
Scalable Distributed Metadata Server Based on

Nonblocking Transactions

Kohei Hiraga

(Keio University, Fujisawa, Kanagawa, Japan

hiraga@keio.jp)

Osamu Tatebe

(University of Tsukuba, Tsukuba, Ibaraki, Japan

tatebe@cs.tsukuba.ac.jp)

Hideyuki Kawashima

(Keio University, Fujisawa, Kanagawa, Japan

river@sfc.keio.ac.jp)

Abstract: Metadata performance scalability is critically important in high-perfor-
mance computing when accessing many small files from millions of clients. This paper
proposes a design of a scalable distributed metadata server, PPMDS, for parallel file
systems using multiple key-value servers. In PPMDS, hierarchical namespace of a file
system is efficiently managed by multiple servers. Multiple entries can be atomically
updated using a nonblocking distributed transaction based on an algorithm of dynamic
software transactional memory. This paper also proposes optimizations to further im-
prove the metadata performance by introducing a server-side transaction processing,
multiple readers, and a shared lock mode, which reduce the number of remote proce-
dure calls and prevent unnecessary blocking. Performance evaluation shows the scalable
performance up to 3 servers, and achieves 62,000 operations per second, which is 2.58x
performance improvement compared to a single metadata performance.

Key Words: distributed metadata server, nonblocking distributed transaction, par-
allel file system

Category: D.4.2, D.4.3, D.4.8

1 Introduction

In high-performance computing (HPC), the computational performance has been

improved by increasing the number of CPU cores and compute nodes. The stor-

age performance also needs to be improved in sync, otherwise, the performance

gap between CPU and storage becomes wider and wider. To fill the gap, there

are two problems; I/O bandwidth and metadata performance. The I/O band-

width, in principle, can be solved by using arrays of high-performance storages

such as NVMe SSD and persistent memory, while the metadata performance

cannot be solved easily. The metadata is internal data that manages parallel

file systems such as hierarchical namespace, file or block locations, timestamps,

and access control information. Improving the metadata performance means, for

 Journal of Universal Computer Science, vol. 26, no. 1 (2020), 89-106
submitted: 30/12/18, accepted: 15/11/19, appeared: 28/1/20 CC BY-ND 4.0

example, to improve file creation performance, how many files can be created in

a second. To improve the metadata performance, the most difficult issue is how

to efficiently manage the hierarchical namespace in parallel.

One of the solutions of this problem is data partitioning. Subtree partition-

ing [Weil et al. 2006] that partitions hierarchical namespace by subtrees among

multiple servers, improves the scalability of a metadata server in parallel file sys-

tems. It can improve metadata performance when accessing different subtrees,

while it does not improve the performance when accessing the same subtree.

HPC applications often create and open millions of file in a single directory.

In this case, the subtree partitioning does not help to improve the metadata

performance.

Hash partitioning [Schmuck and Haskin 2002, Patil and Gibson 2011] parti-

tions entries in a single directory among multiple servers using a hash function.

This helps to improve the metadata performance for creating millions of files

in a single directory since it just creates an entry in the corresponding server,

while a certain type of metadata operations such as moving a file and remov-

ing a directory, requires consistency in data (i.e., the status of files) among

multiple servers. Clearly it requires distributed consistency protocol. Two-phase

commit [Gray 1978] is widely used for this purpose, and it performs efficiently

if blocking phenomenon does not occur. However, the transaction process will

block when one of the participants fails or cannot communicate with the coor-

dinator node due to, for example, network partitioning. This shortcoming has

been addressed in literature [Samaras et al. 1993].

This paper proposes PPMDS, a scalable distributed metadata server for a

parallel file system, which improves metadata performance and scalability with-

out sacrificing file system semantics using the nonblocking transaction scheme.

It expresses the logical tree structure as key-value pairs to efficiently manage

hierarchical namespace in a file system across multiple servers. The key field is

a set of a parent inode number and an entry name. The remaining value field

contains a file metadata. In this design, entries can be partitioned using a hash

function, which enables parallel file creation, parallel file removal, and parallel

file references.

