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Abstract: Stochastic local search (SLS) algorithms are well known for their ability to 

efficiently find models of random instances of the Boolean satisfiability (SAT) problems. One 

of the most famous SLS algorithms for SAT is called WalkSAT, which has wide influence and 

performs well on most of random 3-SAT instances. However, the performance of WalkSAT 

lags far behind on random 3-SAT instances equal to or greater than the phase transition ratio. 

Motivated by this limitation, in the present work, firstly an allocation strategy is introduced and 

utilized in WalkSAT to determine the initial assignment, leading to a new algorithm called 

WalkSATvav. The experimental results show that WalkSATvav significantly outperforms the 

state-of-the-art SLS solvers on random 3-SAT instances at the phase transition for SAT 

Competition 2017. However, WalkSATvav cannot rival its competitors on random 3-SAT 

instances greater than the phase transition ratio. Accordingly, WalkSATvav is further improved 

for such instances by utilizing a combination of an improved genetic algorithm and an 

improved ant colony algorithm, which complement each other in guiding the search direction. 

The resulting algorithm, called WalkSATga, is far better than WalkSAT and significantly 

outperforms some previous known SLS solvers on random 3-SAT instances greater than the 

phase transition ratio from SAT Competition 2017. Finally, a new SAT solver called 

WalkSATlg, which combines WalkSATvav and WalkSATga, is proposed, which is 

competitive with the winner of random satisfiable category of SAT competition 2017 on 

random 3-SAT problem. 

 

Keywords:  3-SAT; genetic algorithm; ant colony algorithm; WalkSAT; allocation strategy 
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1 Introduction  

In computational complexity theory, the Cook-Levin theorem named after Cook 

[Cook, 1971] and Levin [Levin, 1984] states that Boolean satisfiability problem 
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(SAT) is NP-complete. Thus, it is of great significance to find efficient SAT 

algorithms and apply them to engineering practice, which can improve productivity 

and promote social development [Marques-Silva, 2008; Xu, 2013].   

SAT is the problem of deciding if there is an assignment for the variables in a 

propositional formula that makes the formula true [Chao, 1986; Faizullin, 2013, 

Zhang, 2015]. 3-SAT is a special case of SAT problem to target the Boolean formula 

of a particular form. There are many approaches to solve the SAT problem, which are 

mainly divided into two categories: one is complete, the other is stochastic local 

search (SLS) algorithms. Although the SLS algorithms are typically incomplete in the 

sense that they cannot prove an instance to be unsatisfiable, they often find solutions 

rather effectively [Cai, 2013a]. Moreover, some SLS algorithms are more effective 

than the state-of-the-art complete solvers on random 3-SAT problem.  

SLS algorithms start by randomly generating a truth assignment of the variables 

of formula. Then it explores the search space to minimize the number of falsified 

clauses. To do this, it iteratively adopts some heuristics to select a variable to be 

flipped until it seeks out a solution or timeout. Genetic algorithm [Li, 2016; Canisius, 

2016] and ant colony algorithm [Gao, 2007; Youness, 2015; Fu, 2018b] with global 

search are typically incomplete algorithms for solving SAT problem. Compared with 

the SLS algorithms, the incomplete algorithms with global search have a high time 

complexity, thus they are not widely utilized for solving SAT problem.   

A family of SAT instances includes uniform random k-SAT [Achlioptas, 2009] 

and hard random SAT [Balyo, 2016]. In the last two decades, most SLS algorithms 

focus on solving uniform random k-SAT instances, refer to e.g., [Selman, 1994; Hoos, 

2002; Kroc, 2010; Luo, 2012; Balint, 2012; Luo, 2013; Cai, 2017; Biere, 2017]. 

Moreover, substantial progress has been made in solving uniform random k-SAT with 

various clause-to-variable ratios. 

Note that the hard instances of NP-hard problems are often associated with a 

phase transition. With SAT, there is a phase transition between satisfiability and 

unsatisfiability as the ratio of the number of clauses to variables in a problem is varied. 

