
MECCANO: a Mobile-Enabled Configuration
Framework to Coordinate and Augment Networks of

Smart Objects

Ana M. Bernardos, Luca Bergesio, Josué Iglesias, José R. Casar
(Universidad Politécnica de Madrid

ETSI Telecomunicación, Madrid, Spain
{abernardos, luca.bergesio, josue, jramon}@grpss.ssr.upm.es)

Abstract: In this paper, we exploit the capabilities of mobile devices as instruments to facilitate
interaction in spaces populated with smart objects. We do this through MECCANO, a
framework that supports an interaction method for a user to perform physical discovery and
versatile configuration of behaviors involving a network of smart objects. Additionally,
MECCANO guides the developer to easily integrate new augmented objects in the smart
ecosystem. Behaviors are rule-based micro-services composed by a combination of events,
conditions and actions that one or more smart objects can trigger, detect or perform. Each
object owns and publishes its capabilities in a software module; this module becomes available
when a user physically lies in the area of influence of the smart object. The capabilities
provided by a specific object can be merged with those in other objects (including those in the
user’s mobile device itself) to configure a behavior involving several objects, adapted to the
user’s needs. On operation, the behavior is run within the mobile device, serving the device as
orchestrator of the involved objects. The framework also facilitates sharing micro-services in
such a way that users can act as prosumers by generating their self-made behaviors. New
behaviors are associated to the classes of objects that are needed to execute them, becoming
ready for other users to download. The proposed interaction method and its tools are
demonstrated both from the developer’s and the end-user’s points of view, through practical
implementations.

Keywords: Ubiquitous computing, smart objects, interaction, reasoning, mobile technologies,
recommendation, user generated services
Categories: H.1.2, H.5.1

1 Introduction

The issue of how to make a space ‘smart’ is shifting from the problem of how to
coordinate sensors or other elements in the space to how to provide a consistent
interaction between the space and the final user [Dahl, 08]. A smart space can be
described as a crowd of smart objects, which have full meaning when they are put in
relation one to each other, thus the interaction problem can be formulated as the
question of how to make easier the coordination and customization of the available
network of objects for a given user.

The term ‘smart object’ is used to designate a wide variety of physical entities,
equipped with sensing, processing and, sometimes, communication and interfacing
capabilities. The intelligence of these objects is heterogeneous: there are objects that
are considered ‘smart’ just for having an NFC tag attached, while others integrate

Journal of Universal Computer Science, vol. 19, no. 17 (2013), 2503-2525
submitted: 15/2/13, accepted: 22/4/13, appeared: 1/11/13 © J.UCS

processors and memory resources that provide them with some autonomy. In brief, a
smart object refers to ‘a computationally augmented tangible object with an
established purpose that is aware of its operational situations and capable of
providing supplementary services without compromising its original appearance and
interaction metaphor’ [Kawsar, 08]. In this paper, we consider that a smart object
preserves its original basic function as an object, but can be augmented to offer some
supplementary services, both physical and virtual, when some specific operational
situations occur.

The use of smartphones as instruments to interact with objects in the environment
is not a new concept: existing proposals enable interaction through gestures or by
touching, pointing or scanning the objects (see Section 2). These interaction ideas are
feasible because smartphones are currently equipped with a wide amount of sensors
(e.g. refer to [Martín et al., 13]) that may provide information about the current user
status and its situation with respect to the environment. Aside from the number of
possibilities that mobile sensing provides, current mobile technology has also
empowered the user as a content generator [Jensen et al., 08], facilitating the
collection and publishing of daily life experiences (e.g. videos, pictures or messages
posted to social networks). Additionally, contents can be easily tagged with context
information from both mobile embedded sensors (e.g. location) and user provided
data. The framework described in this paper considers this new role of the user as a
‘prosumer’ [Tacken et al., 10], capable of producing, consuming and sharing not
content, but micro-services [Zhao et al., 09] related to the physical spaces and objects,
through a mash-up tool to both configure and publish behaviors for the smart objects
in an easy way.

Thus, this work takes advantage of smartphones as sensors and potential content
managers to propose a framework that supports a novel mobile-instrumented
interaction method that empowers the user to easily configure personalized behaviors
by networking smart objects and to deliver these behaviors as micro-services to be
consumed by other users. The framework is called MECCANO, which stands for
‘Mobile-Enabled Configuration framework to Coordinate and Augment Networks of
smart Objects’. It is known that a meccano is a construction set of miniature parts that
can fit among them and build larger mechanical models. With the same philosophy,
our system facilitates fitting software parts coming from different smart objects to
build a new behavior.

In brief, the interaction concept relies on smart objects that are capable of
publishing their capabilities, i.e. which type of events they can detect, which
conditions they are able to check and which actions they are prepared to perform.
Capabilities are shown to the user through his smartphone, when in the vicinity of the
objects. Users can combine these capabilities using rules that define some kind of
coordinated automatic behavior (what we refer as a meccano), involving one or more
objects. This is enabled through the MECCANO client, which manages the whole
interaction cycle between the user and the objects. The client facilitates rule
configuration and executes behaviors in a stand-alone offline manner. When online, it
can access the MECCANO service, or to the objects themselves in a peer-to-peer
mode, to retrieve new capability modules and pre-configured meccanos.

Through meccano mobile-based interaction, a user will be able to:

2504 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

 Perform intuitive configuration of a network of objects through the smartphone
(e.g. ‘if I turn the world globe left, lock the door’).

 Configure specific behaviors involving the smartphone itself, both to a) organize
action-triggering in objects when an event/condition is fired from the smartphone
(e.g. ‘if phone shaken, put the music on’) or b) manage the behavior of the mobile
device depending on external events (which are generated by other smart
objects). E.g. ‘if the light switches off, the room is silent and it is Monday
midnight, configure my mobile alarm clock in working settings’.

 Merge smart object-triggered actions with external service initiation (e.g. ‘if
scanning a food packet, then check discount coupons and generate an alert when
in the supermarket).

 Generate new meccanos and share these micro-services through the framework.
Any new meccano related to a class of objects will be available to every object
belonging to this class, thus it will be exportable to other objects.
All in all, MECCANO allows to quickly deploy customized and scalable smart

spaces, adapted to the preferences of each user. Additionally, the framework makes
possible for the developer to easily integrate new augmented objects to be available
for the public.

In this paper, we aim at describing our mobile-instrumented interaction method,
the system architecture and technologies that make possible its implementation and
both developer and end-user cases that illustrate the framework operation. The paper
is structured as follows. Section 2 reviews the existing literature on mobile-
instrumented interaction and anticipates some MECCANO features. Section 3
explains the proposed interaction method using an application scenario and from it, it
derives the requirements that the framework has to provide. Section 4 describes
MECCANO architecture and its implementation details for its deployment on
Android clients. Section 5 describes how a developer may integrate new objects in the
proposed framework, while Section 6 reviews some examples of the interaction
method in a real setting. Conclusions are gathered in Section 7, together with further
steps.

