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Abstract: Traditional pedagogical approaches are no longer sufficient to cope with
the increasing challenges of Massive Open On-line Courses (MOOCs). Consequently,
it is necessary to explore new paradigms. This paper describes an exploration of the
adaptation of the peer review methodology for its application to MOOCs. Its main
goal is to minimise the students’ frustration through the reduction of the number of
committed students that receive no feedback from their peers. In order to achieve this
objective, we propose two algorithms for the peer review matching in MOOCs. Both
reward committed students by prioritising the review of their submissions. The first
algorithm uses sliding deadlines to minimise the probability of a submission not being
reviewed. Our experiments show that it reduces dramatically the number of submissions
from committed students that do not receive any review. The second algorithm is a
simplification of the former. It is easier to implement and, despite performing worse
than the first one, it also improves with respect to the baseline.
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1 Introduction

Despite their short history, Massive Open Online Courses (MOOCs) have ex-

perienced an incredible growth [Hyman 2012]. Based on their underlying ped-

agogical approach, MOOCs can be classified into two main trends [Rodriguez

2012]: xMOOCs follow a content-based approach, thus applying an underly-

ing cognitive-behaviourist pedagogy (with some small components from social

constructivism); cMOOCs apply a connectivist approach instead, based on con-

necting learners [Siemens 2005].

In either case, MOOCs rely heavily on the active work of the student, not only

as a content consumer but completing exercises and tasks as well. In consequence,

evaluation is an intrinsic requirement for this type of courses, even if used just

for formative purposes. It also constitutes one of their greatest vulnerabilities,

as their massive audience makes it impossible for the teacher to provide the

students with appropriate feedback.

Several strategies have been tried to address this issue. Applying automatic

grading is the most common and scalable solution. It fits perfectly the mas-

sive audience of MOOCs. Alternative solutions rely on the students themselves
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to evaluate submissions. Peer assessment emphasises the social dimension of

MOOCs and allows students not only to receive feedback on their submissions,

but also to explore alternative solutions and acquire complementary competen-

cies such as critical thinking or evaluation skills.

Peer review has been receiving increasing attention in the educational con-

text, being widely used in a variety of settings. Although its benefits are strongly

supported by empirical evidence in the literature, controversy remains about its

reliability, quality and validity. Due to that, its application raises reluctance of

both teachers and students.

Two main critics are typically done to the peer review methodology. One is

the potential lack of quality of peers’ feedback and lack of reliability of peers’

grades. The other is the risk of reviewers failing to submit their revisions. In

the context of MOOCs, with an extremely low participation rate, this latter risk

scales-up and can be an important source of frustration for the students waiting

for feedback.

A number of studies in the literature focus on detecting and analysing the

effect of emotions on learning [Kort et al. 2001; Baker et al. 2010]. Motivation,

enjoyability or entertainment have demonstrated a positive influence [Ebner and

Holzinger 2007]. Confusion has also been reported to be positively correlated

with learning [Craig et al. 2004; Graesser et al. 2007], which is consistent with

the constructivist theory about deep learning associated to cognitive conflict.

Regarding frustration, it is generally considered negative and some research has

focused on reducing it [Hone 2006; Klein et al. 2002; McQuiggan et al. 2007].

The massive audience makes MOOCs particularly sensitive to problems, be-

cause even the simplest problems may scale-up and affect a large community.

For any methodology to succeed in such a demanding context, its potential risks

must be carefully addressed and tackled to avoid a negative impact on the course

progress. In this paper, we focus on the risk of reviewers failing to submit their

revisions as one of the biggest problems that jeopardise the successful applica-

tion of peer review in MOOCs. We propose a solution for reducing, and ideally

eliminating, students’ frustration due to not receiving the expected feedback

from their peers. Concretely, we propose to act on the matching of submissions

and reviewers, taking into account students’ commitment, and allowing the re-

assignment of non-reviewed submissions, so that potential missing reviews have

a minimum impact on students’ expectations and satisfaction.

This paper is organised as follows: Section 2 reviews the related literature

and state of the art; Section 3 presents the proposed peer review matching algo-

rithms; Section 4 evaluates the performance of those algorithms and compares

them with a baseline algorithm; Section 5 discusses the main conclusions of the

evaluation; and, finally, Section 6 concludes and presents the future work.
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2 State of the art

The MOOC concept emerged in 2008 with the “Connectivism and Connective

Knowledge” course taught by George Siemens and Stephen Downes. However,

it is in 2011 when this methodology experienced an unprecedented growth.

That year, Peter Norvig and Sebastian Thrun’s “Introduction to Artificial In-

telligence” class reached more than 150,000 students [DiSalvio 2012], initiating

the current MOOC hype [Hyman 2012]. In the last years, with particular em-

phasis since 2012, top universities have offered hundreds of MOOCs based on

new technological platforms like Udacity1, Coursera2, edX3 or MiriadaX4. In

fact, MOOCs are considered one of the main educational trends in the last

months [Daniel 2012; Hyman 2012; Alario-Hoyos et al. 2013].

