
A Model-Based Graphical Editor to Design Accessible

Media Players

María González-García, Lourdes Moreno, Paloma Martínez
(Grupo LaBDA, Universidad Carlos III de Madrid, Leganés, Madrid, Spain

{mgonza1, lmoreno, pmf}@inf.uc3m.es)

Raúl Miñon, Julio Abascal
(Informatika Fakultatea, Euskal Herriko Unibertsitatea, Donostia, Spain

{raul.minon, julio.abascal}@ehu.es)

Abstract: The spectacular rise of multimedia Web content, especially video and audio content,

makes addressing its accessibility a matter of urgency. All the regulations recognize that this

type of content must be accessible to everyone, with or without a disability. To address this

issue, this article presents a Model-Based Graphical Editor to design Accessible Media Players.

This tool has been created in order to provide support to designers with little background in

accessibility. To accomplish this work, a review of Accessibility Standards Regulation has been

carried out, a set of accessibility requirements for accessible media players is proposed and a

modelling of these requirements has been made.

Keywords: Accessibility, media player, standard, Model-Driven Development, Graphical

Editor

Categories: H.1, H.5

1 Introduction

The amount of multimedia content on the Web is increasing at a staggering rate.

Unfortunately, audio and video content are frequently inaccessible for many people

for a number of reasons: most video clips lack captions; embedded players usually

disregard accessibility guidelines; etc. This type of content must be accessible in order

to avoid excluding a significant number of users. Therefore, it is necessary to make

the effort to provide multimedia content in an accessible way that satisfies the needs

of all users. Audio and visual content must satisfy at least the Web Content

Accessibility Guidelines (WCAG) [W3C, 94c] of the Web Accessibility Initiative

(WAI) [W3C, 94b] in order to be considered accessible.

In addition, it is essential to take into consideration the WAI’s User Agent

Accessibility Guidelines (UAAG) [W3C, 94] because of the amount of accessibility

barriers that appear within the user agent that provides the content, affecting

everybody. Nevertheless, most current players show a clear lack of accessibility

[González-García, 11][Moreno, 11].

Bearing in mind the aforementioned and the current legislation (such as the

Twenty-First Century Communications and Video Accessibility Act of 2010 [FCC,

10]), our motivation and aim is to develop a graphical editor based on the Model-

Driven Development (MDD) approach that will allow the design of accessible model-

Journal of Universal Computer Science, vol. 19, no. 18 (2013), 2656-2676
submitted: 1/3/13, accepted: 30/10/13, appeared: 1/12/13 J.UCS

based media players. The reason for using a MDD approach is to separate the

platform-independent design from the platform-specific implementation of

applications, delaying as much as possible the dependence on specific technologies

[Koch, 06]. Moreover, this approach provides technology and platform independency

and also facilitates the design of accessible media players by designers new to the

area of accessibility.

This work was carried out using a User Interface Description Language (UIDL)

[UIDL, 07] called User Interface Extensible Markup Language (UsiXML) [W3C, 09]

and two plugins from the Eclipse development framework [Eclipse, 01]: Eclipse

Modelling Framework (EMF) [Steinberg, 09] and Graphical Modelling Framework

(GMF) [Eclipse, 06].

Before carrying out the graphical editor, a review of different accessibility

standards was accomplished in order to obtain a set of accessibility requirements

[González-García, 11] and a proposal of modelling of these requirements was drawn

[González-García, 13]. This modelling approach has been the starting point for the

development of the model-based editor which is presented in this paper.

This paper is organized as follows: Section 2 covers the background of user

agents that provide video content, such as standards or regulations, and related work

on accessible media players and the model-based approach. Section 3 introduces a set

of main guidelines and a set of accessibility requirements that must be fulfilled by a

media player for it to be considered accessible. Section 4 presents the proposal for

design and development of the graphical editor. With the aim of illustrating and

validating the work, Section 5 shows a lab demonstration; which is presented using a

case study. Finally, Section 6 provides several conclusions and proposes future steps.

2 Background

This section reviews a number of standards, regulations and related works on

accessible media players and their modelling processes. Similar works are also

presented, such as the development of a graphical tool based on models using the

UsiXML Framework.

2.1 Accessibility Regulation and Standards

The main reference for the standards that regulate multimedia content is WCAG 2.0

[W3C, 08b]. This standard describes how to make Web content more accessible to

people with disabilities. Specifically, Guideline 1.2 (Provide alternatives for time-

based media) [W3C, 08] of WCAG 2.0 establishes that video content shall be

accompanied by media alternatives such as captions (or subtitles for people whose

hearing is impaired), audio description, sign language, etc. WCAG 2.0 is the set of

accessibility guidelines most referenced in the world and since 2012 is an ISO

(ISO/IEC 40500:2012, Information technology - W3C Web Content Accessibility

Guidelines (WCAG) 2.0) [ISO, 12]. Following this standard, there are several

initiatives in different countries related to Web accessibility such as: Section 508

[U.S. HHS, 86], BITV 2.0 [BMJ, 11], RGAA [DGME, 09], AODA [Ontario E-laws,

05] and UNE 139803 [AENOR, 12]. These initiatives are similar to WCAG 2.0, being

in some case a copy of it.

2657Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

On the other hand, UAAG 2.0 [W3C, 11b] concerns user agents. This standard

describes how to make user agents accessible to people with disabilities and how to

increase the accessibility of Web content. Another standard (ISO 9241-171,

Ergonomics of human-system interaction - Guidance on software accessibility [ISO,

08]), provides guidance on software accessibility, including accessibility requirements

related to control of the multimedia content.