To update multiple inode entries atomically and efficiently, PPMDS exploits

a nonblocking distributed transaction processing scheme based on the dynamic

software transactional memory [Herlihy et al. 2003] without using problematic

two-phase commit. This enables directory removal and directory listing consis-

tently. PPMDS further improves the metadata performance by introducing the

server-side transaction processing, the open-for-read scheme for multiple read-

ers, and the shared lock mode, which reduces the number of remote procedure

calls and avoids unnecessary blocking time. Performance evaluation shows the

scalable performance up to 3 servers, and achieves 62,000 operations per second

90 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

when creating files in a single directory, which is 2.58x performance improvement

compared to a single metadata performance.

The contributions of this paper are follows;

– Design and implementation of scalable metadata servers without sacrificing

file system consistency,

– Application of nonblocking transactions for key-value stores,

– Enhancement to improve transaction processing, and

– Prototype implementation that shows the scalable performance in file oper-

ations in a single directory.

The rest of this paper is organized as follows. Section 2 describes related work.

Section 3 describes the design of the PPMDS. Section 4 describes the nonblock-

ing transaction, which is a key issue for the design of the PPMDS. Section 5

describes the implementation of the PPMDS. Section 6 shows the evaluation

result. Section 7 concludes this paper.

2 Related Work

Distributed file systems utilize a dedicated metadata server approach for high

efficiency. Examples are Lustre [Braam], Gfarm [Tatebe et al. 2010], Google File

System [Ghemawat et al. 2003], and HDFS [Hadoop]. These file systems have a

master metadata server that stores all file system metadata in memory. Since all

metadata is in memory, these systems provide efficient metadata performance

but has a limitation in terms of memory capacity and scalability. The number of

entries to be managed is limited by the memory capacity, and the performance

is limited by a single node performance.

To improve the metadata performance and scalability, subtree partition-

ing [Weil et al. 2006] and hash partitioning [Schmuck and Haskin 2002] of the

hierarchical namespace are used. The subtree partitioning is efficient when each

client accesses different subtrees. On the other hand, the hash partitioning can

help to improve the metadata performance in a single directory. However, there

is a challenging problem to implement file system operations, such as removing

a directory and moving a directory, that require to modify multiple metadata

across multiple servers atomically.

Two-phase commit has been widely used for this purpose. It requires addi-

tional message exchanges that include vote request, vote commit or abort, and

global commit or abort among a coordinator and all participants. Xiong et al.

reduced the overhead by combining the two-phase commit algorithm with meta-

data processing [Xiong et al. 2011]. Two-phase commit has drawbacks not only

91Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

for the performance but also for the recovery process. To recover from a node fail-

ure, a coordinator and all participants need transaction logs, and all participants

require a log of global committed transactions from the coordinator.

Our proposed method does not use the two-phase commit since it has several

drawbacks, but uses a nonblocking distributed transaction based on an algorithm

of dynamic software transactional memory. The nonblocking feature prevents

from blocking the whole transaction process even when some node fails.

Ursa Minor [Sinnamohideen et al. 2010] makes a choice not to use the dis-

tributed transaction. It migrates related metadata into a single metadata server,

while it does not solve the scalable issue.

There are several file systems that make a choice not to use the distributed

transaction such as IndexFS [Ren et al. 2014], BatchFS [Zheng et al. 2014] and

DeltaFS [Zheng et al. 2015]. Instead, they limit the functionality of the file sys-

tem. That is different from our method that does not restrict the file system

functionality by using the distributed transactions.

HopsFS [Niazi et al. 2017] utilizes shared-nothing, transactional, in-memory

NewSQL databases for metadata servers. It supports distributed transactions

among metadata servers, but it optimizes the metadata read operations spe-

cially for the Spotify music streaming workloads. Our proposed method works

efficiently not only the metadata read operations but also write operations.

PPFS [Takatsu et al. 2017] is a distributed file system that utilizes the PP-

MDS [Hiraga et al. 2018] for file system metadata management. It introduces the

design of the PPFS file system using the PPMDS and PPOST object storage-

based file servers [Takatsu et al. 2016]. It includes the performance evaluation of

not only the PPFS but also the PPMDS comparing with the IndexFS. According

to the paper, the PPMDS shows 2.5x better performance and better scalability

than the IndexFS for directory creation workload using 5 servers and 128 clients.

This paper extends the earlier design and implementation of the PPMDS

metadata server [Hiraga et al. 2018] that exploits nonblocking distributed trans-

actions.