MOOCs have their roots in the OER (Open Educational Resources) move-

ment and expand e-learning to reach a wide, massive audience. As main char-

acteristics, MOOCs are open (students can enrol with no prerequisites), free,

online, intend to reach a massive number of students (usually thousands, al-

though there are cases of more than one hundred thousand enrolled students),

and usually present a high student per teacher ratio. These characteristics intro-

duce some drawbacks, such as disparate students, small proportion of active stu-

dents, high attrition rates, and scarce teacher support during enactment [Daniel

2012; Clow 2013; Downes 2010; Kop et al. 2011].

MOOC participants are expected to form a community of learners that sup-

port each other and enrich the course with discussions and related contents

(crowdsourcing) [Mackness et al. 2010; McAuley et al. 2010]. This is called the

“learner as teacher as learner” model [Siemens 2006]. Consequently, MOOCs

constitute an ideal environment for social learning methodologies, whose im-

portance and impact have dramatically risen since the irruption of the Web

2.0 [Holzinger et al. 2009; Ebner et al. 2006].

Whereas MOOC learners are expected to play the leading role in the learn-

ing process, the instructor plays a secondary role. In contrast to traditional

e-learning courses, instructors’ activity focuses on the design of the course but

fades out during enactment. Due to the massive number of students (and the free

nature of the course), it is impossible to provide personalised support by teach-

ers [Downes 2010; Kop et al. 2011]. In consequence, MOOCs require alternative

assessment methods, which do not depend on the teacher intervention.

1 www.udacity.com
2 www.coursera.org
3 www.edx.org
4 www.miriadax.net
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2.1 Assessment in MOOCs

As emphasised by Sandeen [2013], “within the MOOC world, assessment is a

central feature of design from the very beginning. In this new context, assessment

is less about compliance than about supporting student learning outcomes and

ultimately student success and attainment”. However, Balfour [2013] notes that

“the time an instructor spends teaching and evaluating work per student is very

low in high enrolment MOOCs”.

Two main strategies have been tried to address this issue. First, automatic

grading provides the necessary scalability for MOOCs. Alternatively, students

themselves can assume the role of evaluators and provide their peers with feed-

back, emphasising the social dimension of MOOCs.

Both assessment mechanisms are reported to have a relatively high degree of

acceptance by faculty [Sandeen 2013]. According to a recent survey of MOOC

faculty conducted by The Chronicle of Higher Education, 74% of respondents

used automated grading. Of them, 67.1% found the technique to be “very reli-

able” and 30.1% found it to be “somewhat reliable”. Thirty-four percent (34%)

of respondents used peer grading. Of them, 25.8% found the technique to be

“very reliable” and 71% found it to be “somewhat reliable” [Kolowich 2013].

2.2 Automatic grading

The most common and scalable solution is applying automatic grading, which fits

perfectly the massive audience of MOOCs. Consequently, MOOCs rely heavily

on closed assignments, like multiple choice questions, formulaic problems with

correct answers, logical proofs, computer code, and vocabulary activities.

Automatic grading has been successfully applied to multiple choice questions

in MOOCs; for example, in the Stanford “Introduction to Artificial Intelligence”

course. It has also been applied to coding assignments, with more controversial

results; for example, the “HTML5 Game Development” MOOC (Udacity) au-

tomatic grading system for coding exercises raised students’ complaints about

malfunctioning issues and provoked delays in the course.

There is intense research on automatic grading of open assignments, and

scoring and providing feedback on written assignments in MOOCs has been

the subject of a number of recent news articles [Balfour 2013]. Automatic Es-

say Scoring (AES) applications usually apply statistical models for predicting

human-assigned scores based on features of essays that have been determined

empirically or statistically to correlate with the ways humans rate those essays,

as explained by Balfour [2013]. A detailed review on AES mechanisms can be

found in [Shermis et al. 2010]. In the MOOC context, EdX has announced that

it will use automated essay scoring [Markoff 2013]. Additionally, Balfour [2013]

lists three long-standing commercial AES applications that have been tested and

are established in the academic literature [Shermis et al. 2010].
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Evaluation of AES in the literature reports high correlation with human

scores [Attali 2007; Shermis et al. 2010], usually for assignments that fulfil spe-

cific requirements. However, there are limitations and these applications fail in

more complex contexts in which the essays and topics to grade are not homoge-

neous [Graesser and McNamara 2012]. Concern remains on AES being limited

to a superficial evaluation [NCTE 2013].

