistent) snapshot of the database.

However, it is not that cheap to execute 1SI multi-partition transactions without

incurring in extra messages [Vo et al.(2010)] that penalize performance. Thus, it

can be assumed that no notion of consistency across data is generally provided

for multi-partition transactions, but that data versions are obtained from a valid

committed snapshot in each partition. The resulting schedule does not satisfy

any of the conditions stated in [Lin et al.(2009)]; hence, in the case of multi-

partition transactions, we obtain one-copy-multi-version (1MV) schedules.

Apart from this, transactions executed at the core replicas must eventu-

ally get propagated to the rest of replicas inside their associated RC no mat-

ter how many replica failures and network partitions occur, so as to ensure

global correctness. Since a replica belonging to a hierarchy layer different than

the core layer of an RC receives its updates from a replica of the upper layer

via a FIFO quasi-reliable point-to-point channel, updates are propagated from

one hierarchy level to the following, and are received (and therefore executed)

in order. This corresponds to the notion of eventual consistency [Vogels(2009),

Fekete & Ramamritham(2010)]; i.e., there is some time point when if update

transactions stop then all replicas will converge to the same state. In case the

parent fails, this situation will be eventually detected by the MM, which will

choose a new replica that will send pending updates to the children replicas.

Indeed, this can be understood as a definition of a global liveness property, as

the system ensures that in-background update propagation is done correctly.

5 Evaluation

This section presents the performance evaluation of Epidemia using a prototype

implementation that serves as a proof of concept to empirically validate the

1892 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

feasibility of our approach.

5.1 Implementation Details

In order to empirically measure the performance of the proposed system ar-

chitecture, we have built a prototype (using Java 1.6) that covers the basic

functionality of all Epidemia’s components.

Instead of developing a distributed implementation of the MM to provide

fault tolerance and scalability, we have developed a centralized component for the

sake of simplicity. The implemented version of the MM maintains the metadata

repository in main memory and builds the replica hierarchies for the partitions as

indicated in the configuration at startup time. This configuration is maintained

throughout the execution of each experiment, in order to properly evaluate the

differences among different scenarios.

Upon receiving a request from a client, the MM examines the partitions in-

volved in the requested transaction (which will be those containing any items

accessed or modified by the transaction) and selects one replica for each partici-

pating partition. This selection is randomly performed among the replicas of the

RC, taking into account that update transactions must be directed to replicas

of the core node that are able to execute update transactions; whereas read-

only transactions specify a required freshness level, which is simply a number

associated to the maximum hierarchy level that can manage the transaction.

For the following experiments, we have developed two different replication

protocols: a primary-backup protocol, in which there is one primary replica (de-

terministically selected among the replicas currently participating in the proto-

col) that executes update transactions whereas the rest of them execute read-only

transactions and receive updates from the primary via FIFO uniform reliable

multicast; and an update-everywhere protocol, which is derived from the for-

mer considering that all replicas act as primaries and propagate updates among

themselves using total order uniform reliable multicast [Schiper(2006)] to guar-

antee that all replicas deliver messages in the same order irrespective of the

replica that sent them.

5.2 Experimental Settings

Our testing configuration consists of eight computers, each equipped with an

Intel Core 2 Duo processor at 2.13 GHz, 2 GB of RAM and a 250 GB hard

disk. All machines run the Linux distribution OpenSuse v11.2 (kernel version

2.6.22.31.8-01), with a Java Virtual Machine 1.6 executing the application code.

Two additional computers with the same configuration are used for running the

clients and the MM instance respectively. Each replica holds a local PostgreSQL

database (version 8.4.7) [PostgreSQL(2014)], whose configuration options have

1893Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

been tuned so that it behaves as an in-memory only database. Spread 4.0.0

[Stanton(2014)] has been used as GCS, whereas point-to-point communications

have been implemented using TCP channels.

The experiments herein presented have been executed using OLTPBench-

mark [Difallah et al.(2013)], a multi-threaded load generator that implements

a series of standard OLTP/Web benchmarks. In particular, we have selected

the OLTPBenchmark implementation of YCSB (Yahoo! Cloud Serving Bench-

mark) [Cooper et al.(2010)], a collection of micro-benchmarks designed to repre-

sent data management applications that require high scalability. We have chosen

YCSB as the benchmark for this series of experiments mainly because its data

schema allows a very straightforward partitioning scheme by horizontally split-

ting the database into subsets of data records. In the YCSB implementation of

OLTPBenchmark, there exists one table of records with one numeric key and ten

text fields. The available set of transactions that can be executed against this

table are: read, which retrieves the record that matches the specified key; insert,

which inserts a new record; update, which updates all the fields of one record

with the exception of its key; delete, which deletes one record; and scan, which

reads the set of records whose keys belong to a given interval. The database used

for the experiments contains a total of 1 million 1KB records for a total size of

1GB.