2 Related work

The potentiality of mobile devices to interact with the environment has been
considered both in literature and in commercial applications from some years now.
For example [Beigl, 99] explored how to use traditional mobile messaging to
configure an scenario in which some objects were capable of sending SMS with
simple commands to facilitate their remote control and operation from a mobile
device and [Want et al., 99] show how to benefit from inexpensively RFID tagged
objects through portable computers.

From the commercial point of view, there are now a number of applications
designed to act as control centers for ‘smart homes’. Currently, it is feasible to use a
smartphone to control the house lights through the wireless-equipped LIFX light
bulbs, or make legacy infrastructures governable with Belkin’s presence-equipped
WeMo switches. In-house climate is mobile controllable through e.g. the Nest
Learning Thermostat, that learns about user’s habits. SmartHome offers a wide set of

2505Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

ZWave devices, which make possible for the user to control any kind of pluggable
device, but also doors and windows, and TV-media sets from iPhone. This TV-media
remote control application is probably one of the most popular, as demonstrated by
the existing offer in different mobile marketplaces. There are also different solutions
to control camera-based infrastructures from mobile devices for security (e.g. iZon
Remote Room Monitor, iBaby). In the gaming world, it is easy to find many examples
of mobile-governed ‘smart objects’: e.g. Lego Mindstorms EV3 robots or AR.Drones
are ready to be controlled through iOS. Another scenario in which mobile devices are
also commercially linked to smart objects is health: the current offer of health sensors
(weight scales, pulse meters, oxymeters, etc.) includes mobile applications to manage
the sensor and capture its data (e.g. Withings devices or Fitbit activity sensor).

All these solutions provide application-based interfaces to support a set of limited
actions on smart objects, making possible for the user to switch the devices on and off
or configure a set of alerts. In some occasions, the user has to be connected to the
same wireless network than the smart object, but in general objects the services are
thought to enable external remote control.

Apart from these commercial proposals, a number of research works have
addressed the development of system architectures to make possible the interaction
between mobile devices and objects. Some works focus on taking advantage of
mobile sensors to design physical interaction methods between the device and the
object, e.g. using touching, scanning or pointing solutions [Rukzio et al., 07]. For
example, [Pohjanheimo et al., 05] propose a system to implement ‘TouchMe’, a
concept that allows accessing virtual services (such as e.g. virtually searching for a
book at the library) by touching the involved objects (e.g. a book) with a RFID
reader/scanner attached to the mobile device. [Lampe et al., 06] use a similar
approach and equips a mobile device with a Bluetooth RFID reader to enhance the
gaming experience in the ‘Augmented Knight Castle’, in which the mobile device
serves to interact with the physical characters on the board. In the same line, [Kawsar
et al., 08] address the design of a mobile framework, which facilitates interaction with
NFC tagged physical objects to access web services. [Hardy and Rukzio, 08] propose
an architecture that also uses NFC to interact with displays, in order to overcome the
screen limitations of mobile devices and establish a bidirectional channel between
displays and devices through actions such as ‘select & pick’ or ‘select & drop’.
‘Touch & Compose’ is a platform [Sánchez et al., 09] that supports a model for
interaction with the smart environment based on assembling applications from
resources (devices, services, files, etc.) that a user is able to manually select by
touching them with his mobile device; RFID-tagged icons represent resources. The
EMI2lets multi-agent architecture [de Ipiña et al., 06] is designed to control objects
through basic actions, from a mobile device or a web service. The architecture is
demonstrated with objects tagged with visual markers. The potential of web
technologies for smart object orchestration is show in [Pintus et al., 2010]. Authors
implement things as Web Services (using WSDL) and logical connection between
things are modeled as Web Service orchestrations (using WS-BPEL). Through NFC
technology and a graphical interface to ‘point-click-compose’, authors demonstrate
how the user can combine objects to perform actions.

In [Biegl, 99], a stand-alone ‘remote control’ is used to get the control
information from other devices in order to allow operational interaction through a

2506 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

simple user interface. In a similar way, [Broll et al., 09] propose to use a laser-
equipped device to retrieve a set of control commands from an object: when the
object detects the laser beam, it sends the control description to the master device by
using infrared. [Raskar et al., 04] does not use a mobile device, but a hand held
projector to point at passive RFID tags equipped with an additional photo-sensor to
perform geometric operations (such as 3D location) and navigate or update
information related to tagged objects. Other proposals suggest using augmented
reality (AR) to interact with existing physical objects, by touching virtual information
balloons or objects that are represented over the real image (e.g. like in well-known
AR browsers, such as Layar or Junaio). In this direction, [Iglesias et al., 12] describe a
system based on an AR application for a tablet PC that delivers information about
selected objects in the environment but also facilitates simple control by
superimposing virtual menus over the objects (e.g. switch a light control on/off or
select a content to play on the TV); this work considers that camera focus persistence
may be a way to select an object in the smart space to trigger interaction. Augmented
reality is also the basis for the ‘grab-carry-release’ interaction concept [Cheng et al.,
11]. Through different gestures, users are able to virtualize and move a real object.
Gesture-based interaction with smart objects is also in Gestures-Connect [Pering et
al., 07], a system that uses both NFC and acceleration-based gesture recognition to
make selection and action on a object: i.e. a user can capture the information about the
playing in a stereo system by scanning a NFC tag on it and flicking the wrist to the
left. In order to contextualize interaction with smart objects, ‘awareness marks’
bundle usage information in NFC tags [Hervás et al., 2011].

Many of the described proposals are simply designed to facilitate the access to
information or services, not to control the objects themselves. In those cases that
include some control mechanism, control options are to manage a single object.
MECCANO goes a step further, making it possible to easily customize new behaviors
by networking the objects in the space. Behaviors are built on well-defined logic parts
that are published directly by the objects. Moreover, with respect to object discovery,
most existing frameworks are dependent on a specific technology, in contrast to
MECCANO, which may be integrated with any kind of discovery technology, just
depending on the final service (NFC-based touching, BT/ZigBee proximity discovery,
inertial-based gestures, etc.). The same occurs with the level of intelligence of the
objects to integrate: whereas other approaches focus on a specific kind of smart
object, MECCANO allows integration of diverse types of objects. Additionally, none
of the reviewed frameworks manage the concept of relating user-generated services to
smart spaces. Another feature that makes MECCANO different is that most of the
proposals rely on a server infrastructure, while MECCANO is mobile-centric.
Although the client is connected to an external service (MECCANO service), it can
work in a stand-alone manner, as behaviors are orchestrated from the smartphone.

In the next Sections, these singularities of MECCANO are motivated and its
implementation, detailed.