2.3 Peer review

Peer review, defined in the educational context as “an arrangement in which

individuals consider the amount, level, value, worth, quality, or success of the

products or outcomes of learning of peers of similar status” [Topping 1998],

has been commonly applied in a widespread range of learning settings [Topping

1998; van Zundert et al. 2010]. Despite its increasing popularity [Topping 2005;

van den Berg et al. 2006; van Zundert et al. 2010] and the positive effects docu-

mented in the literature [Topping 1998; Falchicov 1995; 1996; Dochy et al. 1999;

Topping 2003], there is still controversy about its reliability, effectiveness, and

malfunction issues [Nilson 2003]. Literature reviews that analyse the experimen-

tal results of applying peer review in the educational context [Topping 1998;

Nilson 2003; van Zundert et al. 2010] report mostly beneficial effects. However,

they also mention some negative issues, which are usually due to two main rea-

sons: firstly, a correct application of the methodology is not easy to achieve; and

secondly, there are some requirements for the process to be effective that are

not always taken into account. Some care has to be taken in the application of

peer review in order to benefit from its potential advantages, as noted by van der

Pol et al. [2008]. Several authors propose measures to improve the quality and

positive effects of the process, such as an adequate organisation [van den Berg

et al. 2006], the convenience of training the peer assessors [Nilson 2003; Robinson

2001; Russell 2004] or using rubrics [Jonsson and Svingby 2007].

Two main critics are typically done to peer review:

– One is the potential lack of quality of peers’ feedback and lack of reliability

of peers’ grades (particularly if used for official assessment) This problem

is tackled in [Robinson 2001; Russell 2004; Goldin 2012; Piech et al. 2013],

among others.

– The other is the risk of reviewers failing to submit their revisions. Despite its

incidence, little effort has been devoted to alleviate this issue. A remarkable

exception is PG [Gehringer and Cui 2002].

In the context of MOOCs, with a low participation rate, the second risk (peer

assessors failing to submit their revisions) scales-up and can be an important

source of frustration for the students waiting for feedback.
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2.4 Conclusions

The particular characteristics of MOOCs require new pedagogical approaches.

In particular, assessment poses specific challenges. Either for summative or for-

mative purposes, intense research is currently being devoted to improve the as-

sessment methods quality, reliability, scalability and applicability in the MOOC

context.

Proposed solutions for summative evaluation (credits and certifications) im-

ply a radical change in the intrinsic features of MOOCs, with controlled, secure

environments and requiring the payment of fees [Gupta and Sambyal 2013]. On

the contrary, formative assessment methods need to be smoothly integrated in

the MOOC setting, accepting the intrinsic conditions associated to such courses,

for students to achieve the intended learning outcomes. The massive number of

students, together with the consequent lack of teacher support, make the MOOC

community turn to automatic grading and peer evaluation alternatives, each of

them having pros and cons.

In this paper, we focus on the risk of reviewers failing to submit their revisions

as one of the biggest problems that jeopardise the successful application of peer

review in MOOCs. We propose a solution for reducing, and ideally eliminating,

students’ frustration due to not receiving the expected feedback from their peers.

It is based on some improvements to the algorithm that selects the reviewers for

each submission.

3 Algorithm for assigning reviewers

Students that do not review the submissions that the system assigns to them pose

an important challenge to the application of peer review in MOOCs. They can

provoke that some students do not get feedback for their submissions. The typical

solution to this problem consists in augmenting the number of reviews that each

student must fulfil. However, this increases the workload of the students.

We tackle this problem in a different way. Our main goal is minimising the

number of committed students that do not receive any review for their submis-

sions. By committed students we mean those that are actively involved in the

review process. We believe that they are the ones that actually expect and de-

serve receiving feedback for their submissions. In addition, as a secondary goal,

we try to reduce the required workload of the students for achieving the main

objective.

In order to do that, our algorithm assigns submissions only to students that

volunteer to review, as we expect volunteers to be more reliable at completing

their revisions. In order to receive reviews for their own assignments, students

must volunteer and complete the reviews the system assigns to them. On top

of that, we introduce two main mechanisms: the sliding deadlines mechanism
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and the commitment rewarding mechanism. The sliding deadlines mechanism,

instead of applying the same global deadline for all the reviews, sets a specific

(shorter) deadline for each review, relative to the instant it is assigned to the

student. If s/he fails to meet this deadline, the system has still time to assign that

review to another student. The commitment rewarding mechanism encourages

students to volunteer and complete their reviews by giving their submissions

priority when there are less available reviewers than assignments to review.

In this work we propose two algorithms. The Sliding Deadline Commitment-

Rewarding peer matching algorithm (SDCR) implements the two mechanisms

explained above. Since implementing sliding deadlines may be technically or lo-

gistically cumbersome in some scenarios, we propose also a simplification, called

the Fixed Deadline Commitment-Rewarding peer matching algorithm (FDCR),

that implements the commitment rewarding mechanism alone, with the con-

ventional fixed deadlines instead of sliding deadlines. The rest of this section

explains the two mechanisms in depth.