3 Design of PPMDS Distributed Metadata Server

Our design goal is to achieve scalable performance for file operations by multi-

ple metadata servers without restricting the file system functionality. For this

goal, the challenging issue is how to manage hierarchical namespace efficiently

in parallel.

Traditional local file system uses directory entries to manage a hierarchical

name space, which is a list (or a tree) of an entry name and the inode number.

This data structure is not appropriate for distributed servers. In PPMDS, there

is no directory entry that manages entries in a directory. Instead, entries in a

92 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

directory are distributed across multiple servers. Only we need to manage is a

list of servers where entries in a directory are stored. Another challenging issue is

how to support all file system functionalities. For example, a directory removal

operation removes a directory only when there is no entry under the directory.

This operation should be atomic, that is, there is no other operation between

the file existence check and the directory removal. If it is not atomic, the incon-

sistency happens. When a file creation happens between the file existence check

and the directory removal, the newly created file will not have a parent direc-

tory. To avoid this situation, PPMDS uses nonblocking distributed transaction

among multiple servers.

This design can eliminate unnecessary blocking when operations are not con-

flicted. File creation and removal for different files are not conflicted. Directory

operations such as directory creation and removal, that modify multiple entries

atomically can be supported by the nonblocking transaction efficiently. This

design eliminates a global lock or a distributed lock in a directory level, and

ensures to process concurrent operations in parallel unless they are conflicting

operations.

3.1 Lookup Operation and Data Structure

Traditional file systems are optimized for a block device in a single machine,

which are managed by the inode data structure. However, since it includes many

indirections, it is not efficient in distributed environment.

A file system metadata consists of two types of data; file metadata such as a

list of block locations, permission and timestamps, and hierarchical namespace.

In the traditional file system, the hierarchical namespace is managed by di-

rectory entries, which has several problems in distributed environment and also

parallel updates. When a directory entry is managed in a single server, it will be

a bottleneck when many updates happen in a single directory simultaneously.

In PPMDS, there is no directory entry. The file system metadata is managed by

key-value pairs. Each key-value pair is basically an inode entry. The file metadata

is stored as a value of a key-value pair. Key is a pair of a parent inode number

and an entry name. This design makes directory listing possible by range-based

query among all servers without explicit directory entries. Inode entry is identi-

fied by a pair of a parent inode number and an entry name.

Figure 1 shows an example to look up “/dir-x/file-a”.

1. Look up the root inode entry by specifying (inode=0, “/”) as a key. Since

the root directory is a special case such that there is no parent directory,

inode=0 is specified.

2. Check the permission of the root directory for looking up the entry. If it

is permitted, obtain an inode entry of the root directory that includes the

93Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

94 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

To manage a list of distributed servers of a directory, it is stored in all servers

besides the data structure of metadata described in Section 3.1. It is created for

each directory, and stored in the same key-value store of the data structure

of metadata. Key is an inode number of the directory, and the value is a list

of distributed server identifiers that store inode entries in the directory. Inode

entries in the directory are distributed using a hash function among metadata

servers in the list. The reason why all metadata servers have a server list is

we would like to avoid the traffic concentration when looking up an entry. If

there is one server list, all lookup processes access the single server list, which

causes a performance bottleneck. To remove the bottleneck when looking up

entries, we decide to store it in all servers. This requires additional overhead to

create a directory, but we prioritize the lookup performance rather than directory

creation performance since directory creations are rare in HPC applications.

3.3 Transaction of File Creation

To create a new file, a transactional scheme is necessary to keep consistency of

the metadata in PPMDS. A transaction should be isolated from other transac-

tions. During a transaction, some operation may fail unexpectedly due to, for

example, the node failure. Even in this case, a distributed system is expected to

continue the service. However, if the system does not respond to the expectation,

uncommitted operations should not be reflected to the metadata database. To

satisfy the requirements, PPMDS provides distributed transaction processing.

The following is an example to create a new file “/dir-x/file-c”;

1. A client looks up the parent directory “/dir-x”, and obtains inode=2. Then,

the client sends a file creation request of (inode=2, “file-c”) to a PPMDS

server.

2. The requested server (α) starts a transaction for the file creation request. α

obtains a list of servers from the local key-value store requesting inode=2 as

a key.