3 The interaction method

Let us consider the following scenario: ‘Patrick is a 70-years old man, fond of
gadgets and technology. He has installed the MECCANO client in his smartphone to

2507Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

interact with different already existing smart objects in his house. For his birthday,
his daughter has given to him a smart lamp and a pair of smart power clips; each of
these can be attached to a power supply in order to detect if the plugged artifact is on
or off. When Patrick touches the lamp with his mobile phone for the first time, he
receives in his phone a new module describing the lamp capabilities through
MECCANO application. It seems that his new lamp is able to 1) detect when it is
switched on/off (event), 2) check if the light level is below a threshold (condition), 3)
switch itself on/off (action), 4) rise or lower the light level (action) and 5) change the
light color (action). Patrick is interested in remotely managing the lamp, so he
decides to download the module. As he is starting to suffer from hearing loses, he
thinks that it can be useful to configure some light signs to announce specific events,
such as the ring of the bell or the telephone. Thus he attaches a power clip to the
doorbell cable and another one to the telephone’s cable. He touches one of the clips
and downloads its available capabilities, which are 1) detecting that clip X fires
on/off (event), 2) check whether clip X is on/off (condition), 3) check clip X state
(action). Patrick then configures the following grammar: ‘if the doorbell clip (A) fires
on or the telephone clip (B) fires on, switch the lamp light on to blue’. He activates
his newly created meccano to put it to work. Once he has tried the behavior, he thinks
that this solution can be useful to somebody else. Thus he signs and shares his new
meccano, uploading it to the service. When he touches for the second time the lamp
with his mobile phone, he receives a recommendation of a new meccano to install,
which says ‘if lamp B switches on, then make lamp A blink twice’. He smiles and
thinks about buying another lamp for his daughter; when connecting both objects, he
will be able to know when she arrives home after work and exchange a light
greeting.’

This short scene shows the key aspects of the proposed interaction method. The
whole interaction relies on a smartphone application, which serves as an intermediary
between the user and those objects in his/her vicinity. The application facilitates the
configuration of networked behaviors (two power clips and a lamp, in this case), but
also the real time orchestration of a community of those. Objects’ capabilities are
usually stored into a dedicated infrastructure, either in a cloud service or in a specific
server. Behaviors may be bundled as micro-services, ready to be shared in the system.

This concept is to be applicable in very different scenarios, supporting easy
personalization of diverse spaces through the objects in them. For example, it can
serve to adapt a room in a hotel for a frequent traveller and to afterwards export its
configuration, but also to provide a customized experience in a museum or to take
advantage of collective knowledge to command a greenhouse.

The stages to build such an application-agnostic implementation are shown in
Figure 1. Entities in Figure 1 are decisions (diamond shapes), cognitive processes (in
a rounded box) and actions (square box) [Queen, 06]. The main stages are the
following:

2508 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

Figure 1: MECCANO Interaction Method

a) Discovery. The interaction begins when the user enters the influence area of a
smart object. In Patrick’s scenario, the object defines its influence area through
NFC technology, thus touching the lamp with the smartphone is needed to start
the interaction. Nevertheless, depending on the application, different ranges for
proximity detection technologies can be used to define a smart object’s influence
area.

b) Module installation. The touching action triggers the retrieval of the object’s
univocal offering that represents the augmented capabilities of the lamp (five, in
this case). As previously said, capabilities may assist on: 1) event detection (e.g.
an object can detect when it is open or closed), 2) condition checking (e.g. an
object can offer a logic to check if the temperature is in a given range) and 3)
action execution (e.g. an object can be switched on or off). In this scenario,
capabilities are stored in an external service, thus once the user agrees, the
download of the software module starts and it is automatically installed in the
smartphone, making the capabilities ready to use.

c) Meccano configuration. With the downloaded capabilities, it is possible to build
a behavior or meccano. Capabilities from an object can be combined among
themselves and with others provided by other objects through event-condition-
action (ECA) rules. The smartphone is also considered a particular kind of smart
object, with a set of preloaded components that can be used in meccano

2509Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

configuration. Once the meccano is activated, it coordinates the response of the
network of smart objects on execution in the mobile device. As it is explained in
Patrick’s scenario, not only capabilities, but also pre-configured meccanos can be
downloaded from an object directly browsing existing meccanos or accepting
proposed recommendations. The recommender is a functional element in the
infrastructure that includes simple logic (based on most downloaded meccanos
and location).

d) Checking and storage. On creation, each meccano grammar is checked to verify
that it is consistent prior to being locally stored in the smartphone. On activation,
execution compatibility of meccanos is also checked in order not to perform
contradictory or incompatible behaviors. This can be done even if the smartphone
is not connected to the external server.

e) Publication. The user may decide to share his self-made behaviors. To do so, he
must sign his creation and upload it to the service hosting meccanos. There, the
new meccano will be checked and linked to one or more objects to make it
available to other users on interaction with those specific objects.

f) Deactivation and uninstallation. The user can always deactivate or uninstall a
meccano or an object module, but these ones can also be deactivated due to other
requirements: e.g. in case that they do not make sense if the user is not close to
the given object or due to service restrictions.

The interaction method is to be implemented through a mobile-centric
architecture and a set of tools that will be supported by a service (in a dedicated server
or hosted in the cloud) and by an object-embedded logic. This architecture will have
to address the requirements that have been indirectly mentioned up to now, which are
summarized in Table 1.

4 MECCANO architecture

This Section details the architecture that makes possible the implementation of the
interaction method (Figure 2) and its specific requirements. In brief, the architecture
and its description are organized in three separated units: 1) the client, ready to run in
a smartphone; 2) the service, which hosts and coordinates the components/meccanos
offering; and 3) the smart objects, which have a variable logic depending on their
level of intelligence.

4.1 MECCANO Client

MECCANO architecture is device-centric, as it is based on a smartphone application
that controls the full interaction flow: object discovery, capacity modules download
and meccano configuration, execution, publishing and uninstallation. Once the
capabilities of an object have been downloaded, the client can work in a stand-alone
manner, even if the smartphone is not connected to the MECCANO service.

2510 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

 Requirements Description
R1 Easy integration

of new objects
To include a new smart object in the ecosystem, its capability module
has to be developed by following defined directives and a naming
structure. The module can be hosted in the smart object itself (if it
has storage capabilities) or in a central repository. The mobile device
has to be able to retrieve it by a univocal identifier.

R2 Usable interface
for micro-service
configuration

A mobile mash-up tool has to enable the user to easily configure
meccanos.

R3 Coordination of
networks of
objects

Actions involving a given smart object can be linked to
events/conditions/actions available in other objects in the space. The
tool may enable easy configuration of networked behaviors.

R4 User-empowered
meccano
generation

The framework has to empower the user to create and publish new
meccanos. New meccano needs to be tagged as members of a smart
object class. User-configured meccanos are to be stored in an
external service.

R5 Publication of
object
capabilities

A smart object can publish a set of event, condition and action
capabilities as a bundled module.

R6 Smartphone-
object proximity
discovery

The starting point for the discovery of capabilities of a smart object is
physically being in its area of influence. When a smartphone enters a
smart object’s area of influence, it automatically receives the
module/meccanos offering related to the object. Proximity may also
be used to allow meccanos (de)activation or execution, depending on
the service needs.

R7 Recommendation
of a customized
offering

The offering of meccanos may grow dramatically when users start
generating meccanos, thus a tool to integrate recommendation
algorithms for meccanos has to be included in the framework.

R8 Automatic
download of
meccano
modules

When a user decides to download a meccano related to an object, he
will be informed about the additional modules that are needed and
not enabled in the smartphone. If the user continues with the
meccano download, missing components will also be installed.

R9 Embedded rule-
based reasoning

An action will be triggered when an event occurs and ‘conditions’ are
fulfilled. The smartphone will be in charge of executing the active
meccanos, thus checking the rules real-time, even if it is not
connected to the Internet.

