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Abstract: This paper describes a behavioral and temporal pattern detection technique for state-
space systems whose state is a random variable such as the state estimated using a Kalman 
filter. Our novel behavioral and temporal pattern detection technique uses diagrammatic, 
intuitive, yet formal specifications based on a dialect of the UML of the kind used to monitor 
or formally verify the correctness of deterministic systems. Combining these formal 
specifications with a special code generator, extends the deterministic pattern detection 
technique to the domain of stochastic processes.  

We demonstrate the technique using a Ballistic trajectory Kalman filter tracking example in 
which a pattern-rule of interest is not flagged when observing the sequence of mean track 
position values but is flagged with a reasonable probability using the proposed technique. 
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1 Introduction 

Run-time Verification (RV) of formal specification assertions is a class of methods 
for monitoring the sequencing and temporal behavior of an underlying application 
and comparing it to the correct behavior as specified by a formal specification 
pattern. Some published RV tools and techniques are: the TemporalRover and 
DBRover [Drusinsky 2000], PaX [Haveland and Rosu 2004] and RT-Mac 
[Sammapun, Lee and Sokolsky 2005], all of which use extensions and variants of 
Propositional Linear-time Temporal Logic (PLTL) as the specification language of 
choice, and the StateRover [StateRover] that uses deterministic and non-deterministic 
statechart diagrams as its specification language. In [Drusinsky 2011], Drusinsky 
describes the application of RV using statechart assertions (based on Harel statecharts 
[Harel  1987]) to the verification of DoD and NASA applications, and to those of the 
Brazilian Space agency. 

The Unified Modeling Language (UML) consists of a set of standardized 
(ISO/IEC 19501:2005), general-purpose modeling languages mostly used in the field 
of software engineering. It includes graphic notation techniques to display visual 
models of object-oriented software-intensive systems. Since its inception in the early 
                                                           
1  This research was funded by a grant from the U.S. Defense Threat Reduction 
Agency (DTRA). The views expressed in this document are those of the author and 
do not reflect the official policy or position of the Department of Defense or the U.S. 
Government 

Journal of Universal Computer Science, vol. 19, no. 15 (2013), 2198-2206
submitted: 29/1/13, accepted: 30/8/13, appeared: 1/9/13 © J.UCS



1990’s, the UML has been used mostly for documentation and informal specification. 
Consequently, it has been widely viewed as an informal language. In spite of its 
mostly informal usage, some of the visual languages of the UML can be used in a 
rigorous and formal way. Specifically in this paper, we are interested in formal 
specifications using UML state diagrams, known in the literature as UML state 
machines (UML-SM). UML-SM’s are based on Finite State Machines (FSM’s), 
which have been used for several decades for formal specification and for design and 
synthesis of software and hardware. In this paper we use formal specifications based 
on UML-SM’s.  

In [Drusinsky, 2012] the author described a process for monitoring and pattern 
detection of sequences of hidden financial system states using HMM’s connected to 
UML-SM formal specification assertions. This paper is a counter-part technique for 
the monitoring and pattern detection of continuous stochastic-process using UML-SM 
formal specification assertions. 

The Kalman Filter (KF), named for Rudolf (Rudy) E. Kálmán, is an algorithm 
that uses a series of measurements observed over time, containing noise (random 
variations) and other inaccuracies, combined with an a-priori model estimate, and 
produces estimates of unknown (hidden) variables that tend to be more precise than 
those based on a measurement or a-priori estimation alone. The KF operates 
recursively on streams of noisy input data to produce a statistically optimal estimate 
of the underlying system state [Kalman,1960]. KF’s are used in many consumer and 
military applications such as and GPS and missile tracking. 

A straightforward approach for performing deterministic monitoring or pattern 
matching of the estimated KF state is to monitor its estimated mean state values. With 
this approach, an existing RV tool is used to monitor a stream of mean KF state 
values for a pattern of interest. The drawback of this approach is that for certain 
applications, such as defense and security applications, merely detecting whether a 
pattern is detected with a probability greater than 0.5 is insufficient. For example, a 
missile defense system would likely attempt to kill a threat that has a probability of 
0.45 of hitting a target. In contrast, the technique demonstrated in this paper performs 
probabilistic monitoring of a stream of estimated KF mean and covariance values.  