The new standard Hyper Text Markup Language 5 (HTML5) [W3C, 13] must

also be considered. The current version of HTML5 incorporates support for native

audio and video content, avoiding forcing the user to download and install specific

third-party plugins to play audio and video. HTML5 did not initially provide support

for including subtitles and audio description and although the <track> tag recently

sorted out this problem the majority of user agents do not support it completely.

Although this tag does not yet work satisfactorily, this standard will be in

development until 2014.

2.2 Accessible Media Players

As far as media players are concerned, it is important to highlight a work that

establishes the accessibility requirements for a media player to be considered

accessible [González-García, 11]. In [Sayago, 12], an ethnological study of YouTube

use by older people is conducted, as well as a discussion on the user experience and

its design implications. In [Nishimura, 12] two versions of a media player directed at

people with disabilities are developed for an educational environment. Another work,

[Niederl, 12], presents a video player able to display two different movies. It also

provides a guide for producing sign language-based synchronization.

From the review performed, two kinds of media players were identified. On the

one hand, there are standalone media players that have more controls and are more

accessible than the other type. On the other hand, there are embedded media players,

with those based on the Flash technology [Adobe, 09] being among the most widely

used. Moreno et al. [Moreno, 11] performed a study on the accessibility of three

media players (CCPlayer [NCAM, 09], BBC iPlayer [BBC, 13], and YouTube

[YouTube, 13b]) in order to determine whether these media players are compliant

with accessibility requirements. This analysis also shows that although YouTube was

less accessible than others, its accessibility is improving. For instance: they have

developed Easy YouTube [Hiantonia, 09]; they have expanded their automatic

captions to six languages [eWEEK, 12]; and they have recently developed

Access:YouTube [YouTube, 13], which simplifies the standard YouTube site by

allowing the use of assistive technologies and facilitating video clip search and

playing.

Other user agents that provide video content with accessibility features are: JW

Player [Longtailvideo, 12], which provides captions and audio description; BSPlayer

[BSPlayer, 13], which provides captions and the option to change font type and size;

and the VideoLan [VLC, 13] media player, which provides keyboard shortcuts and

allows users to change the size, font or colour of captions. In addition, some HTML5

players with accessibility features have been found; such as the Acorn Media Player

[Ghinda, 13], which provides full keyboard control. It allows the integration of

external subtitles in “srt” format to be used to include captions. This player also

provides dynamic transcriptions generated from the selected captions. Another

2658 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

example is LeanBack [LeanBack, 10], which supports <video> and <audio>

elements, allows subtitles through the use of the <track> element, and provides

keyboard shortcuts for desktop browsers. Finally, it is worth mentioning Video JS

[VideoJS, 13], which demonstrates a very user-friendly approach for supporting

captions.

2.3 Model-based Design Approaches

In this section some works using the UsiXML framework and model-based design of

graphical tools are presented. There are numerous works related to model-based

approaches using UsiXML, but our interest is focused on the approaches aimed at

creating a graphical tool to produce User Interfaces (UIs).

Among the works aimed at the design of graphical tools, FlexiXML [Creissac,

11] can be highlighted. This interpreter tool supports the automatic generation of user

interfaces through models expressed in UsiXML. Moreover, in the work presented by

Montenegro et al. [Montenegro, 11], a Domain-Specific Model (DSM) for the

construction of platform-independent modules of learning management systems

(LMS) is designed. This approach aims at building a meta-model for the construction

of a domain specific language (DSL), using model-driven engineering (MDE)

techniques, and applying the appropriate transformations to achieve a platform-

independent model. They use two Eclipse plugins to create the DSM: Eclipse

Modelling Framework (EMF) and Graphical Modelling Framework (GMF). These

same plugins are used in this work (see Section 4). Another graphical tool, called

SPA4USXML, is presented by Miñón et al. [Miñon, 12]. This tool assists the designer

of ubiquitous services to create specifications for the Task and the Abstract User

Interfaces (AUI) required by the EGOKI adaptive system [Abascal, 11].

SPA4USXML also provides EGOKI with a resource model for selecting the most

appropriate type of multimedia resource (text, video, audio, image, etc.) for the user.

Finally, the work presented by Kanai et al. [Kanai, 09] proposes a 3D tool for digital

prototyping and usability assessment of information appliances. In this work: Firstly,

the UsiXML specification is extended; secondly, 3D prototyping and simulation

functions are developed; and then automated user test and usability assessment

functions are also developed.

3 Accessibility Requirements for Media Players

To accomplish this work a set of accessibility requirements for the development of

accessible media players was needed. With this aim, a revision of the standards (in

this case UAAG 2.0 and ISO 9241-171) was performed [González-García, 12]. In the

following subsections, a set of guidelines that need to be considered for an accessible

media player is proposed. Then, based on these guidelines, a set of requirements for

accessible media player design is established.

2659Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

3.1 Main Guidelines

The first step is to decide what type of elements a media player needs to have in order

to be considered accessible. According to González-García et al. [González-García,

11] these requirements are:

- To provide alternative content such as captions, audio description, sign

language, transcription or extended audio description. Consequently, to

provide the control to enable/disable this alternative content.

- To provide complete access to all the features via the mouse, the keyboard or

through assistive technologies.

- To provide help and access to documentation describing the accessibility

features the media player provides and how to use them.

- To provide a keyboard focus cursor that indicates which element has the

focus in the user interface and a text cursor that indicates where the focus is

within the text.

Based on these requirements, the following set of elements required in an

accessible player has been derived:

- Play, stop and pause.

- Resize.

- Adjust the volume.

- Enable/disable captions.

- Enable/disable audio description.

- Search captions.

- Forward-delay seconds.

- Change the size, colour or font of the captions.