3.1 The sliding deadlines mechanism

The approach followed by most MOOC platforms is to define only two fixed

deadlines (see Figure 1(a)): the assignment deadline (Da) and the global review

deadline (Dr). Students cannot start reviewing until the assignment deadline

expires. This practice simplifies the process workflow and allows students to

resubmit their work until the assignment deadline, while preventing them from

accessing their peers’ solutions before having submitted their own work.

In order to reduce the number of assignments that get no revisions, these

platforms resort to offering the student the possibility of performing more revi-

sions than the mandatory. However, the deadline for the optional revisions is the

same as for the mandatory ones (see Figure 1(a)), which means that additional

reviews imply less time available per review.

Since many students will finish their assignments before the assignment dead-

line, we propose to use this fact to offer the students that are willing to perform

optional revisions more time to complete them, by setting a separate sliding

deadline for each student (see Figure 1(b)).

The first step consists in asking the student whether s/he wishes to start the

review process. By doing so, the algorithm classifies the students into reviewers

and non-reviewers. The algorithm aims to motivate the students to participate

in the process by rewarding the reviewers : only reviewers will receive feedback

about their work. Students that volunteer to perform revisions can no longer

re-submit their work.

Once the student volunteers, s/he waits for the system to assign her/him the

Nr mandatory submissions to evaluate. When the matching is made, a sliding

deadline (Dsl in the figure) is set for this student to complete those mandatory
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Da Dr
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(a) Fixed deadline approach

Da Dr

student
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revisions
remaining time 

for optional revisions

student starts 

revision

student starts 

optional revisions

system

delay Dsl
student

delay

system

assigns

revisions

(b) Sliding deadline approach

Figure 1: Deadlines management approaches for the peer review process.

revisions. The duration of Dsl is the same for every student, though each one

will have a different starting point and, consequently, a separate due date.

When the student finishes her/his Nr mandatory revisions, s/he can ask for

optional ones. The algorithm will assign her/him Nr more, but s/he will have all

the remaining time until the global review deadline (Dr) to submit them. The

student can ask for optional revisions only once.

As shown in Figure 1, the main differences from the point of view of the

students are that: they can start their mandatory revisions before (once they

complete their assignment), and they have more time for doing optional revisions.

For students that complete their assignment close to the expiration of the

assignment deadline (Da in the figure), our algorithm behaves, from their point

of view, like the algorithm that uses fixed deadlines. The same happens if the

course manager decides to postpone the assignment of submissions to review for

all the students until the assignment deadline.

However, introducing sliding deadlines allows the system to designate another

reviewer if the original one fails to complete a mandatory revision. Once the

sliding deadline of a student expires, all the assignments not reviewed by this

student return to the pool of submissions to be revised, as depicted in Figure 2.
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Figure 2: Assignment of mandatory revisions

Performing the submission-reviewer matching each time a student requests

to review would be inefficient, mainly due to the huge number of students in

a MOOC. Thus, it is postponed until having C available first-time reviewers

(students waiting for their mandatory revisions).

In order to avoid the problem of leaving the students that finish (or decide to

review) close to the deadline with fewer revisions or no revisions at all, we decided

to match only a fraction (1/M) of reviewers. This also increases the degrees of

freedom in future allocations, in order to prevent deadlocks and violation of

restrictions (e.g. a student having to review his/her own work). Thus, instead of

matching all the C available reviewers, the algorithm randomly selects a subset

of size C/M of available reviewers, leaving the other C − C/M free for future

allocation (as depicted in Figure 3). Notice that the algorithm is triggered every

time the pool of first-time reviewers reaches C reviewers. The requests from

students waiting for optional revisions are processed also at those instants.

2181Estevez-Ayres I., Crespo-Garcia R.M., Fisteus J.A., Delgado Kloos C. ...



t

Available

Reviewers

(Mandatory

Revisions)

C

C-C/M

Da

Figure 3: Available reviewers for performing mandatory revisions

3.2 The commitment rewarding mechanism

The commitment rewarding mechanism is applied when assigning optional re-

visions. For each optional request, the algorithm assigns Nr submissions giving

priority to the reviewers’ submissions over the non-reviewers’ ones. This way

committed students are rewarded. The list of candidate assignments to be re-

viewed is built as follows:

1. Select all the submissions authored by reviewers that are not yet assigned

to any reviewer.

2. If the length of the list is shorter than Nr, concatenate already assigned

reviewers’ submissions that do not have any revision yet, provided that they

are assigned to less than a half of Nr reviewers.

3. If the length of the list is shorter than Nr, concatenate the remaining already

assigned reviewers’ submissions that do not have any revision yet.

4. If the length of the list is shorter than Nr, concatenate the remaining re-

viewers’ submissions.

5. If the length of the list is shorter than Nr, repeat steps 1 to 4 for non-

reviewers, but only if Da has not expired.