5.3 Experiments

The remainder of this section details the experiments performed using the pro-

posed prototype of Epidemia. In particular, we have studied the influence of

different configuration settings (such as the data partitioning scheme or the

replication protocols) on the maximum throughput that the system can reach.

5.3.1 Influence of the Partitioning Scheme on System’s Throughput

In the following experiments, we have assessed the influence of the number of

data partitions on system’s throughput depending on workload characteristics

and the replication protocol used. We have used 100 clients submitting a total

workload ranging from 100 to 1000 TPS (transactions per second). Four differ-

ent data partitioning schemes have been tested using 8 replicas: i) 1 partition

comprising all data items (the 8 replicas belong to the partition); ii) 2 partitions,

each storing 500K records (4 replicas per partition); iii) 4 partitions, each storing

250K records (2 replicas per partition) and iv) 8 partitions, each storing 125K

records (1 replica for each partition). In these experiments all replicas take part

in the replication protocol, as we are considering only one hierarchy level.

Fig. 5 shows the maximum throughput obtained for the four partitioning

configurations mentioned, using (a) update-everywhere and (b) primary-backup

1894 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

����������	
���������	� ����������	� ���������	�

(a) Update-everywhere. (b) Primary-backup.

Figure 5: Maximum throughput depending on the rate of update vs. read trans-

actions.

as the replication protocols for managing system replicas. We have used two of

the transaction types provided by YCSB: read and update, which are always

single-partition transactions, as each transaction accesses one record. Accessed

records are selected according to a Zipfian distribution. The graphics in Fig. 5

show the influence of the proportion of read/update transactions (ranging from

0% to 100% update transactions) on the system’s throughput.

Fig. 5 shows that, the higher the rate of update transactions, the lower the

maximum throughput that can be obtained due to the overhead imposed by

update propagation. In addition, both replication protocols have almost the same

throughput when there is a low rate of updates, as read transactions are handled

in the same way. In contrast, primary-backup replication is more costly if there

is a high rate of updates, since the primary acts as a bottleneck. We shall remark

that as uniform delivery is responsible for the most part of multicast latency,

the cost of update multicasts is the same in primary-backup replication, where

only FIFO order is needed, and update-everywhere replication, which requires

total order. In fact, Spread uses the same level of service for providing uniform

reliable multicast, regardless of the ordering guarantees [Stanton(2014)].

As for the influence of the number of partitions on system’s throughput, the

results of Fig. 5 verify that, in the case of single-partition transactions, the more

data partitions the database is divided into, the more efficient the system is.

This is due to the fact that the number of replicas that have to propagate their

changes among themselves is inversely proportional to the number of partitions

in these experiments, so the cost of propagating changes is lower when we have

more partitions in the system. This difference between the throughput of dif-

ferent partitioning schemes is more noticeable in primary-backup replication. In

this case, there is one primary replica managing each partition. Therefore, in a

configuration with one data partition there is only one primary replica that be-

comes saturated easily, as it is the only one that can execute update transactions;

1895Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

����������	
���������	� ����������	� ���������	�

Figure 6: Maximum throughput depending on the rate of scan vs. read transac-

tions.

in contrast, if there is more than one partition the saturation point raises up, as

there are more replicas able to handle update transactions for their respective

partitions.

The aforementioned results may lead to the wrong conclusion that parti-

tioning the data scheme as much as possible may provide the best performance

possible. Actually, we have to bear in mind that the partitioning scheme must

also minimize multi-partition transactions, as they are more costly than single-

partition transactions. We have verified this statement by repeating the same ex-

periments as before, but in this case using two different types of read-only trans-

actions from the YCSB: read, which is always single-partition; and scan, which

has been slightly modified in order to force it to access several non-consecutive

short ranges belonging to different parts of the database within the same trans-

action.

Fig. 6 shows the maximum throughput obtained depending on the proportion

of read/scan transactions (ranging from 0% to 100% scan transactions), using

update-everywhere as the replication protocol (as all transactions are read-only,

the replication protocol used has no influence on the results). This figure clearly

shows that when there is a high proportion of scan transactions, the throughput

is lower in cases where the database is partitioned, because every scan transaction

accesses one replica from each partition.