Hidden Markov Models (HMM’s) are a well-developed technology for 
classification of multivariate data that have been used extensively in speech 
recognition, handwriting recognition and even sign recognition [Rabiner 1989]. They 
are usually used for classification, such as classifying a spoken word as “red”, “blue”, 
or “green”. An HMM is defined by its parameters, chief of which are the number of 
states and transition probabilities, which are often computed using a learning data-set.  

 In contrast with HMM’s, our suggested UML-SM formal specification assertions 
do not contain probabilities. In fact, as discussed in section 2, the same UML-SM 
specifications are used for monitoring of both deterministic and stochastic data 
streams. A special code generator is used to direct the monitor to a specific, 
deterministic or stochastic input stream. 

The technique suggested in this paper is positioned as a hybrid pattern detection 
technique that combines patterns written by humans with statistical algorithms – such 
as KF’s. In other words, it is positioned as a hybrid between formal specification and 
run-time verification techniques (e.g., [Drusinsky (2006)], [Drusinsky (2011)], 
[Drusinsky 2000]) and widely used statistical estimation algorithms.  
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The rest of the paper is organized as follows. Section 2 provides an overview of 
behavioral pattern detection using deterministic UML-SM specifications. Section 3 
provides an overview of KF’s. Finally, section 4 describes our proposed pattern 
detection architecture and a process that uses a combination of hidden and visible 
data, using a KF connected to a behavioral pattern detection monitor.  

2 Behavioral Pattern Detection using Deterministic UML-SM 
Specifications– an Overview 

Consider the following natural language (NL) patterns for a Ballistic trajectory 
tracking system; the NL pattern is specified as being flagged when a scenario 
conforms to the pattern: 

R1. Flag a ballistic object if once M meters from the an asset (e.g., the 
Pentagon), threatens the target and continues to do so for T additional seconds, 
where “threatens the asset” means its estimated hit location, as calculated using the 
a-priori state equations, is within a perimeter of less than ACCURACY meters around 
the assets absolute location. 

During the flight of the ballistic object, both its position and the eventual hit 
location are unknown. They are therefore estimated; the present position is estimated 
using a Kalman filter (i.e., using both a-priori and a-posteriori information), whereas 
the hit location is estimated using a-priori information. The reason for using only the 
a-priori state-equations for hit location estimation in requirement R1 is that a-
posteriori information requires measurements of the ballistic object eventual hit 
location, measurements that do not exist when the object is M meters away from the 
asset. 

 [Fig. 1] depicts a UML-SM for R1. As described in [Drusinsky, 2006], a UML-
SM is a classical state-diagram which is potentially augmented with hierarchy, 
flowcharting capabilities, a Java action language, and a built in Boolean flag named 
bFlag whose default value is false, with a true value indicating that the pattern has 
been flagged (e.g., per pattern R1, it flags when the input scenario conforms to R1); 
see [Drusinsky, 2006, Drusinsky, 2012] for further details. In [Fig. 1], whenever the 
missile detection system calculates a new distance for the ballistic object being 
tracked, a newDistance event is emitted; it triggers the UML-SM to possibly change 
states. It will do so if its present-state is Init or DistM, and if the corresponding 
transition guard evaluates to true. The transition guards are getDist()<=M  and 
Math.abs(getExtrapolatedHitLocation()-Targetxpos)>ACCURACY, respectively. The 
method getDist returns the objects a-priori estimation of the distance from the 
defended asset. The method  getExtrapolatedHitLocation returns the x position of the 
estimated hit position, and Targetxpos is the x distance of the target from the origin. 
The timer.restart and timeoutFire methods relate to the initialization and expiration 
of a T (using T=5 in [Fig. 1]) second timer. 