- Access to help documentation.

Firstly, a set of constraints and relationships between the elements should be

established based on their functionalities. For example, it does not make sense to

allow users to pause, stop, rewind or forward the playback if the play action is not

enabled.

3.2 Accessibility Requirements

Table 1 shows the requirements (grouped by category [González-García, 12])

obtained from the previous review of standards and the collection of suitable

guidelines. These categories are the result of grouping the requirements according to

whether the requirements are native (traditional requirements included in the user

agent or media player) or they add new functionality (necessary to satisfy specific

accessibility requirements and appearing as “additional” in Table 1). The

requirements are also classified into subgroups, depending on whether: they affect

playing, viewport (subgroup size), volume or alternative content; or they provide help

or search functions.

Every requirement is identified by a code (see Table 1). This code is made up of

the first letter of the group, the first letter of the subgroup and two numbers. For

instance, the requirement NP01 belongs to the native group, the playback subgroup

and it has been assigned the number 01.

There are also other requirements concerning cognitive accessibility, close to

usability requisites, that must be taken into account. Users should be able to configure

2660 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

accessibility features saved in previous sessions and to change features on request. In

addition, users should be provided with information on accessibility features in order

to know, for instance, whether or not the user agent provides keyboard shortcuts. If

the agent does provide this, the users should be allowed to navigate through the

content without enabling controls or configuring their shortcut preferences.

Code

Name

Description

Group

Subgroup

Source

ISO UAAG 2.0

NP01 Play Play the video
content

Native Playback 10.8.2 2.11.6

NP02 Stop Stop the video

content

Native Playback 10.8.2 2.11.6

NP03 Pause Pause the video

content

Native Playback 10.8.2 2.11.6

NS01 Resize Resize the

viewports

Native Size 10.5.8 1.8.3

NV01 Mute Enable or disable
the audio content

Native Volume 10.6.2 1.5.1

NV02 Volume Adjust the volume Native Volume 10.6.2 1.5.1

AP01 Rewind Delay seconds

within a playback

Additional Playback 10.8.3 2.11.7

AP02 Forward Forward seconds

within a playback

Additional Playback 10.8.3 2.11.7

AA01 Caption Enable or disable

captions

Additional Alternatives 10.1.3,

10.7.2

1.1.2

AA02 Audio

Description

Enable or disable

audio description

Additional Alternatives 10.1.3 1.1.2

AA03 Size Change the size of

the captions

Additional Alternatives 10.7.3 1.4.1

AA04 Font Change the font of

the captions

Additional Alternatives 10.7.3 1.4.1

AA05 Colour Change the colour

of the captions

Additional Alternatives 10.7.3 1.4.1

AA06 Language
Caption

Change the
language of the

captions

Additional Alternatives 8.2.1 2.7.1

AA07 Language

Audio

Change the

language of the
audio description

Additional Alternatives 8.2.1 2.7.1

AH01 Help Help
documentation

about accessibility

features

Additional Help 11.1.5

3.3.2

AF01 Find Search within

playback captions

Additional Find 2.4.5

Table 1: Media player accessibility requirements

2661Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

4 Graphical Editor Development

In this section we present the methodological framework, which follows a Model-

Driven User Interface approach. In addition, the different steps that have been

undertaken to develop the graphical editor to offer methodological support for the

design of an accessible player are described.

4.1 Methodological Framework

In this work we adopt the UsiXML framework [Limbourg, 05]. UsiXML is a

declarative language capturing the essence of what a User Interface is or should be,

independently of physical characteristics. This language is structured according to the

four levels of abstraction defined by the Cameleon reference framework [Calvary,

03]: Task and Concepts, Abstract User Interface (AUI), Concrete User Interface

(CUI) and Final User Interface (FUI) (see Figure 1). UsiXML is universally

recognized and is used to design and develop interactive systems, due to the richness

of the models that provides. It also supports device, platform and modality

independence. UsiXML allows User Interfaces to be described for multiple contexts

of use: such as Graphical User Interfaces, Character User Interfaces, Multimodal User

Interfaces, or Auditory User Interfaces. Therefore, interactive applications with

different types of computing platforms, interaction techniques and modalities of use

can be described in a way that allows the design to take place independently of the

specific characteristics of the physical computing platform. All these aspects increase

accessibility as they facilitate different modes of interaction that provide access for a

large number of users. For these reasons, the UsiXML framework has been selected

as the underlying UIDL for creating our graphical tool.

Figure 1: The Cameleon reference framework for multi-target UIs (source: [W3C,

09])

2662 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

On the other hand, the Eclipse framework for developing a graphical editor is

used in order to provide support to professionals in the design of accessible players.

We use Rich Client Platform (RCP) [Eclipse, 04], which enables Eclipse to be used in

a wide range of end-user applications that are not integrated in development

environments. This platform also provides features such as plugins, perspectives and

views.

4.2 Accessible Player Modelling

Previously to the current approach, some models were created using the Task model

and the AUI model of UsiXML [González-García, 12] [González-García, 13]. In that

approach knowledge was acquired about how to model the accessibility requirements

using design primitives of the UsiXML meta-models.

The Task model included information on the actions that users perform to achieve

their goals and the objects involved in these actions. That information also guided the

development of the interface; in particular, it influenced the components that would

appear in the interface and the ways of manipulating those components [Wilson, 96].

It was thus made up of a set of tasks (abstract task, interaction task, user task, etc.)

and a set of relationships (choice, enabling, concurrent, etc.).