R10 Module life-
cycle
management

The framework has to offer mechanisms for automatic and dynamic
module download, installation and uninstallation. User feedback and
relative location may be used to control the lifecycle: e.g.
downloaded modules can be deleted if the user has not configured
them and exits the object’s area of influence.

R11 Consistency
checking

Consistency checking has to be done: a) on configuration, to avoid
meccanos that do not make sense, b) on activation, to check that a
meccano is compatible with other active ones, c) on publication, to
check that the meccano is well-formed and ready to share.

R12 Portability The framework has to provide tools for object classification to allow
identifying and grouping similar smart objects, thus making both
modules and meccanos portables among entities of the same class.

Table 1: List of requirements to consider in MECCANO architecture

2511Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

Figure 2: Overview of MECCANO architecture

The client, in our system, is composed by seven main components (see Figure 2):
 The meccano manager, which handles modules and meccanos lifecycle: it

dynamically retrieves meccanos from the service or the objects, saves them in the
external module storage and loads them into memory. It exchanges data among
all the components within the smartphone and with the service recommender
hosted by the infrastructure (refer to Section 4.2) in order to coordinate the
download of new meccanos and modules.

 The ECA engine, which drives the meccano execution phase. The meccano
manager transfers active meccanos from the storage component to the engine; it
afterwards waits for the events that trigger the meccanos and executes them.

 During the configuration stage, the client reasoner checks incompatibilities,
inconsistencies and possible dangerous configurations. This component does the
checking in two different situations: 1) when configuring a meccano, while the
user selects each event, condition or action, by blocking the choice of some of
them and 2) when the configuration is finished, by examining the whole
meccano. To prevent errors on operation, the reasoner checks meccanos when
they are activated.

 The network interface is the component responsible for the communication with
objects. During the configuration of a meccano, it sends orders to the objects to
configure them (see Section 4.3). During the execution phase it receives events
and sends and receives data related to condition checking; it also sends
commands to execute actions. Internally, it communicates directly with the
meccano manager.

 The object detector is the component that discovers objects using some
communication technology (e.g. NFC, WiFi, Bluetooth, ZigBee). Objects may

2512 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

directly publish their capability modules or a URL from where they can be
downloaded. The object detector reads and transfers the identifiers to the
meccano manager, which downloads the modules.

 The publishing interface is the component that allows a prosumer to publish
meccanos as micro-services. The publishing interface controls meccanos
signature and uploading. It is also responsible for deleting any sensitive data from
a meccano before publishing it.

 The Graphical User Interface (GUI) is composed of several parts. A general
structure allows the user to configure, share and download meccanos and to
download, install and delete modules. Additionally, each module contains some
elements to integrate the object capabilities, in particular a set of icons and also
the interfaces that are needed to configure specific parameters for the capabilities.
The client storage keeps all available modules and meccanos in the application.

The meccano storage stocks up the ECA rules created by the user using the
smartphone and also those downloaded from the service or from the objects. Modules
are stored separately depending if they are linked to the smartphone capabilities
(internal modules) or retrieved from objects (external modules). Internal modules
control the smartphone capabilities, either software or hardware, related to calls or
messaging, sensors or applications (see Table 2 in Section 6). As part of the
smartphone, these capabilities cannot be shared, but they can be manually installed
and uninstalled. External modules bundle objects’ capabilities, which are offered on
proximity and installed and uninstalled manually and automatically.

4.2 MECCANO Service

The second part of the architecture is the MECCANO service infrastructure. In brief,
MECCANO service hosts the offering of both capability modules and meccanos, to
allow their publication and download. Each meccano may depend of an external
service to control its normal execution flow and extend its functionalities; this aspect
remains out-of-scope of MECCANO service.

MECCANO service can be implemented in dedicated servers or equivalent cloud
elements. On abstraction, it is composed by three different entities: the service
recommender, the prosumer manager and the service reasoner, and supported by the
server storage, that hosts meccanos and modules.

The service recommender uses a simple recommendation algorithm based on
popularity and user location, but it is ready to be enhanced with specific techniques
that will make possible advance context-aware, profile and history-based module and
meccano delivery.

The prosumer manager and the service reasoner are designed to provide security
when uploading new meccanos. Since a meccano can be configured containing
personal information (pictures, email addresses, facebook account details, etc.), a
subsequent download by other users can lead to a not desirable/malicious behavior
(e.g. publish unwanted photos, send emails automatically or having access to a
personal facebook account). MECCANO Service offers two functionalities in order to
address this security issue: (i) an authentication method that forces the user to
digitally sign each meccano before being published (the prosumer manager checks
that each meccano has been created by a valid existing user) and (ii) a meccano
validation process held in the server reasoner aiming at detecting personal

2513Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

information to be erased and inconsistencies in the meccano definition. The server
reasoner, that follows an internal architecture equivalent to the one running in the
mobile device, is also planned to include intelligence to detect different levels of
secure/insecure behaviors (e.g. a meccano controlling an irrigation system may be
potentially unsecure as a it may lead to a water flood if inappropriately configured);
this security level information associated to each meccano will be available for the
users when downloading behaviors.

The module storage saves the software components that allow controlling smart
objects’ capabilities. When a new module is developed, it must be saved in this area
and linked with a URL for download. In the case that the object itself is able to store
and to handle a complete download, it is not necessary to copy the module in the
module storage, but it can be done to permit a manual download from the server. The
module and meccano storages are linked one to each other, as the first one hosts the
components to configure each meccano.

Finally, it is worth mentioning that not only prosumers can create new bundles,
but also an administrator can, directly in the server.

4.3 MECCANO ‘smart object’

The logic in the smart object makes possible to discover its capabilities, to remotely
configure it with specific settings and to trigger its response on meccano execution.
This is done through four different components (see Figure 2):
 The module is the software that bundles the object’s capability components. As

explained, each module includes a set of events, conditions and actions related to
the object. Depending on the communication and storing capabilities, modules
may be stored in the objects themselves or externally, in MECCANO service.

 The object id interface is in charge of handling object discovery and module
identification. Proximity to the smartphone may be detected either using a
communication technology available both in the smartphone and the object (e.g.
NFC, Wi-Fi, Bluetooth, 3G) or using a gateway, in case the object
communication technology is not in the smartphone (e.g. ZigBee). The discovery
technology and the object capacity to store the module define the implementation
of the object id interface. If the module is stored in MECCANO service, the
object id interface includes an URL or an object identifier that may be converted
into an URL by the meccano manager (the identifier can be a Bluetooth MAC or
a Wi-Fi network interface). If the object hosts the module itself, the object id
interface provides the communication data to transfer the module through the
object detector of MECCANO client.

 To configure the object to perform specific behaviors (e.g. to check that the
temperature is above a threshold) and also to make it respond when meccanos are
executing (e.g. switching an object on or off), each object needs to implement a
set of common interfaces for events, conditions and actions. These interfaces
communicate with the intelligence & control component, which implements
object control in its native language, and with the smartphone, directly or through
a gateway, through the network interface in the client.