Once the list of candidate submissions has been built, Nr are randomly se-

lected to be reviewed by the student requesting optional revisions, and notified

to her/him.

Different policies can be applied to select reviewers. For example, some poli-

cies could avoid assigning always similar students, or students with the same

ranking. Since studying those policies is out of the scope of this paper, the

analysis presented in Section 4 assumes a random submission-reviewer matching

every time the C/M reviewers are assigned the submissions to revise. Alternative

matching criteria could be applied in order to enrich this algorithm.
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4 Evaluation

In this section, the performance and behaviour of the two submission-reviewer

matching algorithms we propose (SDCR and FDCR) is evaluated and compared

to the Baseline peer matching algorithm (with no enhancements at all) via sim-

ulation with a full factorial experimental design. The simulator used to perform

the experiments was based on SimPy5, a process-based discrete event simulation

framework for Python.

Section 4.1 justifies the selection of a simulation-based methodology for ob-

jectively measuring the impact of the algorithms. Section 4.2 details the experi-

mental design. Finally, Section 4.3 presents the results of the evaluation.

4.1 Methodology

As reminded by [Cohen et al. 2007], “simulations have been used in the natural

sciences and economic forecasting for several decades”. In the educational con-

text, simulation is used in different research areas, including studying group

learning and analysing the effects of different goal structures on individuals

and groups of learners [Spoelstra and Sklar 2008], educational change [Ridgway

1998], school effectiveness [Tymms 1996] and, in general, understanding educa-

tion systems.

Among the main advantages associated to simulations by Bailey [1994] (econ-

omy, visibility, control and safety), it is control the one that makes them suit-

able for this case. Computer simulations are especially useful for evaluating our

matching algorithms because they enable the researcher to control and manipu-

late variables and components, thus being particularly appropriate for testing al-

ternative configurations and effects [Cohen et al. 2007]. In this work, simulations

are the most adequate evaluation methodology because they allow replicating

a complex context, and abstracting the intrinsic variety of real-world settings.

It would be impossible to replicate similar conditions for comparing the alter-

native solutions in real-world MOOCs: having similar number of participants,

with similar motivation, behaviour, personal restrictions, participation and at-

trition rates, etc. Such contextual factors would have a significant influence on

the experimental results, disguising the algorithm outcomes.

4.2 Experimental Design

The experiments were designed to assess the influence of several parameters,

including those related to the student’s behaviour and other parameters defined

by the context (the assignment, the platform, etc.) Section 4.2.1 details those

parameters and 4.2.2 defines the performance metrics we used.

5 simpy.sourceforge.net
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A full factorial experimental design has been applied to evaluate the al-

gorithms. In order to reduce the bias due to the chosen seed, we performed

M = 256 executions of the simulation for each experimental setting, and com-

puted the mean values of their results. A successful execution is defined as an

execution with at least 5 students willing to review. However, the results for a

given setting were discarded if less than m = 5 of its executions were successful,

in order to avoid potentially unreliable mean values. We adjusted the values of

M and m after testing the simulator with a battery of preliminary simulations.

4.2.1 Problem parameters

Table 1 summarises the values and ranges of the problem parameters we analysed

in the experiments:

– System-dependent parameters : parameters set by the instructor when s/he

defines a peer review assignment, or fixed beforehand by the platform (grey

rows in Table 1).

– Student’s behaviour-dependent parameters: parameters depending on the be-

haviour of the students (white-background rows in Table 1).

As the evaluation is based on simulations, instead of data collected from real

courses, students’ behaviour is simulated with several probabilistic variables.

Specifically, the simulation used left-truncated normal distributions (truncated

on the origin) to model the temporal behaviour of each student regarding as-

signments or revisions (i.e. how long it takes for them to complete the task); and

Bernouilli distributions to model the behaviour of each student when faced to a

decision, such as starting an assignment, engaging with the reviewing process or

being willing to review additional peer submissions.

4.2.2 Performance metrics

Our algorithms aim to favour committed students at the expense of non com-

mitted ones. Thus, we collected separate performance metrics for the groups of

reviewer students and the group of non-reviewers. In particular, our analysis

focuses on the effect of the above parameters on the following outcomes:

1. Percentage of students that receive no revisions: for those who just submitted

the assignment, and for those participating in the peer review process as

reviewers.

2. Number of total revisions received by each student: for those who just sub-

mitted their assignment, and for those who participated in the peer review

process as reviewers.
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Parameter Values Meaning
Da 15 Global assignment deadline to submit the as-

signment within the platform.
Dr 7 Global revision deadline, when the whole peer

review process finishes.
Nr {1, 3, 5} Number of mandatory revisions.
Dsl {4, 5.5, 7} Sliding deadline to perform the mandatory re-

visions.
C {0.25, 0.5, 1, 2} Capacity of the pool of available reviewers, ex-

pressed as a percentage (%) of the total number
of students. When this pool is full triggers the
execution of the matching algorithm.