An AUI was defined according to the Cameleon reference framework; i.e. a user

interface supporting an interactive task abstracted from its implementation,

independently of any target computing platform or interaction modality. While an

AUI could be specified from scratch, it could also be produced from different models

(such as a task model, a domain model, or a combination of both) and could be based

on information describing the context of use (i.e. the user, the platform, and the

environment) [Tran, 12]. An AUI is made up of Abstract Containers (ACs), Abstract

Interaction Components (AICs) and Abstract Relationships.

The task model showed the interaction between elements, while the AUI model

showed the structure of the interaction elements. In our domain, the Task model (see

Figure 2) defined the interaction between a user and an accessible media player and

the AUI model defined the structure of this interaction [González-García, 13]. It is

worth highlighting that the generation of the AUI model started from the task model.

Figure 2: Task model of an accessible user agent that provides accessible video

content

2663Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

Starting from this model, a design solution that specifies the accessibility

requirements considered in Section 3.2 was defined. After that work, it was concluded

that if anyone wanted to advance to the next levels of the Cameleon reference

framework (CUI and FUI), it would be necessary to have a detailed knowledge of

UsiXML, its meta-models and a set of tools that are not easy to use. Therefore, the

provision of a graphical editor could be useful to facilitate the design.

As previously mentioned, it was decided to create a graphical editor to facilitate

the task of designing user interfaces describing accessible media players that

inherently include accessibility through design primitives. The design and

development of the graphical editor, which is the main goal of this work, is

introduced in the following section.

4.3 Development of a graphical editor

Due to the domain features, the graphical editor was created based on the CUI Meta-

model of UsiXML. The Eclipse GMF plugin was used to develop a graphical editor.

GMF provides a runtime infrastructure for developing graphical editors based on the

EMF plugin. Consequently, the first step was to create the CUI meta-model with the

EMF plugin.

The CUI allows definition of the specification of the appearance and behaviour of

a UI for a given context of use [Limbourg, 04]. A CUI is composed of Concrete

Interaction Objects (CIO) and Concrete Relationships (CR).

In this work, a restricted CUI meta-model was created with EMF in the domain of

accessible media player design. This meta-model includes only the design primitives

required for this domain. Specifically, a CUI describes a potential user interface after

selecting a particular interaction modality (graphical, vocal, multimodal) [W3C, 09].

It was decided to use the graphical modality for this approach, since it was essential

that the user should be able to interact via external devices, such as keyboards or

mice.

Based on the graphical modality of the CUI meta-model, the accessibility

requirements established in Section 3.2 and a review of some media players to

understand their traditional functionality in depth, all the design primitives were

selected. Some of them were selected indirectly (for example, the design primitives

related to listener), while other primitives were established directly. These primitives

include: ToolBar, ToolBarButton, ToolBarSeparator, CommandButton, Slider,

ComboBox and ComboItem, which are related to accessibility; and primitives such as

VideoComponent, AudioComponent, ProgressionBar, Menu, MenuItem,

MenuSeparator, MenuBar and MenuBarItem, which provide the traditional

functionality of a media player.

Four abstract concepts were distinguished to define the accessibility requirements

using the design primitives of the EMF meta-model. These allow a model-based

accessible player to be designed using the graphical editor:

1. First concept: define a requirement type where a user action triggers another

action during the playback of the video content that directly affects the

playback (e.g. the video content is played, stopped, paused, etc. as a result of

this action). The Play (‘NP01’), Stop (‘NP02’), Pause (‘NP03’), Rewind

(‘AP01’), Forward (‘AP02’), Resize (‘NS01’), Mute (‘NV01’), Caption

(‘AA01’) and AudioDescription (‘AA02’) requirements can be defined using

2664 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

this concept. This concept can be defined using the ToolBarButton design

primitive; therefore, the ToolBar and ToolBarSeparator design primitives are

also needed.

2. Second concept: define a requirement type where a user action triggers an

action after stopping the video playback. The Help (‘AH01’) requirement

(which shows additional information), and Find (‘AF01’) requirement

(which searches a caption within the playback), can be defined using this

concept. In this case, the CommandButton design primitive is used.

3. Third concept: define a requirement type where a set of options is shown.

The Size (‘AA03’), Font (‘AA04’), Colour (‘AA05’), and LanguageCaption

(‘AA06’) requirements (which are related to captions) and the

LanguageAudio (‘AA07’) requirement (which is related to audio

description) can be defined using this concept. This concept can be defined

using the ComboBox and ComboItem design primitives.

4. Fourth concept: define a requirement type where an element’s value is

increased or is decreased. Requirement NV02 (‘Volume’) can be defined

using this concept. In this case, a Slider design primitive is used to define the

concept.

Table 2 shows all the accessibility requirements mapped to the design primitives.

Depending on the types of design primitives, the requirement types and even the

designers’ (or developers’) preferences, the number of design primitives could or

could not be determined. For example the ToolBar and Slider design primitives are

always the same; however, the ToolBarButton, ToolBarSeparator, CommandButton

and ComboBox design primitives depend on the number of requirements, while the

ComboItem design primitive depends on the designer or developer preferences.

 In conclusion, Table 2 shows a summary of which design primitives of the CUI

Meta-model of UsiXML are used to define the accessibility requirements. An EMF

Meta-model was thus obtained for the accessible player domain starting from this

restricted CUI Meta-model. This EMF was the first step in the development of a

Graphic editor with GMF.

4.4 Generation of Final User Interfaces

When the graphical editor has been generated through the GMF plugin, it is possible

to modify the auto-generated code to add the new editor extra functionalities. It is

particularly worth pointing out that new elements can be created in the menu bar to

provide extra functionality to the RCP application. In our approach, this possibility is

useful for allocating the functionalities to generate the different FUIs. An example of

the transformation from a CUI to a FUI using HTML5 is provided in subsection 5.3.