In conclusion, partitioning the database scheme requires finding the appropri-

ate trade-off to maximize the throughput of single-partition transactions using

the available resources while minimizing multi-partition transactions.

1896 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

5.3.2 Using Several Hierarchy Levels

In order to test whether Epidemia can improve the performance of traditional

replicated databases by providing additional backup replicas that are asyn-

chronously updated to serve transactions that tolerate a certain degree of stal-

eness, we have configured the system with several hierarchy levels of replicas

and have performed a series of experiments using two YCSB workload types:

workload A, which models an update-heavy workload and is formed by 50% of

read transactions and 50% of update transactions; and workload B, which mod-

els a read-heavy workload and is formed by 95% of read transactions and 5% of

update transactions. In both configurations, records are selected according to a

Zipfian distribution.

Fig. 7 shows the average response time (in milliseconds) depending on the

number of TPS issued to the system for different scenarios using workloads A

and B from the YCSB, which have been generated using 100 clients. In this case,

we have used one single data partition managed by 8 replicas storing all data

items. We have tested different arrangements of the hierarchy: i) 2 replicas in

the core layer and 6 backup replicas in the secondary layer, ii) 4 replicas in the

core layer and 4 backup replicas in the secondary layer, and iii) 6 replicas in the

core layer and 2 backup replicas in the secondary layer. In these experiments,

we have set a predefined freshness level to read transactions, which determines

whether the transaction accepts or not stale versions of data items. In particular,

we have varied the ratio of read transactions that accept old values, setting this

value to 25% for experiments a) and b) of Fig. 7, 50% for experiments c) and

d), and to 95% for experiments e) and f) of the same figure.

In Fig. 7, the average response time remains stable as the number of trans-

actions issued is increased, until a saturation point (that depends on the system

settings and the workload characteristics) is reached. At this point, the system

is unable to process all incoming requests, so the latency increases dramatically.

In the experiments regarding workload A, the system saturates earlier when

using primary-backup replication. This is due to the fact that, although the prop-

agation of updates from the primary to the backup replicas should be cheaper

than in the case of update-everywhere replication (because primary-backup does

not require total order), Spread actually uses the same mechanism regardless of

the ordering guarantees [Stanton(2014)]. As for the experiments for workload B,

there are no relevant differences between using update-everywhere or primary-

backup replication for the core layer because 95% of transactions are read-only

and both protocols process them identically.

When most transactions demand a high freshness level (i.e., they must be

executed at the replicas of the core layer), the most efficient configurations are

those in which most replicas are located in the core layer. In this case, hav-

ing several hierarchy layers does not entail a relevant improvement on system’s

1897Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

����������	
���	���	�����������	��������	����������������	
������

����������	
���	���	�����������	��������	����������������	
������

����������	
���	���	�����������	��������	����������������	
������

�	���	
���������	�����������	��������	����������������	
������

�	���	
���������	�����������	��������	����������������	
������

�	���	
���������	�����������	��������	����������������	
������

�

�

(a) Workload A - 25% read transactions

accept old values.

(b) Workload B - 25% read transactions

accept old values.

(c) Workload A - 50% read transactions

accept old values.

(d) Workload B - 50% read transactions

accept old values.

(e) Workload A - 95% read transactions

accept old values.

(f) Workload B - 95% read transactions

accept old values.

Figure 7: Average latency depending on the TPS issued for the YCSB workloads

A and B with one data partition of 8 replicas.

1898 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

performance (see Fig. 7.a and Fig. 7.b). Note that the configurations in which

there are only two replicas at the core layer are especially inefficient when using

workload A with 25% of transactions accepting old values, even using update-

everywhere replication, since those two replicas have to execute 50% of incoming

transactions (which are update transactions), as well as most read-only transac-

tions and therefore they saturate with a low rate of issued TPS.

On the contrary, when most read transactions accept stale values, the more

replicas are located in the secondary layer, the better the system performs. For

instance, in Fig. 7.e and Fig. 7.f, the configuration with 2 replicas in the core

layer using update-everywhere replication and 6 replicas in the secondary layer

is the one that outperforms all the others. In the case of Fig. 7.c and Fig. 7.d,

in which 50% of read transactions tolerate old values, the system performs best

when replicas are equally distributed between the core layer and the secondary

layer.