M {1/2, 1/3} Fraction of the pool of reviewers to assign for
each execution of the peer assignment algo-
rithm.

N {1000, 5000, 10000, 25000} Number of students enrolled in the course.
pa {0.05, 0.5, 0.15, 0.20} Probability of a student starting an assignment.
pr {0.25, 0.5, 0.75} Probability of a student starting the review

task.
pmr {0.25, 0.5, 0.75, 1} Probability of an student willing to review ad-

ditional assignments.
μa {5.5, 7, 12.5} Mean of the truncated normal distribution of

the time spent by each student for completing
an assignment.

σ2
a 1 Variance of the truncated normal distribution of

the time spent by each student for completing
an assignment.

μd Dsl/2 Mean of the truncated normal distribution of
the delay of each student for starting the review
task.

σ2
d 1 Variance of the truncated normal distribution of

the delay of each student for starting the review
task.

μr {0.5, 1} Mean of the truncated normal distribution of
the time spent by each student for completing
the review of each assigned submission.

σ2
r 1 Variance of the truncated normal distribution of

the time spent by each student for completing
the review of each assigned submission.

Table 1: Values and ranges for the problem parameters used in the experiments (all
time values are in days)

4.3 Results

A total of 397, 440 successful executions of the peer review process simulation

have been performed. Specifically, 72, 572 scenarios for the Sliding Deadline

Commitment-Rewarding (SDCR) peer matching algorithm were evaluated. Out

of these scenarios, only 3, 452 were evaluated for the Fixed Deadline Commitment-

Rewarding peer matching algorithm (FDCR) and 3, 452 for the Baseline algo-

rithm. The simulation of the SDCR algorithm requires a higher number of sce-

narios because it has specific parameters (such as the capacity of the reviewers

pool or the duration of the sliding period) that have no sense (nor impact) for the
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���������Algorithm

Number of
students 1000 5000 10000 25000 Total

SDCR 10367 20735 20735 20735 72572
FDCR 863 863 863 863 3452
baseline 863 863 863 863 3452

Table 2: Number of scenarios evaluated per algorithm per number of students

FDCR or the Baseline algorithms. Thus the number of different combinations of

parameters is greater for the SDCR algorithm.

Table 2 shows the scenarios evaluated for each algorithm and number of

enrolled students. The lower number of scenarios for 1000 students in the SDCR

algorithm is due to the impact of the range of C on calculating the capacity of

the pool of reviewers. For C = 0.25%, the capacity of the pool is 2 students and

we decided to not execute simulations with a capacity of the pool of reviewers

lower than 10 students. However, the range makes sense for 10000 students,

where the capacity of the pool with this value of C is 25 students.

4.3.1 Performance of the SDCR algorithm. Effect of the sliding dead-

line and the number of revisions

The evaluation metric applied for analysing the performance of the SDCR is

the quantity (percentage) of students that receive no revision for their work.

Figure 4 shows the cumulative distribution function (CDF) of this percentage

for reviewers (Figure 4(a)) and non-reviewers (Figure 4(b)).

For example, the line of Dsl = 5.5 in the first sub-figure of Figure 4(a) shows

that, with just 1 mandatory revision, there is a probability of 0.75 that 25% or

less students get no revisions. Mathematically, F (25%) = P (X ≤ 25%) = 0.75,

where X is the random variable that represents the percentage of students with

no revisions.

The desired behaviour is to leave as few students as possible with no revisions,

i.e. to maximise the probability of having 0% students with no revisions. In fact,

F (0%) = 1 for the ideal algorithm. The closer to that ideal, the better the

peer matching algorithms are, i.e. the steeper F (x) grows to 1 the better the

algorithm is (regarding this evaluation metric).

As expected, the duration of the sliding period, Dsl, affects the number of

students that receive revisions, showing better performance as the sliding dead-

line grows towards its upper bound (fixed by the global revision deadline, Dr).

Actually, all the plots in Figure 4 show a better behaviour for Dsl = Dr(= 7).

Figure 4 also shows how the reviewers are rewarded for their commitment

(Figure 4(a)), while non-reviewers (Figure 4(b)) obtain a worse treatment from

the algorithm. An algorithm that ensures that non-reviewers obtain no revisions
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Figure 4: F (x) = P (X ≤ x) CDFs of the percentage of students that receive

no revisions for the SDCR algorithm, depending on the length of the sliding

deadline and the number of mandatory revisions.
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would be F (x) = 0 for x < 100 and F (100%) = 1. However, the proposed

algorithm assumes that the non-reviewers could change their mind until the

deadline expires. So, their assignments are reviewed, though with less priority.

The different behaviour between reviewers and non-reviewers is even clearer

when analysing the effect of the number of mandatory revisions on the algorithm

performance (see also Figure 4). For only one mandatory revision (Nr = 1) with

Dsl = 7, F (25%) ≈ 0.75 for reviewers, while F (25%) ≈ 0.1 for non-reviewers

(and falling to around 0.02 for Dsl = 4), as the former have more priority than

the latter and there are fewer optional revisions to assign.