2665Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

Requirement

code

Requirement

Name

Design primitives of CUI model

NP01 Play

ToolBar

NP02 Stop

NP03 Pause

NS01 Resize

NV01 Mute

AP01 Rewind

ToolBarButton

ToolBarSeparator
AP02 Forward

AA01 Caption

AA02 AudioDescription

AH01 Help

CommandButton

AF01 Find

AA03 Size

ComboBox

ComboItem

AA04 Font

AA05 Colour

AA06 LanguageCaption

AA07 LanguageAudio

NV02 Volume Slider

Table 2: Mapping between accessibility requirements and design primitives of the

CUI meta-model for modelling with the EMF meta-model

4.5 An authoring tool to generate accessible user interfaces

The purpose of the graphical editor is to assist the designers to develop an accessible

media player following standards. In order to get this aim and taking into account that

not all the designers will be expert in the field, accessibility requirements have been

integrated within the editor through the MDD approach. Thus, when designers use the

graphic editor they only have to focus on dragging and dropping the graphical

elements that will be a part of the final user interface. This authoring tool allows user

to design an accessible media player according to their preferences. Furthermore, they

will be able to select the desired technology to generate the final user interface.

The graphical editor includes a help wizard in order to face accessibility issues,

such as which accessibility requirements need to be incorporated to fulfil a

compliance level of UAAG 2.0. Thus, users care about the accessibility levels that

are reached and what are the followings steps to comply them.

2666 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

In order to illustrate the graphical editor and validate the proposal, in the

following section a case study is presented.

5 Case Study

As an empirical validation of the research, a lab demonstration is presented here by

means of a case study. The demonstration justifies that the methodology can be used

in practice and shows the utility of the proposed approach by providing an

explanation of the mechanisms used to include accessibility requirements in software

development [Wieringa, 10].

5.1 Scenario

The selected scenario is going to be called “Providing control of the audio

description”. In this scenario, the design of a player for blind students is going to be

described. This section is divided in three parts. In the first part, the scenario is going

to be described. After the description, the design primitives are going to be presented.

And at last, our groups of interest are going to be shown.

5.1.1 Brief description

The Centre for Inclusive Education needs to design a player to deliver multimedia

learning content in an accessible way on the Web. Its goal is to offer different types of

content depending on the access features and the student preferences. One scenario is

“a blind user accessing video content”. In this case it is important to provide video

content together with alternative content, such as audio description. In order to avoid

accessibility barriers created by incompatibility between different technologies (given

the wide range of different platforms), the centre wants to use HTML5 to develop the

player.

The development team is asked to develop a web interface to integrate the given

requirements in a player. One of the designers has to design a player that allows video

content and audio description access based on good practice and accessibility

standards.

The solution is to propose a model-based design for accessible players.

Following, a set of steps is established to carry out the design.

1. The designer has to determine which accessibility requirements must be

fulfilled. The “Accessibility Requirements” resource can be used for this

purpose (see Section 3.2). By means of this resource, the designer is

contacted with requirements such as: allowing users to enable/disable the

audio description or captions; to search captions within the playback; etc.

Due to the designer is still not an expert in accessibility, he/she decides to use

a graphical editor as an authoring tool that will help him/her in the design.

2. The designer uses the graphical editor based on the UsiXML CUI model. To

use it, it is crucial to follow the next steps:

a. Creating a new project.

b. Selecting the design primitives identified through the palette’s

graphical elements.

2667Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

c. Designing the system.

d. Validating the design.

e. Collecting accessibility recommendations provided by the editor to

help designers.

f. Providing the outcome, that is, an accessible player design based on

the CUI model.

3. The next step in the development process is transformed the CUI into a FUI

model matching the CUI design primitives and software components that are

dependent on technology, platform or interaction modality; in this case, in

HTML5.

5.1.2 Design primitives

In order to design the scenario, the following primitives are used:

1. ToolBar, ToolBarButton and ToolBarSeparator are used to represent the

Play/Pause, Stop, Resize, Mute, Forward, Rewind and AudioDescription

elements.

2. CommandButton is used to represent the Help and Find elements.

3. ComboBox and ComboItem are used to represent the audio description

language (LanguageAudio).

4. Slider is used to represent the Volume element.

These design primitives are going to be widely explained in Section 5.2.

5.1.3 User groups of interest

The main group of interest are blind students and blind teachers. Apart from this

group, our second group of interest are students in general (having or not a disability).

Any student can access video content in environments where it can only be accessed

by audio channel, for example on the bus, while walking, etc. In this way, a learning

resource for all is provided.

5.2 Building of the Concrete User Interface from the graphical editor

For the proposed scenario, the designer would use the following elements of the

graphical editor, which are required to provide blind users with accessible user

interfaces:

1. A ToolBar element with seven ToolBarButton elements for representing the

Play/Pause, Stop, Rewind, Forward, Mute, Resize and Audio Description

elements. Additionally, two listeners were respectively associated with the

Play and Pause buttons for providing the behaviour of hiding one when the

other is active and vice versa.

2. A Video Component together with a ConcreteGraphicalListener element.

This ConcreteGraphicalListener allocates one ConcreteEvent typed

onGUIClik and a ConcreteAction that is related to the playPauseAction

method. This method is a pre-created javaScript function that allows users to

play or pause the video only when the video element is clicked.

3. A ComboBox element with two ComboItems that enable English or Spanish

audio descriptions.