3. α determines a target server (β) for creating “file-c” among the list of servers.

α requests β to create an entry of (inode=2, “file-c”). β creates the entry

and responds to α. Finally α commits the transaction.

The transaction enables to modify several key-value pairs stored in multiple

servers atomically. Details for the transaction will be described in Section 4. In

step 1, a client can send a request to any PPMDS server, on the other hand,

the number of remote procedure calls in the transaction can be reduced when it

sends to the PPMDS server where the requested entry will be stored.

A transaction for a file creation obtains a list of distributed servers in step 2,

and creates a metadata entry in step 3. These operations are not conflicted when

95Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

multiple clients request to create different entries in the same directory. Multiple

clients can create different entries in the same directory simultaneously with the

nonblocking transaction processing scheme described in Section 4.

3.4 Transaction of Directory Creation

Creating a new directory also requires a transaction. The following is an example

to create a new directory “/dir-y”;

1. A client looks up the root directory “/”, and obtains inode=1. Then, the

client sends a directory creation request for (inode=1, “dir-y”) to a PPMDS

server.

2. The selected PPMDS server (α) starts a transaction for the directory cre-

ation. α obtains a list of distributed servers of the directory from the local

key-value store requesting inode=1 as a key.

3. α determines a target server (β) for creating “dir-y” among the list of servers.

α requests β to create an entry of (inode=1, “dir-y”).

4. β determines a list of distributed servers for the new directory.

5. β generates a unique inode number, and creates a new entry for the directory

in all the related servers, where the key is a unique inode number and the

value is a list of distributed servers. β responds to α.

6. α commits the transaction.

Creating a directory requires an additional step 5 to create a list of dis-

tributed servers in all the related servers. This is a design choice. Direc-

tory operations are much rarer than file operations in HPC applications. In

step 4, a server list is determined using currently available servers that can

be dynamically managed by a reliable distributed coordination system such as

Chubby [Burrows 2006] and ZooKeeper [Hunt et al. 2010]. In step 5, a new in-

ode number should be unique in the system. A unique key consists of a server

identifier and a serial number in each server that can be generated by each

PPMDS server independently.

4 Nonblocking Transaction in PPMDS

Herlihy et al. proposed the nonblocking transaction scheme that is an efficient

distributed transaction processing technique based on dynamic software transac-

tional memory [Herlihy et al. 2003]. Kumazaki et al. extended the nonblocking

transaction scheme using a key-value store [Kumazaki et al. 2011]. We utilize

96 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

Figure 2: Data Structure of Transactional Key-value Pair

this nonblocking transaction scheme for a key-value store, and improve the per-

formance with several extensions including server-side transaction processing,

multiple readers, and shared lock mode.

Herlihy’s nonblocking transaction provides serializable isolation level. This

means transactions that include a series of operations, behave to be executed

in a serial order even though each server processes transactions concurrently.

Herlihy’s nonblocking transaction is obstruction free. This means it does not

block when it progresses alone. The obstruction freedom is nonblocking as well

as lock freedom and wait freedom. A nonblocking transaction has a property

such that a failed or delayed transaction does not prevent progress of other

transactions.

To support the nonblocking transaction, a key-value pair has a data struc-

ture depicted in Figure 2, which is called a transactional key-value pair. Each

key-value pair has a key, a version, an old value, a new value and a Transac-

tion ID . The version means the number of writes to the transactional key-value

pair, which is our extension to support multiple readers and shared lock mode

described in Subsections 4.2 and 4.3. Transaction ID shows an Owner of the

key-value pair. A transaction is managed by its identifier (transaction ID) and

its status information. The transaction ID is also managed in a key-value store

as depicted in Figure 2. There are three states for a transaction; Committed,

Aborted, and Active. If the state is committed, the transaction is already com-

mitted. Then, new value is the up-to-date value. If the state is aborted, the

transaction was aborted. Then, old value is the up-to-date value. Finally, if the

state is active, the transaction is in progress.