The phase transition for SAT is therefore of considerable practical and theoretical 

importance. Solving hard random SAT remains a great challenge for all SLS 

algorithms including Dimetheus [Gableske, 2016], YalSAT [Biere, 2017] and 

Score2SAT [Cai, 2017]. Although uniform random k-SAT at the phase transition has 

been cited as the hardest track of SAT problems [Cai, 2013b; Luo, 2014], hard 

random SAT is even harder for SLS solvers. The main motivation for hard random 

SAT generated is to evaluate and improve SAT solvers (especially for SLS solvers) 

[Balyo, 2016]. It is worth noting that the hard random SAT problem is focused on 3-

SAT instances greater than the phase transition ratio. Especially, most (nearly 65%  

of) instances on the benchmark of the random SAT track in SAT Competition 2018 

are hard random SAT. Moreover, this direction has been a mainstream of SLS 

algorithms for SAT, which is witnessed by SAT competitions, where the instances of 

random track of recent SAT Competitions are composed of uniform random k-SAT 

instances and hard random SAT instances. However, the performance of existing SLS 

algorithms on hard random SAT instances is still rather unsatisfactory. 

Among SLS algorithms for SAT problems, WalkSAT [Selman, 1994] stands out 

as one of the most influential algorithms. Moreover, extensive experiments have 

shown that the technique of WalkSAT is very suitable for random 3-SAT problem 
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[Liang, 1998]. Therefore, many scholars develop SLS algorithms based on WalkSAT 

for random SAT problem [Kroc, 2010; Luo, 2015]. For example, some researchers 

optimize WalkSAT algorithm to solve random k-SAT instances with k>3 [Luo, 2012; 

Luo, 2013]. However, the performance of WalkSAT lags far behind on random 3-

SAT instances greater than the phase transition ratio, and the performance of 

WalkSAT at the phase transition still needs to be improved.  

This present work aims to improve WalkSAT for random 3-SAT instances. One 

improvement is based on the allocation strategy, which was first introduced and 

utilized in [Fu, 2018a] to improve a greedy local search algorithm GSAT [Selman, 

1992], resulting in an efficient local algorithm called AS, whose performance far 

exceeds GSAT for solving 3-SAT from STALAB library. The main advantage of 

allocation strategy is to handle the cycling problem. A combination of GSAT and 

genetic algorithm (as a global search algorithm), named GAGR [Fu, 2017], was 

proposed for solving 3-SAT instances with some competitive performance. Although 

WalkSAT is competitive with the state-of-the-art solvers for solving random 3-SAT 

problem, it is a SLS algorithm and easy to fall into the cycling problem. In addition, it 

is also easy to get stuck in the local optimum. This motivates us to optimize 

WalkSAT using the global search. Thus, some global search algorithms, e.g., genetic 

algorithm and ant colony algorithm, are considered to be incorporated into WalkSAT 

to further improve its performance on random 3-SAT instances equal to and greater 

than the phase transition ratio. 

The remainder of our paper is organized as follows. Section 2 provides some 

preliminary definitions and notations, followed by a brief review of the allocation 

strategy for 3-SAT, the WalkSAT algorithm, genetic algorithm and ant colony 

algorithm. Section 3 summarizes main contributions of the present work. Section 4 

proposes an improved WalkSAT algorithm using the allocation strategy, called 

WalkSATvav, along with its experimental results and analysis. Section 5 presents a 

new algorithm called WalkSATga, which utilizes a combination of an improved 

genetic algorithm and an improved ant colony algorithm into WalkSATvav, along 

with its experimental results and analysis. In Section 6, a combined algorithm called 

WalkSATlg is proposed by combining WalkSATvav and WalkSATga, and its 

performance is demonstrated by summarizing and analyzing the experimental results 

on random 3-SAT instances for SAT Competition 2017. Section 7 discusses the main 

differences between WalkSATvav and AS as well as the major differences between 

WalkSATga and GAGR. Finally, Section 8 concludes the paper with some future 

directions discussed. 