4.3.2 Comparative evaluation of the algorithms. Percentage of stu-

dents that receive no submissions

Figures 5 and 6 compare the behaviour of the SDCR, the FDCR and the Baseline

algorithms, depending on the number of mandatory revisions (Figure 5) and on

the number of students enrolled in the course (Figure 6). In order to make this

comparison as fair as possible, the length of the sliding deadline for the SDCR

algorithm is fixed to Dsl = Dr = 7.

Globally, it can be seen that the proposed improved algorithms perform bet-

ter than the baseline for reviewers, i.e. the probability of reviewers not receiving

feedback is smaller (Figures 5(a) and 6(a)), though at the expense of worse re-

sults for non-reviewers (Figures 5(b) and 6(b)), as expected.

The SDCR algorithm shows the best performance (according to the evalu-

ation metrics defined). Regarding the FDCR algorithm, it shows a better be-

haviour than the Baseline algorithm (Figure 5(a)), tending to it as the number

of mandatory revisions grows. The only difference between both algorithms is

how the optional revisions are managed, because both offer the possibility of

optional revisions, but in the FDCR the reviewers are prioritised.

As it can be seen in Figure 5(a), the probability that 25% of reviewer students

get no revisions for FDCR with Nr = 3 mandatory revisions is F (25%) = 0.77,

better than for the Baseline algorithm, F (25%) = 0.658. Comparing these values

with the result for both algorithms with Nr = 5 mandatory revisions (F (25%) ≈
0.58), it could be concluded that the optimal value of revisions is Nr = 3.

However, these results depend on the actual parameters and also on the

student model. Our conclusion is that, when enough time for performing more

revisions is granted to students, the behaviour of FDCR is better than the Base-

line algorithm.

Figure 5(a) also shows how, given a number of mandatory revisions, the per-

formance of the SDCR algorithm regarding reviewers, is better than the perfor-

mance of both the FDCR algorithm and the Baseline algorithm. Furthermore,

the behaviour of SDCR with only one mandatory revision (Nr = 1) is equal

or better than the behaviour of the FDCR and the Baseline algorithm for any
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Figure 5: F (x) = P (X ≤ x) CDF of the percentage of students that receive no

revisions, depending on the number of mandatory revisions and implemented

algorithm
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value of Nr. This allows course managers to dramatically reduce the students’

workload without jeopardising the performance of the system.

As expected, the Baseline algorithm does not punish non-reviewer students,

while both SDCR and FDCR reward the reviewers. As explained in the previous

section, this effect is more patent when a student has only Nr = 1 manda-

tory revision, (first plot in Figures 5(b) and 6(b)), as there are fewer revisions

opportunities to allocate and the algorithms favour the reviewers.

Figure 6 shows how the algorithms behave depending on the number of en-

rolled students (1000, 5000, 10000, and 25000). It can be seen that the behaviour

of the algorithms does not depend on this number.

4.3.3 Comparative evaluation of the algorithms. Number of total

revisions received by each student

This section analyses the number of total revisions received by each student. In

order to perform this analysis, we computed the cumulative distribution func-

tions (CDFs) of the number of revisions for each student (both for reviewers and

non-reviewers) depending on the number of mandatory revisions (see Figure 7).

As it can be seen in Figure 7(a), the SDCR algorithm shows a better be-

haviour for any number of mandatory revisions (as stated in the previous sec-

tion), as the probability of reviewers getting 0 revisions is F (0) = 0.1 for one

mandatory revision (Nr = 1); F (0) = 0.02 for Nr = 3; and F (0) = 0.08 for

Nr = 5. For the Baseline algorithm, these probabilities are F (0) = 0.25 for

Nr = 1; F (0) = 0.14 for Nr = 3; for F (0) = 0.18 with Nr = 5. Moreover, the

number of revisions received by the reviewers is greater for the SDCR algorithm

than for the Baseline algorithm. For example, the probability of getting 3 or

more revisions with Nr = 3 is P (revisionsreceived = 3|Nr = 3) = 1−F (2) = 0.3

for the SDCR algorithm, and P (revisionsreceived = 3|Nr = 3) = 1−F (2) = 0.15

for the Baseline algorithm.

5 Discussion

The results of the experiments show that the mechanisms we propose for im-

proving the baseline algorithm provide significant performance gains.