To begin a transaction, a transactional key-value pair should be opened to get

the ownership. When the transaction state is committed or aborted, the status is

changed to active using a compare-and-swap atomic operation. When it can be

changed to active, the open succeeds, and the version is incremented. When the

compare-and-swap operation fails or the transaction status is already active, the

open fails. This means another transaction is currently in progress. In this case,

97Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

there are two choices, to wait for the termination of the transaction, or to steal

the ownership. To steal the ownership, the status is changed to aborted using

the compare-and-swap atomic operation. To change the status, the compare-

and-swap atomic operation is always used to avoid the race condition. For this

decision, any conflict resolution algorithm is possible if it satisfies the obstruction

freedom. One of algorithms that satisfy is a backing off algorithm. It waits for

a while, changing the wait time double, and finally it steals the ownership when

it exceeds the maximum wait time.

To commit the transaction, the status is changed from active to committed

using the compare-and-swap atomic operation. If this compare-and-swap fails,

the transaction has been aborted by another transaction.

4.1 Server-side Transaction Processing

When a client starts a transaction, there are many remote procedure calls to

servers for each operation to access key-value pairs. Moreover, at the beginning

of the transaction, and at the end, the client needs to change the state of the

transaction stored in a remote server by the compare-and-swap atomic operation.

However, this series of remote procedure calls can be reduced when it is ex-

ecuted at the server side. Accessing to key-value pairs can be processed locally

in a server. In this case, a client just asks to start a transaction to a server. For

example, to create a file, a client asks for a PPMDS server to create a file by

passing the parent inode number and the entry name, and waits for the result.

When the PPMDS server starts the transaction, it creates a state of the trans-

action in the local key-value store. During the transaction, access to key-value

pairs may be done locally when it is stored in the local key-value store. When

committing the transaction, it always changes the state of the transaction stored

in the local key-value store. It is possible to eliminate many remote procedure

calls in a transaction when a transaction starts at the server side.

4.2 Multiple Readers

For transactional key-value store, a key-value pair needs to be opened before ac-

cessing the key-value pair. If another transaction is already accessing the trans-

actional key-value pair, a new transaction needs to wait to avoid the conflict.

However, when the transaction only includes read accesses, it is possible to use

an optimistic scheme. To allow multiple readers to access a key-value pair, we

provide the “open for read” function. This function does not change the state

of the transactional key-value pair. Instead, it copies the key and the version

of a pair in a temporal space. When committing the transaction, it compares

the current version and the copied version in the temporal space. If they are

the same, there is no modification during the read transaction. The transaction

98 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

is committed. However, if they are different, the transaction is forcibly aborted

since the difference is caused by the write access of other transactions to the

pair.

4.3 Shared Lock Mode

Multiple reader improves the concurrency for reading the same key-value pair

by multiple transactions. However, there is a case such that the open for read

causes the inconsistency in file system. When a directory removal transaction

and a file creation transaction to the directory are concurrently processed, an

orphan entry will be created as follows;

1. Directory removal transaction removes a list of distributed servers and checks

whether the target directory is empty or not by range-based query, and it

finds there is no entry.

2. File creation transaction obtains a list of distributed servers for the direc-

tory. At this time, the owner of the list of distributed servers is the directory

removal transaction. Since it is not committed, there is still a list of dis-

tributed servers as an old value. The file creation transaction obtains the old

value, and creates a new file entry.

3. When the file creation transaction is committed, it succeeds because the

version is not changed.

4. Directory removal transaction removes an entry for the directory.

5. When the directory removal transaction is committed, it succeeds because

the status is active.

In this case, nonempty directory will be removed and an orphan entry will be

created. The problem here is the file creation transaction can read a list of

distributed servers when it is active by the directory removal transaction.

To solve this issue, we introduce the shared lock mode for open for read. The

shared lock mode prevents modification of the key-value pair to be read.

When a key-value pair is opened for read in the shared lock mode, the state

of the transaction is checked. When it is committed or aborted, it succeeds to

open for read in the shared lock mode. It obtains an up-to-date value, and saves

the key and the version to a temporal space. When it is active, it fails to open

the transactional key-value pair. It needs to wait for the conflict resolution, and

starts again.

When committing the transaction for read in the shared lock mode, the

copied version and the current version are compared. If it is not changed, the

key-value pair read in the shared lock mode has not been updated. Thus, the

99Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

100 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

to support nonblocking transaction; (version, value) = gets(key) gets a value

and a current version. add(key, value) adds a key-value pair only if the key does

not exist. replace(key, value) updates a key-value pair only if the key already

exists. key = uadd(value) generates a unique key and stores the given value, and

returns the unique key. cas(key, value, version) updates a key-value pair only if

the current version of the key-value pair is same as the specified version.