Deterministic pattern matching for requirement R1 is performed by comparing a 
sequence of ballistic trajectory estimates to the behavior of the pattern set. The 
StateRover tool  does so using a two step process. First, the stream, or sequence, of 
ballistic trajectory estimates (x state mean values) is converted into an equivalent 
JUnit test [JUnit], and the pattern is code-generated into an equivalent Java class 
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(details about this code generator are available in [Drusinsky (2006)]). Next comes an 
RV step where a log file containing the system’s behavior is automatically converted 
into a JUnit test case; the JUnit test is executed, thereby checking that the systems 
behavior, as captured by the log file, conforms to the pattern.  

Section 4 describes the proposed technique for probabilistic pattern matching for 
R1. 

 
Figure 1: A UML-SM for requirement R1 

3 Kalman Filters 

A Kalman filter is an optimal estimator that infers parameters of interest from 
inaccurate and uncertain measurements (the a-posteriori knowledge) and a 
mathematical model of the system (the a-priori knowledge). When all noise is 
Gaussian, the Kalman filter minimizes the mean square error of the estimated state 
parameters (mean and covariance). 

A typical state-space representation of a dynamic system is represented by a state 
equation and a real valued measurement equation:  ݔ௞ 	= ௞ିଵݔ	ܣ	 	+ ௞ݑܤ	 	+ ௞ݖ	௞ିଵݓ	 = ௞ݔ	ܪ	 	௞ݒ	+	
where k is the time step, ݔ௞ is a  ݊௞  dimensional real valued state vector, ݑ௞  is a ݊௨ 
dimensional known input vector, ݓ௞  is (unknown) zero mean, normally distributed 
white process noise with covariance E[ݓ௞  ௞ is the zero mean, Normallyݒ ,௞்] = Qݓ  
distributed white process measurement noise with covariance R, and ݖ௞  is a linear 
combination, determined by matrix H, of the signal value and the measurement noise. 

The square matrix A is the a-priori knowledge relating the state at step k-1 to the 
state at present step k in the absence of process or measurement noise. The matrix B 
relates the input u to the state x.  

As its equations suggest, a Kalman filter is a recursive filter with a Markov 
property where the state at step k-1 depends on the state at step k but on no prior step. 
At every step, it emits estimation parameters in the form of a mean state and a 
covariance matrix P for the estimated state.  
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The Kalman Filter operates in two phases per step: the time update (prediction) 
phase and the measurement (correction) update phase.  

The time update phase consists of two equations: ݔ௞തതത 	= ௞ିଵݔ	ܣ	 	+ ௞ݑܤ	  ௞ܲതതത 	= 	ܣ	 ௞ܲିଵ	்ܣ 	+ 	ܳ		 
The measurement update consists of three equations: ܭ௞ 	= 	 ௞ܲതതത	்ܪ	ܪ)	 ௞ܲതതത	்ܪ 	+ 	ܴ)ିଵ	ݔ௞ 	= 	 ௞തതതݔ ௞ݖ)	௞ܭ	+	 − ௞ܲ	௞തതത)ݔ	ܪ	 	= 	 (1	 − 	(ܪ	௞ܭ	 ௞ܲതതത	
The literature contains a wide variety of Kalman filter variants, such as the Extended 
Kalman Filter (EKF) [Anderson, 1979] and the Unscented Kalman filter (UKF) 
[Julier and Ullmann, 1997], which extend the original KF to non linear system 
estimation. 

The example used in this paper is a ballistic trajectory tracking system, such as in 
a ballistic defense system. For simplicity, we used a two dimensional system 
representation where the state consists of x,y position and velocity (x being distance 
from origin and y being altitude). The well-known dynamic equations are: ݔ௣௢௦ = ௣௢௦തതതതതതݔ	 ௣௢௦ݕ ݐ	௦௣௘௘ௗݔ	+ = ௣௢௦തതതതതݕ	 ௦௣௘௘ௗݕ ݐ	௦௣௘௘ௗݕ	+ 	= 	 ௦௣௘௘ௗതതതതതതതതݕ 	−  ݐ		݃	

where t is the time increment between steps, ݔ௣௢௦തതതതതത, ௣௢௦ݔ ௣௢௦തതതതത andݕ ௣௢௦ݕ ,  are the 
position vectors before and after the time increment, respectively, and likewise for the 
speed vectors ݕ௦௣௘௘ௗതതതതതതതത ,௦௣௘௘ௗതതതതതതതതݕ , ௦௣௘௘ௗݔ , and ݕ௦௣௘௘ௗ . The system initializes with the 
position vector (0,0), and an initial velocity V at angle ; g is the gravitational 
constant. 