4. A Slider element to control the volume, with values between 0 and 10.

2668 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

5. A CommandButton that allows users to enable the Help functionality.

6. The purpose of the Play, Pause, Stop… elements are assigned through the

label attribute of each concrete element. It is thus possible to generate an

accessible player considering that semantic allowing the designer to select

the same element type for different purposes. For example, as previously

explained, the Play/Pause, Stop, Rewind, Forward, Mute, Resize and

AudioDescription elements are represented by the same concrete element

(the ToolBarButton element). Figure 3 illustrates the CUI created for blind

users.

Figure 3: Representation of CUI elements in the graphical editor

2669Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

This design is the result of dragging and dropping every element that is part of the

proposed design, a media player for a blind user. As aforementioned, the graphical

editor presents a palette with all the elements that we have modelled previously and a

canvas where the elements can be put by means of dragging and dropping them (as it

can be seen in Figure 3). This figure represents the accessible media player design

based on our CUI model. At first sight, the design is a set of elements whose structure

is like a table, but actually, it is the first step to develop the FUI of our media player

(section 5.3), because starting from this model a FUI like Figure 6 can be obtained.

In order to understand some of the elements, Figure 4 illustrates the properties of

the Slider element that is used to represent the volume of the player.

Figure 4: Slider element features

5.3 Transformation to accessible final player with HTML5

The generation of the FUI from the CUI model has been implemented via an XSL

transformation. An option to perform this process has been integrated in the editor

(see

Figure 5). For this work, the HTML5 language was selected for generating the FUI.

This language provides native support for embedding video elements without the need

for installing third-party plugins and, in addition, it is supported by the most widely

used platforms.

As mentioned in the previous subsection, the elements of the CUI have been

labelled with their matching semantic, providing the information necessary to perform

the transformation. Table 3 illustrates how the CUI elements have been mapped to the

HTML5 methods. It must be pointed out that since HTML5 does not provide a

specific element for rendering sliders, an accessible slider element [FG, 09] (labelled

with WAI-ARIA [W3C, 11]) based on jQuery UI library [jQuery, 13] has been used.

2670 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

Figure 5: Generation of HTML5 User Interface

CUI elements HTML 5 elements

ToolBar Div | Menu + Type attribute

ToolBarButton Button + Image | Command element (inside

menu element)

VideoComponent Video

ConcreteGraphicalListener JavaScript function

Slider jQuery UI slider

ComboBox + ComboItems Select + Options+track

CommandButton Button

ToolBarSeparator CSS Layout | Separator (<hr>) (inside menu

element)

Table 3: Mapping between CUI elements and HTML5 methods

Figure 6 shows the result of the generation process. As can be seen, the elements

required for an accessible media player have been integrated in the UI. In addition to

the controls that have been implemented using non-intrusive JavaScript, the default

controls of the video element have been kept. This is because otherwise users with

agents that have JavaScript disabled would not be able to interact with the video

content. For this work, only basic default CSS rules have been integrated, just for

aligning the components in the UI. In future works the editor will be able to attach

different types of styles to the elements of the CUI in order to generate more attractive

FUIs; following a Responsive Design, using properties such as Progressive

Enhancement.

2671Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

Figure 6: FUI coded with HTML5

6 Conclusions and future work

It is essential to keep in mind accessibility issues for multimedia content, due to the

great amount of this type of content currently available to the users.

In addition to taking into account the accessibility of the content itself, with the

inclusion of the alternatives such as captions or subtitles, audio description,

transcriptions, etc., it is fundamental to integrate accessibility requirements in the

software used to access the content (i.e. the player). In this work we have carried out

an exhaustive analysis of related work and the accessibility standards to compile a set

of accessibility requirements that must be met in order to create accessible players.

Based on these accessibility requirements, a model-based design proposal following

the Model-Driven Development approach is provided.

Finally, with the aim of providing support to designers, we presented a model-

based graphical editor that facilitates the task of designing accessible players.

The MDD approach has the advantage of making the design independent of the

final technology. This approach provides flexibility to the proposal presented, which

is an important factor due to the diversity of existing technologies, platforms,

interaction modalities and devices.

An added value of this work is that the graphical editor allows the integration of

accessibility regardless if the designer is an expert in accessibility.

The design proposal, including the abstract levels (tasks and AUI model), has

been developed using the theoretical Cameleon framework. An initial prototype of the

editor is presented. We are currently working to complete the integration of all

constraints for every accessibility requirement in order to complete the validation of

the model-based design. Besides illustrating the proposal to the reader, this prototype

allowed us to carry out empirical research validation through a lab demonstration.

On the other hand, the fact that this work is based on standards, it does not

guarantee the accessibility of the FUI, unless designers follow a user-centred design

(UCD). Likewise, users must validate the design.

2672 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

To sum up the work which has been carried out, we have been able to develop a

prototype of an accessible media player taking into account a set of accessibility

requirements after analysing accessibility standards and after following a model-based

design proposal. The importance of this development is not only the media player

itself, but it is the possibility to develop this type of user agent in an accessible way

without being any expertise in the accessibility field. Likewise, it is important to

highlight that this prototype allows designer to develop media players adapted to

users with special needs or not depending on the final user.

We are currently working on a help wizard for the editor. The aim of the wizard

is to guide the designer on which requirements have to be included and which do not

(according to different standards), and which user groups are affected. The designer is

thus informed of the accessibility level achieved and what remains to be done.

Acknowledgements

This research work is supported by the Research Network MAVIR (S2009/TIC-1542)

and MULTIMEDICA project (TIN2010-20644-C03-01). This research work has also

been partly funded by the Spanish Ministry of Science and Innovation ModelAcces

project (grant TIN2010-15549), the Department of Education, Universities and

Research of the Basque Government (grant IT395-10). In addition, Raúl Miñón holds

a Ph.D. scholarship from the Research Staff Training Programme of the Department

of Education, Universities and Research of the Basque Government.