Summing up, we have confirmed that the existence of several hierarchy levels

can contribute to increase system’s overall throughput by mitigating the load

that replicas participating in the replication protocol are subjected to. Of course,

achieving an optimal performance would require an in-depth study of the sys-

tem’s behavior under different scenarios, so as to provide the metadata manager

with the needed knowledge base to take the adequate decisions to adapt config-

uration parameters to the workload.

6 Conclusions

We have presented Epidemia, a distributed storage architecture that combines a

cloud inspired scheme with traditional database replication concepts to provide

a highly scalable and available service with transactional support, thanks to a

new replication technique based on epidemic updates which is able to provide

different consistency levels according to the demands of each client application.

Following the cloud philosophy, the proposed system also features an elastic

management of resources, intended to scale out to meet client demands even in

the event of load bursts while minimizing resources usage.

The experiments conducted with the developed prototype have verified that

one of the key challenges when configuring a partitioned database is finding an

appropriate partitioning strategy so that data partitions are large enough to pro-

vide fault tolerance and maximize the proportion of single-partition transactions,

while small and numerous enough to reach high scalability levels. Moreover, we

have shown that the existence of a hierarchy of backups that are asynchronously

updated is able to alleviate the scalability limitations of traditional replicated

databases by directing transactions that tolerate a certain staleness in the ver-

sions of retrieved data items to these backups.

1899Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

The developed prototype provides a sound foundation for future extensions,

such as a fully operational metadata manager including decision-making algo-

rithms to dynamically configure the system by splitting or merging data parti-

tions and upgrading or downgrading replicas along hierarchies. Apart from this,

replicas could be provided with live migration mechanisms [Elmore et al.(2011),

Das et al.(2011)] to transfer the necessary information to replicas that join a

replication cluster or are upgraded in a hierarchy. An extended implementation

could also be used for exploring complex formulations for data freshness, such

as associating transactions to client sessions to ensure read-your-writes consis-

tency [Vogels(2009)].

From the business model viewpoint, it might be possible to exploit the pro-

posed system architecture to offer a new cloud service called Consistency as

a Service (CaaS) that could complement the functionalities of existing cloud

services.

References

[Aguilera et al.(2009)] Aguilera, M. K., Merchant, A., Shah, M. A., Veitch, A. C., &
Karamanolis, C. T. (2009). Sinfonia: A new paradigm for building scalable dis-
tributed systems. ACM Trans. Comput. Syst., 27(3).

[Armendáriz-Iñigo et al.(2007)] Armendáriz-Iñigo, J. E., Juárez-Rodŕıguez, J. R.,
de Mend́ıvil, J. R. G., Decker, H., & Muñoz-Escóı, F. D. (2007). k-bound GSI: a
flexible database replication protocol. In Y. Cho, R. L. Wainwright, H. Haddad,
S. Y. Shin, and Y. W. Koo, editors, SAC, pages 556–560. ACM.

[Baker et al.(2011)] Baker, J., Bond, C., Corbett, J. C., Furman, J. J., Khorlin, A.,
Larson, J., Leon, J.-M., Li, Y., Lloyd, A., & Yushprakh, V. (2011). Megastore:
Providing scalable, highly available storage for interactive services. In CIDR, pages
223–234.

[Bernstein et al.(1987)] Bernstein, P. A., Hadzilacos, V., & Goodman, N. (1987). Con-
currency Control and Recovery in Database Systems. Addison-Wesley.

[Brantner et al.(2008)] Brantner, M., Florescu, D., Graf, D. A., Kossmann, D., &
Kraska, T. (2008). Building a database on S3. In J. T.-L. Wang, editor, SIGMOD
Conference, pages 251–264. ACM.

[Brewer(2012)] Brewer, E. (2012). Cap twelve years later: How the “rules” have
changed. Computer, 45(2), 23–29.

[Chang et al.(2008)] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,
Burrows, M., Chandra, T., Fikes, A., & Gruber, R. E. (2008). Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst., 26(2).

[Cheung et al.(2012)] Cheung, A., Arden, O., Madden, S., & Myers, A. C. (2012). Au-
tomatic partitioning of database applications. PVLDB, 5(11), 1471–1482.

[Cipar et al.(2012)] Cipar, J., Ganger, G. R., Keeton, K., III, C. B. M., Soules, C.
A. N., & Veitch, A. C. (2012). Lazybase: trading freshness for performance in a
scalable database. In EuroSys, pages 169–182.

[Cooper et al.(2010)] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., &
Sears, R. (2010). Benchmarking cloud serving systems with YCSB. In J. M. Heller-
stein, S. Chaudhuri, and M. Rosenblum, editors, SoCC, pages 143–154. ACM.