 The intelligence & control component (ICC) implements object-dependent
software to manage the object. It is a sort of driver that adapt signals coming
from the mobile to signals to control the object’s hardware

2514 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

4.4 Some implementation details

Up to now, the general architecture enabling MECCANO interaction method has been
described. In this Section, some aspects regarding our real implementation are
addressed: i) the class structure for the client, together with some peculiarities of
significant components, including the Graphical User Interface, ii) the data model to
describe meccanos and modules, iii) some details on the server hosting MECCANO
service.

The MECCANO client has been developed in Java using Android 4.1 SDK.
Figure 3 shows the main classes in the code that maps the client architecture: the
application classes (Figure 3.a); in Figure 3.b, the GUI classes; the class to
active/deactivate meccanos (Figure 3.c); Figure 3.d, the communication interface, and
in Figure 3.e, an example module coming from an object.

Figure 3: Class diagram for meccano client

Each module is implemented in an APK (Android Application Package)
compressed file that contains Java code to implement the common interface and other
resources for visualization, i.e. icons and the object GUI. The module publishes the
object’s capabilities in the module constructor. Modules are loaded at runtime using
the dynamic class loader provided by Java and also available for Android. A module
can share variables with other modules (e.g. the contact for the last incoming call or
the smartphone Bluetooth MAC address) sending the variable to a hash table stored in
the meccano manager.

The communication interface (blocks in red in Figure 3) defines the data structure
for the communication between the meccano manager and the modules. Together
with the communication interface, there are also some classes (e.g.

(e)
(a)

(b) (c)
(d)

2515Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

MeccanoConfigData class) to organize the internal structure of a meccano. These
classes simplify coding. iSensorLister, iMeccanoActionListener and iModuleOnLine
publish the methods to be implemented by the modules and used by the meccano
manager to build and execute meccanos.

The ECA engine receives events from modules and dispatches the check of the
conditions and the execution of the actions to the object interfaces, through the
meccano manager. The engine uses one queue to manage events, conditions and
actions in bundles and another queue to manage meccanos, so the behavior is always
strictly sequential. In order to allow data sharing among modules, there is a hash table
of objects in the meccano manager, where variables from the modules are stored and
read. Finally the meccano manager includes a server to receive events coming from
objects.

With respect to the Graphical User Interface, it enables easy configuration of new
behaviors by combining icons, building a kind of ECA sentence, as it is shown in
Figure 5 and Figure 6b. Yellow icons represent events; conditions are in green and
actions in blue. When a module is downloaded, the user can change its configuration
by tapping on the icon; then, if more than one module is available, a horizontal scroll
with other modules of the same category will appear and the user will be able to select
a new one. If the new module needs a specific configuration, a new screen will open
in order to allow the user to set these parameters. To change the parameters, a long
tap on an icon will open its parameter screen, if available; if not, a short vibration will
advert the user that the capability has not any configurable parameter. To add new
blocks or delete an existing one there is a ‘+’ button on the right and a ‘-‘ button on
the left: the user can simply tap on the desired button (+/-) and then tap on the icon he
wants to add or delete; in the ‘add’ case the new capability will be added below the
selected one.

For each module, the developer must deliver customized icons identifying the
object’s capabilities (using different colors). Additionally, if the capability can be
configured (e.g. any of its parameters can be set), one or more additional screens are
to be developed in order to guide the user through the configuration process (refer to
Section 6 for additional details).

As it has been already mentioned, a semantic data model supports MECCANO
functionalities, guaranteeing successful meccano composition, execution and sharing.
The model enables semantic reasoning to assist the user in the construction of
meccanos by filtering the modules configuration options according to their
capabilities restrictions, to automatically detect inconsistencies in the behaviors
defined in the pool of active meccanos for each particular user (both at inter and intra-
meccano level) and to support a future context-based meccano recommendation
mechanism based on both, user and meccano context. The model has been built as an
extension of our previous work [Iglesias et al, 12], and it is implemented as an OWL2
implemented ontology, composed by four sub-ontologies (an in-depth description of
this model is out of the scope of this paper). In particular, meccano model is
implemented through an XML file. The structure of the XML file is divided into two
parts: the first part includes the meccano author (which enables meccano signature
when a user configures and uploads a new one) and the behavior itself, as a
combination of events, conditions and actions; the second part includes a list of the
modules necessary for execution. An example of XML is shown in Figure 4, it is a

2516 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

meccano that describe the implementation of modules and the interaction between a
smart fan and temperature sensor: ‘When the temperature is above 25 degrees, if it is
between 10:00 and 12:00 AM, then turn the fan on’. In the smartphone, meccano’s
XML are stored in memory, and their pointers in a hash table.

For demonstration purposes, MECCANO service has been implemented in a
specific server (Linux Ubuntu Server 8.04 LTS). The server recommender is
implemented in an Apache web server, while databases are over MySQL. In
particular, the modules storage database contains the reference path to download
modules. In the same way, meccanos are stored in the form of XML files in the
server. They are also listed in the meccanos storage database with the relative URL to
provide an address to download them to the smartphone. When a user generates a new
meccano, it is uploaded through an FTP server, that implements control access and
stores the uploader’s username of who has uploaded a bundle directly in the database.
The recommender composes the meccano offering for a given user depending on his
location and past downloads from other users. A static table correlates objects and
meccanos to recommend depending on nearby objects.

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>
<MeccanoDef nameEng="NewMECCANO" author="Luca" descEng=""
status="unactive" readonly="no">
 <Events>
 <Event type="event_temperature">
 <Param type="sensor_id">10.100.1.10</Param>
 <Param type="above">25</Param>
 </Event>
 </Events>
 <Conditions>
 <Condition type="condition_time">
 <Param type=“day_of_week">Every day</Param>
 <Param type="start_time">10:00</Param>
 <Param type="end_time">12:00</Param>
 </Condition>
 </Conditions>
 <Actions>
 <Action type="action_fan">
 <Param type="actuator_id">A2043</Param>
 <Param type="action">On</Param>
 </Action>
 </Actions>
 <Modules>
 <Module>MeccanoTemperatureModule</Module>
 <Module>MeccanoTimeModule</Module>
 <Module>MeccanoFanModule</Module>
 </Modules>
</MeccanoDef>

Figure 4: XML meccano syntax

5 The developer’s view: how to integrate new smart objects into
MECCANO

MECCANO aims at providing a framework that makes possible to grow the number
of smart objects to work with in different application scenarios. This Section is
focused on demonstrating how Requirement 1 on ‘easy integration of new objects’
(Table 1) has been accomplished, by describing the procedure for a developer to
integrate new smart objects into the framework. To illustrate it, two simple smart
objects has been taken: a wireless smart fan, which publishes a capability action

2517Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

module to remotely control its power on/off, and an environmental monitor, which
publishes event and condition capabilities related to the temperature and light that it is
able to measure. When the procedure of integration is successfully completed, these
two objects will be ready to be networked by using MECCANO client (Figure 5).