On the one hand, giving priority to the reviewers when assigning optional

revisions (FDCR algorithm) allows the algorithm to reward the commitment of

the students. However, this measure is only effective if the students have enough

time and are willing to perform additional revisions within the set deadline. Thus,

in order to ensure the effectiveness of this measure, the deadline should be set to

provide students with extra time, more than the strictly needed, to perform the

mandatory revisions. According to the results of the simulations, this is more
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Figure 6: F (x) = P (X ≤ x) CDF of the percentage of students that receive

no revisions, depending on the number of enrolled students and implemented

algorithm
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Figure 7: F (x) = P (X ≤ x) CDF of the number of received revisions, depending

on the number of mandatory reviews per student
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important than the number of mandatory revisions. It is also necessary for the

whole system to motivate the students to perform these optional revisions.

On the other hand, the usage of sliding deadlines together with the commit-

ment rewarding mechanism (SDCR algorithm) allows reassigning revisions. In

other words, if a reviewer fails to perform the revision of one or more assign-

ments, the system is able to reassign them to another student. The algorithm is

thus able to minimise the number of non reviewed assignments.

The SDCR algorithm also allows decreasing the student workload. As shown

before, the SDCR shows a better behaviour, even with fewer mandatory revi-

sions, than the Baseline algorithm for any number of mandatory revisions. Con-

cretely, in our experiments, the proposed solution shows optimal performance

for Nr = 3, though it beats the performance of the Baseline algorithm even for

only one mandatory review per student. A typical value in MOOC peer review

processes is Nr = 5, which means a significant reduction of the student workload

with the proposed improvements.

Regarding the duration for the sliding deadline, the SDCR algorithm shows

the best performance, as expected, when it is equal to the global revision dead-

line. In such case, reviewers are granted more time for performing their task,

thus minimising the risk of failing to complete it.

The simulator we developed would also allow recommending optimal values

for typical parameters in the peer review process. The main challenge is to

define an appropriate student temporal model. The simulations included in this

paper rely on using left-truncated normal distributions to model the students’

behaviour. It would be interesting to feed the simulator model with actual data

from real MOOCs instead. With such information, the simulator could be used

to recommend, given the characteristics of a given course and its audience, the

best algorithm to be applied and the optimal values for its parameters.

Finally, as emphasised before, the effectiveness of these algorithms depends

heavily on the students’ participation. In consequence, they should be comple-

mented with motivational mechanisms, such as reputation, in order to increase

student’s commitment to the review process and its quality.

First, as said before, to ensure the completion of the mandatory revisions,

students that do not complete the mandatory review process, should not be

allowed to access the feedback from their peers and, maybe, be penalised on

their reputation. However this is not enough, as the behaviour of these algo-

rithms relies on the willingness of the students to perform optional revisions.

So, performing optional revisions should be encouraged through augmenting the

student reputation if optional revisions are made.

Additionally, in order to improve the quality of the received revisions (and

thus decrease the consequent student frustration over the lack of it), the system

should allow the author of a submission to evaluate the revisions s/he received.
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It could also integrate natural language processing technology to automatically

classify (and evaluate) the revisions. With all this information, the system could

change the reputation of an student (increasing or decreasing it gradually) de-

pending on the quality of her/his revisions.

6 Conclusions and Future Work

The characteristics of MOOCs pose new educational challenges, particularly for

assessment. In this paper, we have focused on the use of peer review in MOOCs.

We have presented an algorithm, the Sliding Deadline Commitment Rewarding

(SDCR) peer matching algorithm, for selecting the reviewers that minimises

students’ frustration due to not receiving the expected reviews.

Traditional matching algorithms try to alleviate this problem by increas-

ing the submissions assigned to each student for review, thus aggravating their

workload. The SDCR prioritises committed students, ensuring that those who

actually submit the assigned reviews receive feedback for their own work. Be-

sides, it uses sliding deadlines to take advantage of the students that wish to

revise early, thus making the reassignment of non reviewed assignments pos-

sible. Experimental results confirm that the SDCR algorithm allows reducing

the students workload while maintaining a minimal rate of active students with

no reviews, much lower than the Baseline algorithm, thus reducing students’

frustration.

Regarding future work, it is planned to deploy the algorithm and evaluate

it in real MOOCs, with actual students (instead of using simulations). This will

allow us to study the performance of the algorithm depending on the profile of

different students and to study how their behaviour might change depending

on how the peer review process is introduced to them. As stated in the Dis-

cussion Section, the effectiveness of our algorithm depends on the number of

optional revisions performed by the students and it is necessary that the whole

system motivates the students to perform these optional revisions. So, if the

deployment platform allows it, it is also planned to introduce some kind of gam-

ification within the system, such as a point system or a leaderboard based on

the quantity and quality of the performed optional revisions, and to study its

effects in the behaviour of the students and also in the performance of our algo-

rithm. Open source MOOC platforms, like OpenEdX6, Google Course Builder7,

or OpenMooc8, would facilitate the integration of the algorithm.

Additionally, if public datasets were available (with real values of the tem-

poral behaviour of the students), they could be used for testing the performance

of the algorithms too.

6 code.edx.org
7 code.google.com/p/coursebuilder/
8 openmooc.org
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