The FS RPC server interface currently supports file system metadata opera-

tions including initialization of the file system, file creation, file stat, file removal,

directory creation, directory stat, and directory removal. File data operations

such as read and write, are not supported.

The transaction interface supports the nonblocking distributed transactions.

If a target key-value pair exists in the local key-value store, it accesses the local

key-value store directly, but if not, it communicates to a remote PPMDS server

via the KVS RPC client interface.

5.2 PPMDS Client

PPMDS client is implemented using FUSE low-level interface, fuse lowlevel ops.

The following call-back functions are implemented; init, destroy, lookup, getattr,

opendir, readdir, releasedir, mkdir, rmdir, create, unlink.

PPMDS manages inode entries by a parent inode number and an entry name.

This means all operations require the parent inode number and an entry name.

In the FUSE low-level interface, these information can be obtained by argument

for all functions except the getattr. For the getattr operation, the parent inode

number cannot be obtained. We extend the FUSE kernel module to obtain a

parent inode number and the entry name. The following function is implemented;

fuse_req_get_idpair(req, &pino, &name)

req is a fuse req t structure used in a FUSE low-level interface. When

fuse req get idpair call succeeds, it returns the parent inode number by pino,

and the entry name by name. The extended FUSE is called FUSEX.

6 Performance Evaluation

In this section, we evaluate the performance of the PPMDS regarding the meta-

data operations in a single directory, and the scalability.

6.1 Evaluation Environment

All cluster nodes have dual sockets of 2.40 GHz quad core Xeon E5620 processors

with 24 GB of memory. 11 cluster nodes are used for clients, and 14 cluster nodes

101Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

O
P

E
R

A
T

IO
N

S
 P

E
R

 S
E

C
O

N
D

THE NUMBER OF SERVERS

dir_create

dir_stat

dir_removal

file_create

file_stat

file_removal

Figure 4: Performance of metadata operations using 88 client processes

are used for metadata servers. Client nodes are connected by Gigabit Ethernet,

and metadata servers are connected by 10 Gigabit Ethernet.

For evaluation, we use mdtest benchmark [Torrez et al.] to measure the meta-

data performance. The mdtest is a parallel file system metadata benchmark in

MPI. It creates files and directories under a specific directory structure, and

stats their file system metadata, and removes them in parallel. It measures the

operations per seconds. In this evaluation, each mdtest process creates 12,000

entries in a single shared directory. In the maximum configuration, 1,056,000

entries are created using 88 client processes in a single shared directory.

6.2 Parallel File System Metadata Operations in a Single Directory

Figure 4 shows the performance for parallel file system metadata operations in a

single shared directory. The horizontal axis shows the number of PPMDS server

nodes, and the vertical axis shows the number of operations per second for each

operation. The total number of client processes is 88 using 11 client nodes. In

each client node, 8 client processes are executed.

Regarding file operations such as file creation, file stat, and file removal, and

also directory stat operation, it shows scalable performance up to 3 PPMDS

servers, and achieves 62,000 operations per second. The performance improve-

ment is about 2.58x from the one PPMDS server case. The reason why it does

not scale in case of 4 or more PPMDS servers is that the number of client nodes is

not enough to generate more request rate than 62,000 operations per second. In

the next subsection, the PPMDS metadata server scalability is evaluated when

changing the number of client nodes, which also supports this observation.

102 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

Regarding directory creation and directory removal, the metadata perfor-

mance is not improved even when the number of servers increases. This is a

design choice to prioritize the file performance rather than directory creation

performance. When creating a directory, distributed transactions are posed to

create a list of servers in all the related servers, which degrades the performance

when the number of servers increases. When removing a directory, a distributed

transaction needs to check entry existence, and then removes the directory. The

performance result is along with the theory.