Object 1: SMART FAN
Action- On/off

DEVELOPING STAGES
1. Object logic
 Intelligence & control

component
 Module Interface and ID.
 GUI: icons & config.
2. Identification
3. Registration

Object 2: ENV MONITOR
Event - detect temperature
over a threshold
Condition - day time

Figure 5: Smart objects and GUI for meccano configuration and activation. (a) icons

are for events, (b) for conditions and (c) for actions

5.1 Stage 1 - Making an object smart

Nowadays, it is relatively easy to smartify a standard object with additional
capabilities. In order to create a wireless smart fan, we have equipped an USB fan
with a ZigBee communication interface, by connecting it to a MEMSIC MicaZ mote.
The control component (ICC) that gets the orders from the object’s action interface is
implemented in TinyOS; it is programmed to receive a packet containing a switch
on/off order and to convert it to a simple actuation by opening or closing the supply to
the fan. As regular smartphones do not include any IEEE 802.15.4 interface, a MicaZ
base station connected to a computer is used as a gateway. In the client, the object
module must be capable of sending an order to the gateway through WiFi to switch
the fan on or off.

The second smart object for this experiment is an environmental monitor that
includes several sensors (e.g. a temperature one), which are built on an Arduino UNO
equipped with an Xbee shield and a WiFly transceiver to give it a Wi-Fi
communication interface. In this case, the ICC reads data from a port and forwards
them to the mobile application. Once there, the client checks the configured
conditions; no additional logic is coded within the sensor itself.

5.2 Stage 2 - Coding the object module

Once the basic control for the object has been set up, the developer needs to
implement in the module the methods of the communication interface that enable
communicating the mobile application and the fan (Figure 3.d). For the fan case, this
code has to notify the meccano manager that an action has been triggered, then to

(a)

(c)
(b)

2518 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

build a data packet containing the action instruction (on/off) in order to send it over
WiFi and to notify the end of the action.

Once the module logic is implemented, it is necessary to include the object
network address (IP, MAC Bluetooth, IEEE 802.15.4 ID…) in the meccano
description. In case of having multiple objects of the same type, a list of them has to
be defined (i.e. if there were several fans that share the same module, it is necessary to
identify which object to use). In the XML in Figure 4, the actuator_id includes the
fan’s address. Note that in this case, since the smartphone must pass through a
gateway to communicate with the fan, the module must always send data to the
gateway IP address and include the fan’s id into the packet.

Within the module, the developer must also provide the GUI components that
permit the integration of the object with the visual interface: the configuration screens
and illuminating icons that visually describe events, conditions and actions. In this
case, as the object enables a single action, the developer only has to provide an action
icon (Figure 5.c) and a GUI to change the gateway IP address. For debugging
purposes, the framework delivers a test class that allows executing the module as if it
were a standalone application. When the module is finished, it must be compiled as an
Android library; this process generates an APK archive.

For the second object (i.e. the temperature monitor), the module bundles two
types of capabilities: event triggering and condition checking. The Android module
for the object is similar to the fan’s one, it includes four icons (events/conditions for
temperature/light) and the GUI to configure them. Since it has a Wi-Fi transceiver, it
uses IP addresses to identify the object (Figure 4, sensor_id). The configuration
process is however different to the fan’s. For example, as we want to configure the
sensor to generate an event when the temperature goes over a threshold, we must
configure this threshold and we also need to specify the address to send the event
through the object’s event interface. On meccano activation, the module sends the
threshold to the Arduino, which stores it, together with the smartphone IP address that
will be receiving the events (this is done through the events interface). Other
conditions (i.e. conditions not depending on the object itself, e.g. those related to
checking the time of the day) are evaluated in the mobile client (ECA manager) on
meccano execution.

5.3 Stage 3 - Registering the module

As previously said, modules can be stored in MECCANO services or directly in an
object. In this case, the external service is used, thus the object publishes an URL
from where the smartphone can download the module. The developer must register
the module in MECCANO service and prepare the object to publish the URL, by
copying the APK file in a directory controlled by Apache and its path (as Apache
external URL) into the module storage database. Since the fan only has an IEEE
802.15.4 interface and it is not compatible with the communication technologies
available in the smartphone, an NFC tag with the object URL is used to detect
vicinity. The reading triggers module download and installation in MECCANO client.
For the second smart object, we also use a NFC tag to publish the URL.

Once the modules for both smart objects are downloaded, it is possible to
implement the meccano described in Figure 5: ‘when the temperature rises above 25
C, if it is between 10:00 AM and 12:00 AM, then switch the fan on’. This meccano

2519Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

may be associated to both objects (i.e. fan and monitor), thus users can access it on
object discovery.

6 Demonstrating the interaction method in a real setting

To demonstrate the proposed interaction method and its implementation from the end-
user point of view (Requirements 2-4, Table 1), let us consider again Patrick’s home
scenario.

Our elderly’s house is now populated with the following MECCANO smart
objects: a lamp, an entrance door and its mat, a weight scale, several electricity plugs,
an HVAC system, a television set and a fridge. Additionally, a set of Bluetooth
proximity nodes (some of them embedded in specific objects) enables room-based
location detection.

Table 2 shows a selection of some of the mentioned objects. Through them, we
will exemplify how Patrick might use the available setting. Table 2 also includes the
discovery technology for the objects, together with the capabilities published in their
downloadable modules. In particular, it consider four objects, apart from the
smartphone:
 The entrance door has been smartified with a kit that includes: a) an NFC tag to

identify the user when opening/closing the door, b) a Bluetooth sensor for short-
range proximity detection and c) an automation mechanism with ZigBee interface
that permits opening and closing the door, checking its state and counting how
many people are inside the house. To offer this last capability, the door works in
coordination with a ZigBee pressure mat, located at the home landing. Thus the
door is able to trigger an event when it is open or closed or when a person enters
or exits the house. It is also able to check some conditions related to the door
state, the identity of the person involved in the events above and the house
occupancy (extracted from the number of entering/exiting events). The available
actions include opening or closing the door automatically. Additionally, it is
linked to an on-line weather service, thus it can offer weather conditions related
to weather state checking.

 The room acts as a smart object itself. The smartphone detects its location
through Bluetooth screening (as previously mentioned, rooms are to be populated
with objects with capabilities of presence detection, that can be associated to
specific locations). When the mobile detects the room-tagged access point, it
builds an URL by using the Bluetooth MAC address from the AP and uses it to
download the capabilities related to that specific space from MECCANO service.
These capabilities facilitate the detection of entering/exiting events, associated or
not to a person’s identity, and checking the number of people in the room. The
user may build location-based meccanos on these capabilities.

 The Bluetooth weight scale with proprietary technology cannot be programmed,
thus the system uses a static URL that the mobile application’s logic completes
by adding an identifier coming from the object. This object can detect when a
(given) user is weighting and when it was the last time that the user did it. The
scale offers the possibility of sending the weight to different services.

2520 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

S.
O.

Capability components Example meccano’s offering Discovery
tech.