The goal of the system is to give sufficient notice before the ballistic object hits a 
designated target, hence the UML-SM assertion of [Fig. 1] (which represents 
requirement R1), which informs the system that a ballistic object is persistently 
threatening an asset.  

The purpose of the Kalman filter is to provide an optimal estimation of the track 
of the Ballistic object for the purpose of interception. A simple implementation of 
requirement R1 is to construct a deterministic monitor (as discussed in [Drusinsky, 
2011]), for R1 that operates on the stream of mean state values generated by the KF. 
Assuming the state has a Gaussian distribution, deterministic monitor essentially flags 
objects whose probability of hitting an asset is greater than 0.5. However, depending 
on the sensitivity of an asset, it might be prudent to intercept objects with some other 
probability threshold.  

The suggested monitoring technique enables the interception of a threat based on 
a safer probability threshold of, for example, 0.2.  [Fig. 2a] depicts a plot of the 
estimated distance of the hit location from the target under a simulation that uses 
M=1707, T=5 seconds (M and T are defined in section 2, requirement R1), and a 
target location of Targetxpos=6707 meters. The middle line represents the mean 
distance, while the top and bottom lines represent the mean plus and minus standard 
deviation (σ), respectively.  [Fig. 2b] is a portion of that plot starting at time t=20. It 
shows the ballistic object being less than M meters from the target at time t=22 
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seconds. The mean estimated distance of extrapolated hit location from the target is 
48 meters at time t=23. Consequently, for ACCURACY=45 (ACCURACY is defined 
in section 2, requirement R1), the UML-SM of [Fig. 1] is not flagged for this ballistic 
object when using the above-mentioned deterministic approach. However, when 
using the probabilistic monitor discussed in section 4, the UML-SM is flagged with 
probability 0.3285, a probability high enough to justify interception. 

 

 
a. Estimated distance of hit location from target. The middle line is the mean distance, while 

the top and bottom lines represent the mean plus and minus standard deviation, 
respectively.  

 
b. Estimated distance of hit location from target during the last 15 seconds of flight.  

Figure 2: Estimated distance of hit location from target 
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4 The Suggested Technique: Monitoring a Kalman Filter 

The suggested pattern detection technique combines deterministic behavioral pattern 
detection techniques for the detection of behavioral patterns written by human 
experts, and recursively estimated KF parameters, namely the median and covariance 
of the estimated state. It does so using a loosely coupled approach, where two 
respective components (namely, the pattern recognizer and the KF) have little 
dependence, thereby easing their respective development and maintenance tasks. 

To enable pattern detection of a KF with respect to R1 and its corresponding 
UML-SM of [Fig. 1], we apply a special code generator that generates a probabilistic 
implementation for the UML-SM, one that operates on the mean and covariance 
parameters of the KF; consequently, UML-SM pattern-matching consists of two 
modules: the KF module, and a module with the generated code for the UML-SM 
pattern - which uses visible information (such as the newDistance event of [Fig. 1] for 
example) as well as KF mean and covariance estimations on a cycle by cycle basis.   

 Standard UML notation labels UML-SM transitions with pairs: 
eventt[conditiont], where conditiont is optional. With this notation, a UML-SM 
transition from state S1 to state S2 that is labeled eventt[conditiont] causes the UML-
SM to change its state from state S1 to state S2 when event eventt fires but only if 
conditiont is true.  A deterministic UML-SM implementation allows at most one 
transition to fire at any time t. In contrast, our probabilistic implementation allows 
more than one transition to fire at any time t, but with certain associated probabilities, 
as explained below. While in general we assume that given event eventt and condition 
conditiont either can be deterministic or estimated, for brevity reasons, we restrict our 
results to the cases where eventt is deterministic; the case where it is estimated case is 
discussed in [Drusinsky, 2012]. 