6.3 Scalability of Distributed PPMDS Metadata Servers

The performance for parallel file creations in a single shared directory is shown

in Figure 5 when increasing the number of client processes. The horizontal axis

shows the number of client processes, and the vertical axis shows the number of

file creations per second. When using one PPMDS server, it shows the scalable

performance up to 33 client processes and achieves up to 25,000 file creations

per second, which is considered to be the maximum performance of one PPMDS

server. Up to 33 client processes, the performance is limited by the client request

rate. When using two PPMDS servers, it shows the scalable performance up to

44 client processes and achieves up to 40,000 file creations per second. On the

other hand, when the number of PPMDS servers is 4 or more, it shows the similar

scalable performance, which is limited by the client request rate. This means to

evaluate the performance of PPMDS with 4 or more servers, more number of

client processes are required.

7 Conclusion and Future Work

In these days, metadata accesses such as file creations or file opens can be a

serious bottleneck in distributed file systems because of huge amount of files

both in industry [Niazi et al. 2017] and science [Braam, Tatebe et al. 2010]. To

cope with the issue, this paper proposed a scalable metadata server system,

PPMDS. PPMDS is motivated from the Gfarm [Tatebe et al. 2010] distributed

file system and is already integrated with an object storage [Takatsu et al. 2016]

and forms a file system called PPFS [Takatsu et al. 2017].

For the scalable distributed metadata design, there are two major challenges;

how to efficiently manage hierarchical namespace in parallel, and how to support

all file system operations across multiple servers. For the hierarchical namespace,

PPMDS manages inode entries using a parent inode number and an entry name

as a key across multiple servers. This data structure is naturally distributed

across multiple servers. To support all file system operations, PPMDS utilizes

nonblocking distributed transactions for key-value stores.

103Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100

fi
le

 c
re

a
ti

o
n

 p
e

r
se

co
n

d

the number of clients

1 serv

2 servs

3 servs

4 servs

8 servs

14 servs

Figure 5: Parallel file creation performance in a single directory when increasing

the number of clients

PPMDS improves the metadata access performance by introducing the

server-side transaction processing, the open-for-read for multiple readers, and

the shared lock mode scheme. These techniques reduce the number of remote

procedure calls and avoid unnecessary blocking time.

In the evaluation, our implementation of PPMDS shows scalable performance

up to 3 PPMDS servers, and achieves 62,000 operations per second. The perfor-

mance improvement is about 2.58x from the one PPMDS server case.

Future work includes the performance evaluation in much larger scale envi-

ronment using typical HPC applications.

Acknowledgment

This work is partially supported by the JSPS KAKENHI Grant Number

17H01748, JST CREST Grant Number JPMJCR1414, New Energy and Indus-

trial Technology Development Organization (NEDO), and Fujitsu Laboratories.

104 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

References

[Braam] Braam, P. J.: “Lustre”; http://www.lustre.org/.
[Burrows 2006] Burrows, M.: “The Chubby lock service for loosely-coupled distributed
systems”; Proc. 7th symp. on Operating systems design and implementation, OSDI
’06 (2006) 335–350.

[Furuhashi] Furuhashi, S.: “MessagePack”; http://msgpack.org/.
[Ghemawat et al. 2003] Ghemawat, S., Gobioff, H., and Leung, S.-T.: “The Google file
system”; Proc. 19th ACM Symp. on Operating Systems Principles (2003) 20–43.

[Gray 1978] Gray, J.: “Notes on data base operating systems”; Operating Systems, An
Advanced Course (1978) 393–481.

[Hadoop] Hadoop, A.: “Hadoop distributed file system”; http://hadoop.apache.
org/.

[Herlihy et al. 2003] Herlihy, M., Luchangco, V., Moir, M., and Scherer, III, W. N.:
“Software transactional memory for dynamic-sized data structures”; Proc. twenty-
second annual symp. on Principles of distributed computing, PODC ’03 (2003) 92–
101.

[Hirabayashi] Hirabayashi, M.: “Kyoto Cabinet”; http://fallabs.com/
kyotocabinet/.

[Hiraga et al. 2018] Hiraga, K., Tatebe, O., and Kawashima, H.: “PPMDS: A dis-
tributed metadata server based on nonblocking transactions”; Proc. 2018 Fifth Int.
Conf. on Social Networks Analysis, Management and Security (SNAMS), Valencia
(2018) 202–208.

[Hunt et al. 2010] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B.: “ZooKeeper:
wait-free coordination for internet-scale systems”; Proc. 2010 USENIX conf. on
USENIX annual technical conf., USENIX ATC’10 (2010) 1–14.