E
nt

ra
nc

e
do

or

E On open/close door
Enter/exit the house*

M1. ‘When nearby the entrance door, if the
weather forecast is rainy, open it in the browser
and make phone vibrate’
M2. ‘On entrance door closing, if mat is on
(exit event) and nobody at home, turn general
HVAC system and lamp off’
M3. ‘On entrance door opening, if mat is on
(enter event) and TV off, turn TV on in the
news channel’

NFC tag

C If door is open/closed
If (nobody/x people)c at
home*

If (user identity)c is

If daily weather is (type)c
A Open/close door

R
oo

m

E Enter/exit the room M4. ‘When in the room, automatically
maintain the room temperature at 25ºC’
M5. ‘When in the room, turn on/off the HVAC
system by shaking the phone’
M6. ‘When in the room, on phone shaken, if
between 16:00 and 16:30, set mobile in
vibration mode and switch HVAC on and light
off’

Bluetooth
ID C If (somebody/specific

device)c in the room
If (room
occupancy<>threshold)c **

A

W
ei

gh
t

sc
al

e

E On (user X)c weighting M7. ‘When BT weight scale is detected, pair it
with the smartphone’
M8. ‘On weighting, if last measure age>24h,
send weight by email’
M9. ‘On weighting, if weight over 80, post the
weight to the fridge’s screen’

Bluetooth
ID (needs
pairing)

C If (user X’s)c (last measure
age <>=threshold)c
If (user X’s weight)c
<>=threshold)c

A Send (user X’s)c weight by
(email/to a device)c
Store weight in a service

P
lu

g

E Detect device plugging M10. ‘Notify incoming calls on TV’ USB
connector C If (battery level

<>threshold)c
A Check battery state

 * enabled if door mat; ** infrastructure BT scan is needed; cconfigurable parameters

Sm

ar
tp

ho
ne

E Receive SMS
Incoming call
BT devices detected
Enter/Leave (GPS+radius, cell)

Alarm fired
Periodic timer
Device shaken/turned
Start moving

Profile change
NFC tag reading
USB plugged/unplugged

C If SMS/call from a specific
number/a number in a list
If a specific BT MAC detected
If in a tagged place

If time between two time
references is <>= threshold

If device profile is
If device is charging

A Call a number
Take a photo
Start/stop BT detection
Pair devices

Vibrate (normal, short, twice)
Open a website / GET
Shift call/event to a
compatible device

Change profile
Play a song
Publish in twitter
Send an email

Table 2: Example of some smart objects that offer their capability components and
associated meccanos. The smartphone is treated as a smart object containing a set of
configurable modules

 For the electricity plug, the identifier is also a static value associated to the USB
port (a standard electrical socket that can only transport electric energy, not
signal - otherwise, a dynamic identifier could be attached). The plug may detect
when a device is plugged (event), perform differently depending on the device
battery load (condition) and check the battery state (action).

2521Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

 Finally, the MECCANO application provides a number of default capabilities
involving the smartphone: e.g. when the device is shaken (event), check the
origin of an incoming call (condition) or take a photo (action) are some of the
components ready to be merged with those from other objects.

In this ecosystem, Patrick can configure a long list of meccanos and also benefit

from already existing ones that are offered by the MECCANO service. Next we
describe some examples of configurations that Patrick may find useful to support his
daily living activities, for example to access valuable information, set preferred home
ambiences, avoid forgetting things or support him to maintain a healthy lifestyle.

Example 1: next to the smart door - Patrick frequently forgets his umbrella, thus
he has configured a meccano to receive a mobile haptic alert of a rainy weather
forecast when he approaches the entrance door (M1). When he arrives home and
nobody else is in, he feels lonely, thus he has configured another meccano that
switches the TV on in his preferred news channel to have some welcome background
noise (M3). Additionally, he has browsed the offering of available meccanos and has
found a new compatible one not to leave the lights and the air conditioning on when
going out (M2).

Example 2: keeping an eye on weight - Some months ago, Patrick’s doctor
insisted on controlling his weight, thus he bought a Bluetooth wireless scale (Figure
6a). When setting it up, he downloaded a configuration meccano that automatically
pairs his smartphone with the scale. This way, Patrick is automatically identified each
time that he weights (M7). To avoid following a strict diet, Patrick has decided to set
a ‘persuasive’ meccano that makes his weight visible in the fridge’s door panel
whereas he goes over his recommended threshold (M9). It seems that this idea works
for him, so he has even shared it in the MECCANO service.

Example 3: customizing the daily environment - Other type of use that Patrick
gives to meccanos is to configure atmospheres at home. For example, he likes to take
a daily nap in his sofa, which is in the living room. Therefore he has personalized a
meccano (Figure 6b, M6) to set his optimal conditions of temperature, noise and light
during his rest slot.

Figure 6: a) Default meccano offering for weight scale, b) configuring the time
capability and nap-setting meccano

a) b)

2522 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

Example 4: practical stuff - Patrick is used to plug his smartphone in his bedroom
to recharge it; he usually forgets where the phone is, not listening to the incoming
calls anymore. Since his daughter always complains, he has configured a meccano
that allows notifying incoming calls on an IP device as his TV set (M10).

Patrick’s scenario is obviously fictitious, but MECCANO framework has been
fully implemented (Figure 5 and 6 shows some real implementations) and some
videos showing how capabilities/meccanos are offered and how meccanos are
configured in similar real settings to the list described here are available in [GPDS,
13].

7 Conclusions

In this paper, a framework to support mobile-instrumented interaction with smart
objects is presented. The framework, named MECCANO, facilitates an interaction
method that is based on the composition of combined behaviors, by aggregating
capabilities of smartphones, smart objects and smart spaces. The result is a tool that
enables the user to create, customize, generate and publish his preferred behaviors in a
simple and intuitive way and the developer to easily integrate new smart objects in the
ecosystem.

The framework is supported by an architecture that makes possible the practical
implementation of the interaction method’s requirements. This architecture, which
includes client, object and infrastructure components, relies on a data model, that
guarantees the consistency of meccano creation in different stages of the bundle
lifecycle. In particular, the data model becomes especially relevant to guarantee the
quality and coherence of user-created meccanos.

The paper refers how a developer may integrate a new smart object in
MECCANO by using the available framework. The procedure, although unavoidably
requires some specific coding of drivers and objects functionalities, is well defined
and facilitated by a set of programming interfaces. Object identification and
registration are also system-guided. This simplifies scaling the framework capabilities
with new smart objects that can be included in different application scenarios.

From the end user perspective, MECCANO is demonstrated in a possible real
setting, i.e. a home equipped with several smartified objects (legacy objects that have
been equipped to be smart). This scenario allows showing the feasibility of the
interaction method and the diversity of possible objects to be integrated in
MECCANO. Depending on the object, the technology used for smart object’s
discovery and query initiation might be different (NFC, USB, Bluetooth, etc.). The
demonstration exercise cover both the configuration of meccanos from different
event-condition-action components coming from different objects, but also the
recommendation of preconfigured meccanos depending on the target smart object.

As it is commented in Section 3, the interaction method that is proposed in the
work is a prescriptive one, which could be tuned after deep user evaluation. This task
is in our further work, together with a metric-based study about discoverability,
learnability, user efficiency and productivity, system response time and easiness of
use of MECCANO. Additionally, we aim at enhancing specific features of the
architecture, in particular for the recommender in the server: as user-based generation
can make the MECCANO components’ pool grow dramatically, we are developing a

2523Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

specific recommendation algorithm to give priority to those components or bundles
that can be more adapted to the user needs, depending on his profile and context.