KF estimations have an associated Gaussian probability distribution with mean 
vector , and covariance matrix P. Hence, the UML-SM pattern recognizer module 
operates on sequences of pairs of numbers provided by the KF module, in the form of 
I = <1, P1>, <2, P2>,.., <T, PT>, where i is the KF’s estimated mean and Pi is the 
corresponding covariance matrix (with 0 variance if the KF output is deterministic).   

The UML-SM implementation consists of a collection C of instances, or copies, 
of the UML-SM, called configurations. Each configuration executes as a standalone 
pattern and preserves its own present-state. Each configuration Con has a probability 
measure Pr(Con), called the Configuration Probability Measure (CPM), that 
measures the probability the UML-SM is behaving as suggested by Con, i.e., that its 
present-state is Con’s present state.  

Upon startup, C consists of a single configuration Condefault whose present-state, 
denoted PS(Condefault), is the pattern’s default state (e.g., state Init in [Fig. 1]), and 
having probability ܲݎ(݊݋ܥௗ௘௙௔௨௟௧) 	= 	1.   

All configurations of C respond to a pair < t, Pt> of I, by substituting the present 
configuration Con with two configurations: Con1 and Con2, whose present-state 
probabilities are calculated as follows. For each Con, all outgoing transitions are 
evaluated as follows. First, Pr(conditiont), the probability of the transitions’ 
condition, is calculated using the standard Gaussian cumulative density function 
(CDF), which is based on the KF estimated mean and covariance. For example, the 
condition ݃݁ݐݏ݅ܦݐ() <=   ,of [Fig. 1] has, at time t, a probability  ܯ
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()ݐݏ݅ܦݐ݁݃)ݎܲ <=  that is equal to CDF Fx(M) of a Gaussian distribution with a ,(ܯ
mean of Targetxpos - t and covariance matrix Pt.  

Subsequently: 

 Con1 and Con2’s probabilities are calculated as:  ܲ(1݊݋ܥ)ݎ = ,(௧݊݋݅ݐ݅݀݊݋ܿ)ݎܲ(݊݋ܥ)ݎܲ  and ܲ(2݊݋ܥ)ݎ = 1)(݊݋ܥ)ݎܲ  .((௧݊݋݅ݐ݅݀݊݋ܿ)ݎܲ−
 Let PS(Con) denote Con’s present-state. PS(Con1) and PS(Con2) are 

determined as in a deterministic UML-SM, assuming ܿ݊݋݅ݐ݅݀݊݋௧ =  ݁ݑݎݐ
and ܿ݊݋݅ݐ݅݀݊݋௧ = ݁ݏ݈݂ܽ ,  respectively. In [Fig. 1] for example, when 
considering Con=Init and the transition InitDistM fires, the two resulting 
Con’s are DistM and Init. 

C configurations are routinely (i.e., every cycle t) managed as follows. All 
configurations Con` with the identical present-state values are merged into a single 
configuration Conmerged, using the sum of all Pr(Con`) as Pr(Conmerged).   

The UML-SM declares a Probability of Flagging (POF), i.e., the probability its 
corresponding NL requirement has been flagged, on a cycle by cycle basis, being the 
sum of all Pr(Con) for all configurations Con such that PS(Con) is an state where 
bFlag=true. 

5 Conclusion and Future Research 

We have demonstrated a technique for performing probabilistic pattern detection of a 
Gaussian process. As in previous papers we demonstrated probabilistic pattern 
detection using UML-SM specifications combined with HMM’s, this paper 
demonstrates the benefits of probabilistic monitoring of the distribution of a random 
variable (whether categorical, as in the HMM case [Drusinsky 2012], or continuous 
and Gaussian, and in this paper) over monitoring its mean, or mean plus/minus 
standard deviation values. This approach is particularly useful for safety-critical, or 
mission-critical systems in which the threshold for pattern violation is lower than 
many other types of systems. 

We also plan on applying this technique to automatic pattern detection within 
large volumes of cyber data, in an effort to identify malicious or dangerous 
behavioral patterns.    

We are currently building a special StateRover code-generator that generates 
weighted/probabilistic implementation code for UML-SM specifications.   
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