2 Related Works 

2.1 Some Basic Definitions and Notations 

The symbol xi, i Å {1, 2, «, n} represents a Boolean variable. Let Xn= {x1, x2, «, xn} 

symbolizes a collection of Boolean variables, where the number of variables is 

denoted as n. Boolean variable xi or the negation of Boolean variable ¬xi represents 

literal li, i Å {1, 2, «, n}. A clause ic  is a disjunction of some literals, i.e., 

ci=l1»l2»«»lk. A conjunctive normal form (CNF) F can be described as conjunction 

of some clauses, i.e., F=c1ºc2º«ºcm, where the number of clauses in F is denoted as 
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m. If each clause contains k literals in a CNF formula, then the formula is a k-SAT 

problem. In this paper, we are only concerned with the 3-SAT problem. In a formula 

F we use r=m/n to denote clause-to-variable ratio of F, and  is the total number of 

the literal 
ix  appearing in F, and  is the total number of the literal 

ix�  appearing 

in F. 

The value of Boolean variable is either true or false. In this paper, 0 denotes false, 

and 1 denotes true. A mapping �:  Xn : {0, 1}is called a complete assignment. Given 

a CNF formula F, the SAT problem is to decide whether all clauses are satisfied by a 

complete assignment in F. The break of a variable x is the number currently satisfied 

clauses that would become unsatisfied by flipping variable x. The score of a variable x 

is the increment of currently satisfied clauses by flipping variable x. 

2.2 Allocation Strategy for Random 3-SAT Instances 

The idea of allocation strategy [Fu, 2018a] is to determine a complete assignment as 

the initial solution for solving 3-SAT problem. It can guide the optimal assignment 

and accelerate to find the optimal solution. 

Definition 1. Given a CNF formula F, the Variable allocation degree Vad(xi) of a 

variable i nx X�  is defined as:  

1, 0
2 1) ( )

,

i

i i

x

i

x x

pad n
Vad x

p n otherwise

�  ­°
�  ®
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where pad is a positive parameter greater than 1. 

Note that for a variable xi it is called the positive Vad of xi if Vad(xi)�1; and it is 

called the negative Vad of xi if Vad(xi)<1. In solving the 3-SAT problem, different 

settings of the parameter pad have a direct impact on the performance of the 

algorithm.  

Definition 2. Given a CNF formula F, and a random function � �ixF  that only 

produces 0 or 1, the Variable allocation value ( )iVav x  of a variable i nx X�  is 

defined as:  
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where � �ixF  is a random number that can produce 0 and 1 and nad is a positive 

parameter less than 1. 

In fact, Vav of all variables is a complete assignment as the initial solution for 

solving a 3-SAT problem.   

Remark: A variable xi satisfies the allocation strategy if and only if Vav(xi)>pad 

or Vav(xi)<nad. 

2.3 WalkSAT Algorithm 

WalkSAT is one of the most influential SLS algorithms for SAT. Its framework has 

been widely used, and it is still competitive with the state-of-the-art solvers for 

solving random 3-SAT instances. However, according to the experimental results of 
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SAT Competition 20171, the success rate of all solvers participating in the SAT 

Competition 2017 is still relatively small for solving the 3-SAT instances with  

r=4.267.  

First, WalkSAT algorithm chooses a clause C randomly from the unsatisfied  

clauses. If there exist variables whose breaks are 0, one of such variables is flipped  

randomly; and if no such variable exists, then with a certain probability p (the noise 

parameter), WalkSAT algorithm selects a variable randomly from the clause C; 

otherwise, WalkSAT selects a variable with the minimum break to be flipped, and 

further breaks ties randomly.    

2.4 Genetic Algorithm Overview 

Genetic algorithms (GA) for solving 3-SAT problems mainly include three aspects 

[Fu, 2017]:  problem transformation, chromosome encoding and genetic manipulation 

design. The core of problem transformation is how to define the fitness function f. 