[Kumazaki et al. 2011] Kumazaki, H., Tsumura, T., Saito, S., and Matsuo, H.: “Im-
plementation of obstruction-free transaction on distributed key value store”; IPSJ
SIG Tech. Rep. 2011-OS-118, 16 (2011) 1–7.

[Niazi et al. 2017] Niazi, S., Ismail, M., Haridi, S., Dowling, J., Grohsschmiedt, S., and
Ronström, M.: “HopsFS: Scaling hierarchical file system metadata using NewSQL
databases”; Proc. 15th USENIX Conf. on File and Storage Technologies (FAST 17),
Santa Clara, CA (2017) 89–104.

[Patil and Gibson 2011] Patil, S. and Gibson, G.: “Scale and concurrency of GIGA+:
File system directories with millions of files”; Proc. 9th USENIX Conf. on File and
Storage Technologies (2011) 177–190.

[Rath] Rath, N.: “FUSE: Filesystem in Userspace”; http://fuse.sourceforge.net/.
[Ren et al. 2014] Ren, K., Zheng, Q., Patil, S., and Gibson, G.: “IndexFS: Scaling file
system metadata performance with stateless caching and bulk insertion”; Proc. Int.
Conf. for High Performance Computing, Networking, Storage and Analysis, SC ’14
(2014)237–248.

[Samaras et al. 1993] Samaras, G., Britton, K., Citron, A., and Mohan, C.: “Two-
phase commit optimizations and tradeoffs in the commercial environment”; ICDE
(1993) 520–529.

[Schmuck and Haskin 2002] Schmuck, F. and Haskin, R.: “GPFS: A shared-disk file
system for large computing clusters”; Proc. 1st USENIX Conf. on File and Storage
Technologies, FAST ’02 (2002) 1–14.

[Sinnamohideen et al. 2010] Sinnamohideen, S., Sambasivan, R. R., Hendricks, J., Liu,
L., and Ganger, G. R.: “A transparently-scalable metadata service for the Ursa Minor
storage system”; Proc. 2010 USENIX Conf. on USENIX Annual Technical Conf.,
USENIX ATC’10 (2010) 1–14.

[Takatsu et al. 2016] Takatsu, F., Hiraga, K., and Tatebe, O.: “Design of object storage
using OpenNVM for high-performance distributed file system”; Journal of Informa-
tion Processing, 24, 5 (2016) 824–833.

105Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

[Takatsu et al. 2017] Takatsu, F., Hiraga, K., and Tatebe, O.: “PPFS: A scale-out dis-
tributed file system for post-petascale systems”; Journal of Information Processing,
25 (2017) 438–447.

[Tatebe et al. 2010] Tatebe, O., Hiraga, K., and Soda, N.: “Gfarm grid file system”;
New Generation Computing, 28, 3 (2010) 257–275.

[Torrez et al.] Torrez, A., Loewe, W., and Klundt, R.: “mdtest HPC benchmark”;
https://github.com/hpc/ior/.

[Weil et al. 2006] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and
Maltzahn, C.: “Ceph: a scalable, high-performance distributed file system”; Proc.
7th symp. on Operating systems design and implementation, OSDI ’06 (2006) 307–
320.

[Xiong et al. 2011] Xiong, J., Hu, Y., Li, G., Tang, R., and Fan, Z.: “Metadata distri-
bution and consistency techniques for large-scale cluster file systems”; IEEE Trans.
on Parallel and Distributed Systems, 22, 5 (2011) 803–816.

[Zheng et al. 2014] Zheng, Q., Ren, K., and Gibson, G.: “BatchFS: Scaling the file
system control plane with client-funded metadata servers”; Proc. 9th Parallel Data
Storage Workshop, PDSW ’14 (2014) 1–6.

[Zheng et al. 2015] Zheng, Q., Ren, K., Gibson, G., Settlemyer, B. W., and Grider, G.:
“DeltaFS: Exascale file systems scale better without dedicated servers”; Proc. 10th
Parallel Data Storage Workshop, PDSW ’15 (2015) 1–6.

106 Hiraga K., Tatebe O., Kawashima H.: Scalable Distributed Metadata Server ...