Acknowledgements

This work has been supported by the Government of Madrid under grant S2009/TIC-
1485. The authors also acknowledge fruitful related discussions on the ECA paradigm
on mobile devices with consultants from Deimos-Space Co., under the THOFU
initiative, financed by the Spanish Center for the Development of Technology.

References

[Beigl, 99] Beigl, M.: Point & Click – Interaction in Smart Environments. Procs. of the First
Int. Symposium on Handheld and Ubiquitous Computing, LNCS 1707, Springer-Verlag, pp.
311-313, 1999.

[Broll et al., 09] Broll, G., Paolucci, M., Wagner, M., Rukzio, E., Schmidt, A., Hubmann, H.:
Perci: Pervasive Service Interaction with the Internet of Things. IEEE Internet Computing, vol.
13, no. 6, pp. 74-81, 2009.

[Cheng et al., 11] Cheng, K-Y., Lin, Y-H., Lin, Y-H., Chen, B-Y., Igarashi, T.: Grab-carry-
release: manipulating physical objects in a real scene through a smart phone. Proceedings of
SIGGRAPH Asia 2011 Emerging Technologies (SA '11). ACM, New York, NY, USA, Article
13, 1 page, 2011.

[Dahl, 08] Dahl, Y.: Redefining Smartness: The Smart Home as an Interactional Problem.
Proceedings of the IET 4th International Conference on Intelligent Environments. IEEE, pp. 1-
8, 2008.

[de Ipiña et al., 06] de Ipiña, D.L., Vázquez, J.I., García, D., Fernández, J., García, I., Sainz, D.,
Almeida, A.: EMI2lets: a reflective framework for enabling AmI. Journal of Universal
Computing Sci (JUCS) 12(3): 297-314, 2006.

[GPDS, 13] MECCANO demonstration videos, 2013.
http://www.grpss.ssr.upm.es/index.php/es/investigacion/67-research-resources, 2013.

[Hardy and Rukzio, 08] Hardy, R., Rukzio, E.: Touch&Interact: Touch-based Interaction of
Mobile Phones with Displays. Proceedings of the 10th international conference on Human
Computer Interaction with Mobile Devices and Services. ACM, New York, NY, USA, pp. 245-
254, 2008.

[Hervás et al., 11] Hervás, R., Bravo, J., Fontecha, J.: Awareness marks: adaptive services
through user interactions with augmented objects. Personal Ubiquitous Computing, vol. 15, pp.
409-418, 2011.

[Iglesias et al., 12] Iglesias, J., Gómez, D., Bernardos, A.M., Casar, J.R.: An attitude-based
reasoning strategy to enhance interaction with augmented objects. Proceedings of the
International Workshop on Extending Seamlessly to the Internet of Things, IEEE, pp. 829 –
834, 2012.

[Iglesias et al., 12] Iglesias, J., Bernardos, A.M., Bergesio, L., Cano, J., Casar, J.R.: Towards a
lightweight mobile semantic-based approach for enhancing interaction with smart objects,
Advances in Intelligent and Soft Computing, Springer-Verlag, vol. 151, pp. 185-196, 2012.

2524 Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

[Jensen et al., 08] Jensen, C.S., Vicente, C.R., Wind, R.: User-Generated Content: The case of
Mobile Services. Computer, Vol. 41, Iss. 12, pp. 116-118, 2008.

[Kawsar et al., 08] Kawsar, F., Fujinami, K., Nakajima, T.: Prottoy Middleware Platform for
Smart Object Systems. International Journal of Smart Home, vol. 2, no. 3, 2008.

[Lampe et al., 06] Lampe, M., Hinske, S., Brockmann, S.: Mobile Device-based Interaction
Patterns in Augmented Toy Environments. Proceedings of the Third International Workshop
on Pervasive Gaming Applications, pp. 109-118, 2006.

[Martín et al., 13] Martín, H., Bernardos, A.M., Iglesias, J., Casar, J.R.: Activity logging using
lightweight classification techniques in mobile devices. Personal Ubiquitous Computing, Vol.
17, Issue 4, pp 675-695, April 2013.

[Pering et al., 07] Pering, T., Anokwa, Y., Want, R.: Gesture Connect: Facilitating Tangible
Interaction with a Flick of the Wrist. Proceedings of the 1st International Conference on
Tangible and Embedded Interaction, ACM, New York, NY, USA, 259-262, 2007...

[Pintus et al., 10] Pintus, A., Carboni, D., Piras, A., Giordano, A.: Connecting smart things
through web services orchestrations. Proceedings of the 10th international conference on
Current trends in web engineering (ICWE'10), Florian Daniel and Federico Michele Facca
(Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 431-441, 2010.

[Pohjanheimo et al., 05] Pohjanheimo, L., Keränen, H., Ailisto, H.: Implementing TouchMe
Paradigm with a Mobile Phone, Proceedings of the joint conference on Smart objects and
ambient intelligence: innovative context-aware services: usages and technologies. ACM, New
York, NY, USA, 87-92, 2005.

[Queen, 06] Queen, M.: Interaction Modeling: User State-Trace Analysis,
http://boxesandarrows.com/interaction-modeling/, 2006. [retrieved on Jan 2013]

[Raskar et al., 04] Raskar, R., Beardsley, P., van Baar, J., Wang, Y., Dietz, P., Lee, J., Leigh,
D., Willwacher, T.: RFIG Lamps: Interacting with a Self-Describing World via Photosensing
Wireless Tags and Projectors. ACM Journal Transactions on Graphics (TOG) - Proceedings of
ACM SIGGRAPH, Volume 23 Issue 3, pp. 406-415, August 2004.

[Rukzio et al., 07] Rukzio, E., Broll, G., Leichtenstern, K., Schmidt, A.: Mobile Interaction
with the Real World: An Evaluation & Comparison of Physical Mobile Interaction Techniques.
Proceedings. of AmI 2007, LNCS 4794, Springer-Verlag, pp. 1-18, 2007.

[Sánchez et al., 09] Sánchez, I., Riekki, J., Pyykkönen, M.: Touch&Compose: Physical User
Interface for Application Composition in Smart Environments. Proceedings of the First
International Workshop on Near Field Communication, IEEE, pp. 61-66, 2009.

[Tacken et al., 10] Tacken, J., Flake, S., Golatowski, F., Prüter, S., Rust, C., Chapko, A.,
Emrich, A.: Towards a Platform for User-Generated Mobile Services. Procs. IC on Advanced
Information Networking and Applications Workshop, IEEE, pp. 532-538, 2010.

[Want et al., 99] Want, R., Fishkin, K.P., Gujar, A., Harrison, B.L.: Bridging Physical and
Virtual Worlds with Electronic Tags. Procs. of the Conf. Human Factors in Computing
Systems, ACM Press, pp. 370-377, 1999.

[Zhao et al., 09] Zhao, Z., Laga, N., Crespi, N.: A Survey of User Generated Service.
Proceedings of IC-Network Infrastructure and Digital Content. IEEE, pp. 241-246, 2009.

2525Bernardos A.M., Bergesio L., Iglesias J., Casar J.R.: MECCANO ...