Thus, SAT problems are transformed into an optimization problem of the 

corresponding fitness function. Using the binary string to represent a complete 

assignment is the most intuitive chromosome coding approach, which takes full 

advantage of the characteristics of SAT problems and is easy to calculate the fitness 

function and design a variety of genetic operations. For the SAT problems with n 

variables, the chromosome is represented by n as a binary string, which is directly 

corresponding to the assignment of the variables.  

There are three kinds of genetic manipulation [any reference about GA]: 

selection operation, crossover operation and mutation operation. The selection 

operation is utilized to select groups of contemporary individuals and prepare for 

breeding the next generation. Crossover operation is used to the process of simulating 

biological reproduction by exchanging parts of two individual chromosomes and 

generate two new individuals. Since chromosomes are encoded by binary code, 

crossover operation can be accomplished by truncating and stitching binary strings. 

Mutation operation is adopted to simulate the mutation of a chromosome gene in the 

biological evolution and flip each chromosome at a certain probability, L�H�� �:���

�:��� 

As GA searches for different positions of the solution space, it significantly 

reduces possibility of getting into the local optimum. GA repeat these operations until 

the termination condition is met. The termination condition is to obtain a satisfiable 

solution or achieve the maximum operations. The pseudo code of GA for SAT 

problems is given in Algorithm 1. 

GA has the following advantages: (1) the ability with a global search and 

independent of the problem domain; (2) search from group with potential parallelism 

and multi-value comparison as well as robustness; (3) the search using evaluation 

function enlighten and simple process; (4) using probability mechanism to iterate; (5) 

extensible and easy to combine with other algorithms. The disadvantage of GA is that 

it is not enough to make use of the feedback information in the system [Li, 2003]. In 

this paper, the improved GA for solving 3-SAT problems is based on the restart and 

greedy strategy [Fu, 2017]. 

 

                                                           
1 https://baldur.iti.kit.edu/sat-competition-2017/results/random.csv. 
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Algorithm 1:   GA(F) 

Input:  CNF-formula F 

Output:  A satisfying assignment 1 of  F��RU�³QR�VROXWLRQ�IRXQG´ 

begin 

1      t 80 ;// t represents evolutionary generations 

2      initialize (P(t)); //Initial population 

3      evaluate  (P(t)); // Fitness evaluation         

4      keep_best (P(t));// Preserving the most chromosomes 

5      while (not terminate condition) do 

6       begin 

7              P(t) 8 secletion (P(t));// selection operation 

8               P(t) 8crossover (P(t));// crossover operation  

9               P(t) 8mutation (P(t));// mutation operation  
10             t8t+1; 

11             evaluate  (P(t)); 

12             if( fitness of P(t)>best fitness) 

13             Replace (best);// Replacing best with the best chromosome of P(t) 

14      end 

15 end 

2.5 Ant Colony Algorithm Overview 

Through long-term research, bionic scientists found that although ants have no vision, they 

can find a path by releasing pheromones on the path. The ant will release information 

about the path length on the path that is passed. The more information the path has, the 

more probability the path is selected. In this way, the role of pheromone makes the 

behavior of entire ant colony highly self-organizing. The ants exchange path information 

and eventually find the optimal path based on ant colony behavior. The fitness formula of 

each ant is the same as the fitness formula of each chromosome in GA.  

The early success of ant colony algorithms (ACA) is to solve the famous TSP 

problem, and ant colony algorithms have excellent performance in solving various NP-

hard problems [Wang, 2012].  ACA has the following advantages:  (1) its principle is an 

enhanced learning system, which eventually converges to the optimal path through the 

continuous updating of pheromones; (2) it has a common property of SLS approaches, but 

the artificial ants are not a simple simulation of real ants, which is integrated into human 

intelligence; (3) it is a distributed optimization method, and not only suitable for the 

present serial computer, but also suitable for the future parallel computer; (4) it is a global 

optimization method, which not only can be used to solve the single objective 

optimization problem, but also can be used to solve the multi-objective optimization 

problem. 