References

[Abascal, 11] Abascal, J., Aizpurua, A., Cearreta, I., Gamecho, B., Garay-Vitoria, N., Miñón,

R. (2011). Automatically generating tailored accessible user interfaces for ubiquitous services.

In The proceedings of the 13th international ACM SIGACCESS conference on Computers and

accessibility (ASSETS '11). ACM, New York, NY, USA, Pages: 187-194.

[Adobe, 09] Adobe Flash runtime/Statistics

http://www.adobe.com/products/flashruntimes/statistics.html.

[AENOR, 12] AENOR, Asociación Española de Normalización y Certificación (2012) UNE

139803:2012, Web content accessibility requirements,, Norma UNE 139803:2012, 2012,

http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0049614.

[BBC, 13] BBC iPlayer, 2013, http://www.bbc.co.uk/iplayer/tv.

[BMJ, 11] BITV, Bundesministerium der Justiz,Barrierefreie-Informationstechnik-Verordnung

2.0, 2011, http://www.gesetze-im-internet.de/bitv_2_0/BJNR184300011.html.

[BSPlayer, 13] BSPlayer, 2013, http://www.bsplayer.com.

[Calvary, 03] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,

Vanderdonckt, J. (2003). A Unifying Reference Framework for Multi-Target User Interfaces.

Interacting with Computers. Vol. 15, No. 3, June 2003, pp. 289-308.

[Creissac, 11] Creissac Campos, J., Alves Mendes, S.,(2011). FlexiXML A portable user

interface rendering engine for UsiXML. Proceedings of UIDL'2011 - Software Support for

User Interface Description Language - Interact'2011 Workshop, Lisboa, Portugal, 2011, (Eds.).

ISBN 978-2-9536757-1-9.

2673Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

[DGME, 09] RGAA , République française, Référentiel Général d’Accessibilité pour les

Administrations, 2009, http://www.references.modernisation.gouv.fr/rgaa-accessibilite.

[Eclipse, 01] Eclipse, 2001, www.eclipse.org.

[Eclipse, 04] RCP, Rich Client Platform, 2004,

http://www.eclipse.org/home/categories/rcp.php.

[Eclipse, 06] Eclipse, Graphical Modeling Framework, 2006,

http://www.eclipse.org/modeling/gmp/.

[eWEEK, 12] eWEEK, 2012, http://www.eweek.com/cloud/youtube-expands-video-

captioning-in-6-more-languages/.

[FCC, 10] FCC; Federal Communications Commission, Twenty-First Century Communications

and Video Accessibility Act (CVAA), 2010, http://www.fcc.gov/guides/21st-century-

communications-and-video-accessibility-act-2010.

[FG, 09] Filament Group, 2009, http://filamentgroup.com/lab/update_jquery_ui_slider_from_

a_select_element_now_with_aria_support/

[Ghinda, 13] AcornMedia Player, 2013, http://ghinda.net/acornmediaplayer/.

[González-García, 11] González-García, M., Moreno, L., Martínez, P., Iglesias, A.

(2011). Web accessibility requirements for media players. 13th IFIP TC13 Conference on

Human-Computer Interaction (INTERACT 2011), Lisboa, Portugal, September, 2011, LNCS,

Springer, Volumen: 6949, Pages: 669-674.

[González-García, 12] González-García, M., Moreno, L., Martínez, P., (2012). An approach to

User Interface Design of an accessible user agent. Proceeding of the 4th International

Conference on Software Development for Enhancing Accessibility and Fighting Info-exclusion

(DSAI’2012), Douro Region, Portugal, Volume 14, Pages: 254-262.

[González-García, 13] González-García, M., Moreno, L., Martínez, P., (2013). Approach

design of an accessible media player. Universal Access in the Information Society (UAIS),

2013, in press.

[Hiantonia, 09] Easy Youtube player, 2009, http://hiantonia.com/journal/2009/06/17/easy-

youtube-player-making-it-easier/.

[ISO, 08] ISO, International Organization for Standardization, ISO 9241-171:2008, 2008,

Ergonomics of human-system interaction (Guidance on software accessibility), 2008,

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39080.

[ISO, 12] ISO, International Organization for Standardization, ISO 40500:2012, 2012,

Information technology -- W3C Web Content Accessibility Guidelines (WCAG) 2.0), 2012,

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=58625

[jQuery, 13] jQuery UI,2013, http://jqueryui.com.

[Kanai, 09] Kanai, S., Higuchi, T., Kikuta, Y., (2009). 3D digital prototyping and usability

enhancement of information appliances based on UsiXML. International Journal on Interactive

Design and Manufacturing (IJIDeM), 2009, Volume 3, Issue 3, Pages: 201-222.

[Koch, 06] Koch N. (2006). Transformation Techniques in the Model-Driven Development

Process of UWE, Workshop proceedings of the sixth international conference on Web

engineering (ICWE’06), Palo Alto, California, July, 2006, Article nº 3.

[LeanBack, 10] LeanBack Player, 2010, http://www.leanbackplayer.com/.

2674 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

[Limbourg, 04] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M.,

Trevisan, D. (2004). UsiXML: A User Interface Description Language for Context-Sensitive

User Interfaces. Proceedings of the ACM AVI'2004 Workshop "Developing User Interfaces

with XML: Advances on User Interface Description Languages", AVI, 2004, Pages: 55-62.

[Limbourg, 05] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López, V. (2005).

UsiXML: a Language Supporting Multi-Path Development of User Interfaces, in: Bastide, R.,

Palanque, P., Roth, J. (eds.) Engineering Human Computer Interaction and Interactive Systems.