[Curino et al.(2010)] Curino, C., Zhang, Y., Jones, E. P. C., & Madden, S. (2010).
Schism: a workload-driven approach to database replication and partitioning.
PVLDB, 3(1), 48–57.

1900 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

[Curino et al.(2011a)] Curino, C., Jones, E. P. C., Popa, R. A., Malviya, N., 0002,
E. W., Madden, S., Balakrishnan, H., & Zeldovich, N. (2011a). Relational Cloud: a
database service for the cloud. In CIDR, pages 235–240. www.crdrdb.org.

[Curino et al.(2011b)] Curino, C., Jones, E. P. C., Madden, S., & Balakrishnan,
H. (2011b). Workload-aware database monitoring and consolidation. In
[Sellis et al.(2011)], pages 313–324.

[Das et al.(2009)] Das, S., Agrawal, D., & Abbadi, A. E. (2009). ElasTraS: an elastic
transactional data store in the cloud. In USENIX Workshop on Hot Topics in Cloud
Computing, pages 7–7, Berkeley, CA, USA. USENIX Association.

[Das et al.(2010)] Das, S., Agarwal, S., Agrawal, D., & Abbadi, A. E. (2010). Elas-
TraS: An elastic, scalable, and self managing transactional database for the cloud.
Technical report, CS, UCSB.

[Das et al.(2011)] Das, S., Nishimura, S., Agrawal, D., & Abbadi, A. E. (2011). Alba-
tross: Lightweight elasticity in shared storage databases for the cloud using live data
migration. PVLDB, 4(8), 494–505.

[Daudjee & Salem(2006)] Daudjee, K. & Salem, K. (2006). Lazy database replication
with snapshot isolation. In U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M.
Lohman, M. L. Kersten, S. K. Cha, and Y.-K. Kim, editors, VLDB, pages 715–726.
ACM.

[DeCandia et al.(2007)] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., & Vogels, W. (2007).
Dynamo: Amazon’s highly available key-value store. In T. C. Bressoud and M. F.
Kaashoek, editors, SOSP, pages 205–220. ACM.

[Difallah et al.(2013)] Difallah, D. E., Pavlo, A., Curino, C., & Cudré-Mauroux, P.
(2013). Oltp-bench: An extensible testbed for benchmarking relational databases.
PVLDB, 7(4), 277–288.

[Elmore et al.(2011)] Elmore, A. J., Das, S., Agrawal, D., & Abbadi, A. E. (2011).
Zephyr: live migration in shared nothing databases for elastic cloud platforms. In
[Sellis et al.(2011)], pages 301–312.

[Fekete & Ramamritham(2010)] Fekete, A. D. & Ramamritham, K. (2010). Consis-
tency models for replicated data. In B. Charron-Bost, F. Pedone, and A. Schiper,
editors, Replication, volume 5959 of Lecture Notes in Computer Science, pages 1–17.
Springer.

[Gray et al.(1996)] Gray, J., Helland, P., O’Neil, P. E., & Shasha, D. (1996). The
dangers of replication and a solution. In H. V. Jagadish and I. S. Mumick, editors,
SIGMOD Conference, pages 173–182. ACM Press.

[HDFS(2014)] HDFS (2014). The Apache Software Foundation, Welcome to Hadoop
distributed file system. http://hadoop.apache.org/hdfs/.

[Hopkinson et al.(2009)] Hopkinson, K. M., Jenkins, K., Birman, K. P., Thorp, J. S.,
Toussaint, G., & Parashar, M. (2009). Adaptive gravitational gossip: A gossip-based
communication protocol with user-selectable rates. IEEE Trans. Parallel Distrib.
Syst., 20(12), 1830–1843.

[Jones et al.(2010)] Jones, E. P. C., Abadi, D. J., & Madden, S. (2010). Low overhead
concurrency control for partitioned main memory databases. In SIGMOD Confer-
ence, pages 603–614.

[Kraska et al.(2009)] Kraska, T., Hentschel, M., Alonso, G., & Kossmann, D. (2009).
Consistency rationing in the cloud: Pay only when it matters. PVLDB, 2(1), 253–264.

[Kubiatowicz et al.(2000)] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S. E.,
Eaton, P. R., Geels, D., Gummadi, R., Rhea, S. C., Weatherspoon, H., Weimer, W.,
Wells, C., & Zhao, B. Y. (2000). Oceanstore: An architecture for global-scale persis-
tent storage. In ASPLOS, pages 190–201.