Springer, Heidelberg, LNCS, vol. 3425, Page: 200-220.

[Longtailvideo, 12] JWPlayer, 2012, http://www.longtailvideo.com/jw-player/.

[Miñon, 12] Miñón, R., Moreno, L., Abascal, J., (2012). A graphical tool to create user

interface models for ubiquitous interaction satisfying accessibility requirements. Universal

Access in the Information Society (UAIS), 2012, in press.

[Montenegro, 11] Montenegro Marín, C.E., Gaona García, P.A., Cueva Lovelle, J.M., Sanjuan

Martínez, O., (2011). Aplicación de Ingeniería Dirigida por Modelos (MDA), para la

construcción de una herramienta de Modelado de Dominio Específico (DSM) y la creación de

módulos en Sistemas de Gestión de Aprendizaje (LMS) independientes de la plataforma. Dyna,

2011, Nro. 169, Pages: 43-52, ISSN; 0012-7353.

[Moreno, 11] Moreno, L., González-García, M., Martínez, P., Iglesias, A.,(2011).A study of

accessibility requirements for media players on the Web, 14th International Conference on

Human-Computer Interaction (HCII 2011), Florida, USA, July, 2011, Vol: LNCS 6765, Pages:

249-257.

[NCAM, 09] NCAM, CCPlayer, 2009,

http://ncam.wgbh.org/invent_build/web_multimedia/tools-guidelines/ccplayer.

[Niederl, 12] Niederl, F., Bußwald, P., Tschare, G., Hackl, J., Philipp, J. (2012). Dubbing of

Videos for Deaf People – A sign Language Approach. Proceedings of the 13th International

Conference on Computers Helping People with Special Needs (ICCHP 2012), Linz, Austria,

Pages: 225-228.

[Nishimura, 12] Nishimura, K., Cohen, M. Media Players for Accessibility. Proceedings of the

2012 Joint International Conference on Human-Centered Computer Environments (HCCE’12),

New York, USA, 2012, ISBN: 978-1-4503-1191-5, Pages: 184-189.

[Ontario E-laws, 05] AODA, Ontario, Accessibility for Ontarians with Disabilities Act, 2005,

http://www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_05a11_e.htm.

[Sayago, 12] Sayago, S., Forbes, P., Blat, J. (2012). Older people´s social sharing practices in

Youtube through and ethnographical lens. Proceedings of the 26th Annual BCS Interaction

Specialist Group Conference on People and Computers (BCS-HCI '12), Birmingham, UK,

Pages: 185-194.

[Steinberg, 09] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E. EMF: Eclipse Modeling

Framework 2.0. Second Edition, Addison-Wesley Professional, 2009, ISBN: 0321331885.

[Tran, 12] Tran, V., Vanderdonckt, J., Tesoriero, R., Beuvens, F. (2012). Systematic

generation of abstract user interfaces. Proceedings of the 4th ACM SIGCHI symposium on

Engineering interactive computing systems (EICS '12), New York, USA, 2012, ISBN: 978-1-

4503-1168-7, Pages: 101-110.

[UIDL, 07] UIDL, User Interface Description Languages, 2007, http://www.uidl.net.

[U.S. HHS, 86] Section 508, 1986, http://www.hhs.gov/web/508/index.html.

2675Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

[VideoJS, 13] VideoJS, 2013, http://videojs.com/.

[VLC, 13] VLC, VideoLan Organization, 2013, http://www.videolan.org/vlc/index.html.

[Wieringa, 10] Wieringa R.J. (2010). Relevance and problem choice in design science. In:

Global Perspectives on Design Science Research (DESRIST). 5th International Conference, 4‐5

June, 2010, St. Gallen. pp. 61‐76. LNCS 6105. Springer Verlag. 2010. ISBN 978‐3‐642‐13334‐

3.

[Wilson, 96] Wilson, S., Johnson, P. (1996). Bridging the generation gap: From work tasks to

user interface designs. In Computer-Aided Design of User Interfaces (CADUI), Namur

University, 1996, Pages: 77-94.

[W3C, 94] UAAG, User Agent Accessibility Guidelines, 1994,

http://www.w3.org/WAI/intro/uaag.php.

[W3C, 94b] WAI, Web Accessibility Initiative, 1994, http://www.w3.org/WAI/.

[W3C, 94c] WCAG, Web Content Accessibility Guidelines, 1994,

http://www.w3.org/WAI/intro/wcag.php.

[W3C, 08] Guideline 1.2: Provide alternatives for time-based media, 2008,

http://www.w3.org/TR/UNDERSTANDING-WCAG20/media-equiv.html.

[W3C, 08b] WCAG 2.0, Web Content Accessibility Guidelines 2.0, 2008,

http://www.w3.org/TR/WCAG20/.

[W3C, 09] UsiXML, 2009, http://www.w3.org/2005/Incubator/model-based-ui/wiki/UsiXML.

[W3C, 11] WAI_ARIA, 2011, http://www.w3.org/WAI/intro/aria.

[W3C, 11b] UAAG 2.0, User Agent Accessibility Guidelines 2.0, 2011,

http://www.w3.org/TR/UAAG20/.

[W3C, 13] HTML5 Nightly, A vocabulary and associated APIs for HTML and XHTML, 2013,

http://www.w3.org/html/wg/drafts/html/master/Overview.html.

[Youtube, 13] ACCESS: Youtube, 2013, http://accessyoutube.org.uk/.

[Youtube, 13b] Youtube, 2013, www.youtube.com.

2676 Gonzalez-Garcia M., Moreno L., Martinez P., Minon R., Abascal J. ...