[Lakshman & Malik(2010)] Lakshman, A. & Malik, P. (2010). Cassandra: a decentral-
ized structured storage system. Operating Systems Review, 44(2), 35–40.

[Lamport(1998)] Lamport, L. (1998). The part-time parliament. ACM Trans. Com-
put. Syst., 16, 133–169.

1901Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

[Li et al.(2012)] Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., & Rodrigues,
R. (2012). Making geo-replicated systems fast as possible, consistent when necessary.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 265–278, Berkeley, CA, USA. USENIX Association.

[Lin et al.(2009)] Lin, Y., Kemme, B., Jiménez-Peris, R., Patiño-Mart́ınez, M., & Ar-
mendáriz-Iñigo, J. E. (2009). Snapshot isolation and integrity constraints in repli-
cated databases. ACM Trans. Database Syst., 34(2).

[Lomet et al.(2012)] Lomet, D. B., Fekete, A., Wang, R., & Ward, P. (2012). Multi-
version concurrency via timestamp range conflict management. In ICDE, pages 714–
725.

[Maia et al.(2010)] Maia, F., Armendáriz-Iñigo, J. E., Ruiz-Fuertes, M. I., & Oliveira,
R. (2010). Scalable transactions in the cloud: Partitioning revisited. In R. Meersman,
T. S. Dillon, and P. Herrero, editors, OTM Conferences (2), volume 6427 of Lecture
Notes in Computer Science, pages 785–797. Springer.

[Pandis et al.(2010)] Pandis, I., Johnson, R., Hardavellas, N., & Ailamaki, A. (2010).
Data-oriented transaction execution. PVLDB, 3(1), 928–939.

[Pandis et al.(2011)] Pandis, I., Tözün, P., Johnson, R., & Ailamaki, A. (2011). Plp:
Page latch-free shared-everything oltp. PVLDB, 4(10), 610–621.

[Pavlo et al.(2012)] Pavlo, A., Curino, C., & Zdonik, S. B. (2012). Skew-aware auto-
matic database partitioning in shared-nothing, parallel oltp systems. In SIGMOD
Conference, pages 61–72.

[PostgreSQL(2014)] PostgreSQL (2014). PostgreSQL 8.4 documentation. http://
www.postgresql.org.

[Schiper(2006)] Schiper, A. (2006). Dynamic group communication. Distributed Com-
puting, 18(5), 359–374.

[Schroeder & Gibson(2007)] Schroeder, B. & Gibson, G. A. (2007). Understanding
disk failure rates: What does an mttf of 1, 000, 000 hours mean to you? TOS, 3(3).

[Sellis et al.(2011)] Sellis, T. K., Miller, R. J., Kementsietsidis, A., & Velegrakis, Y.,
editors (2011). Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011. ACM.

[Shorfuzzaman et al.(2012)] Shorfuzzaman, M., Graham, P., & Eskicioglu, M. R.
(2012). Allocating replicas in large-scale data grids using a qos-aware distributed
technique with workload constraints. IJGUC, 3(2/3), 157–174.

[Sivasubramanian(2012)] Sivasubramanian, S. (2012). Amazon dynamodb: a seam-
lessly scalable non-relational database service. In SIGMOD Conference, pages 729–
730.

[Stanton(2014)] Stanton, J. (2014). The Spread toolkit. http://www.spread.org.
[Stonebraker et al.(2007)] Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos,
S., Hachem, N., & Helland, P. (2007). The end of an architectural era (it’s time
for a complete rewrite). In C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava,
K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas,
and E. J. Neuhold, editors, VLDB, pages 1150–1160. ACM.

[Vo et al.(2010)] Vo, H. T., Chen, C., & Ooi, B. C. (2010). Towards elastic transac-
tional cloud storage with range query support. PVLDB, 3(1), 506–517.

[Vogels(2009)] Vogels, W. (2009). Eventually consistent. Commun. ACM, 52(1), 40–
44.

[Wiesmann & Schiper(2005)] Wiesmann, M. & Schiper, A. (2005). Comparison of
database replication techniques based on total order broadcast. IEEE TKDE, 17(4),
551–566.

[ZooKeeper(2014)] ZooKeeper (2014). A high-performance coordination service for
distributed application. http://hadoop.apache.org/zookeeper/.

1902 Arrieta-Salinas I., Armendariz-Inigo J.E., Navarro J.: Epidemia: ...