Disadvantage of ACA is lack of initial pheromone and low efficiency [Li, 2003]. 

In this paper, an improved ant colony algorithm is used to solve the 3-SAT problem, 

which is presented in Section 5. 
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3 Main Contributions 

As the first contribution, the present work is to use the allocation strategy to generate 

a complete assignment as the initial solution for WalkSAT. Note that allocation 

strategy is based on Vad and Vav. Vad of a variable x is determined by the ratio of the 

numbers of positive literal x and negative literal ¬x in a SAT instance, and Vav of a 

variable x is obtained according to Vad of x. The allocation strategy for SAT is 

utilized in the present work to improve WalkSAT, resulting a new algorithm called 

WalkSATvav. To demonstrate the effectiveness of WalkSATvav, we compare it with 

many state-of-the-art solvers on random 3-SAT instances at the phase transition. 

WalkSATvav outperforms YalSAT [Biere, 2017] (the winner of SAT Competition 

2017), Score2SAT [Cai, 2017] (won the bronze of the random track of SAT 

Competition 2017), CSCCSat [Luo, 2016] (won the silver of the random track of SAT 

Competition 2016), and DCCAlm [Luo, 2016] (won the bronze of the random track of 

SAT Competition 2016). However, WalkSATvav cannot compete with these solvers 

on solving random 3-SAT instances greater than the phase transition ratio. In our 

view, this is partially due to the fact that the WalkSATvav is a SLS algorithm that is 

easy to reach the local optimal solution instead of finding the global optimal solution. 

The second contribution of this work is to improve the WalkSATvav for SAT by 

remedying its shortcoming as mentioned above. Accordingly, we combine the GA 

with the allocation strategy and utilize an improved ACA as well as in the WalkSAT, 

leading to a new algorithm called WalkSATga. In WalkSATga, there are two 

different priorities in the global search. GA and ACA complement each other and 

play an important role in guiding the search direction to find the solution. GA is 

adopted to generate the pheromone distribution, and ACA is used to generate the 

suboptimal solution. Then the suboptimal solution obtained is utilized as the initial 

assignment of WalkSAT to guide the future search, which plays an important role in 

the whole solution process. To demonstrate the effectiveness of WalkSATga, we 

compare it with many state-of-the-art solvers on random 3-SAT instances greater than 

the phase transition ratio. The experimental results show that WalkSATga has almost 

the same success rate as YalSAT, and far beyond CSCCSat and WalkSAT for random 

3-SAT instances greater than the phase transition ratio. 

The third contribution of this work is to combine WalkSATga with WalkSATvav, 

leading to a new algorithm called WalkSATlg, which, as illustrated through extensive 

experiments, outperforms YalSAT Score2SAT, CSCCSat, DCCAlm and WalkSAT on 

all random 3-SAT instances from SAT Competition 2017.  

4 WalkSATvav Algorithm for Random 3-SAT Instances at the 

Phase Transition 

4.1 Rationality of Allocation Strategy 

Different parameter settings could show different performances of the algorithms. 

Based on the 3-SAT instances with r=4.3 in the SATLAB library2, we found that if 

the parameters pad and nad are tuned appropriately, the assignments of 90% of 

                                                           
2https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html 
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variables based on the allocation strategy are the same as that of the corresponding 

variables of the optimal solution [Fu, 2018a]. The idea of allocation strategy is to 

generate a complete assignment as the initial solution for solving 3-SAT problem in 

order to guide the trend of optimal assignment in advance, therefore reduce search 

space and accelerate finding the optimal solution. In fact, it has an essential impact on 

the WalkSATvav algorithms. 

Since the allocation strategy is an important component of WalkSATvav, we are 

interested in this question:  how often the allocation strategy is executed to initialize 

the assignment for variables? We have carried out an experiment for WalkSATvav on 

random 3-SAT instances from SAT Competition 20173 to figure out how frequently 

the allocation strategy is performed in generating an initial assignment. There include 

all 120 hard random instances with r=4.3, 5.204<r<5.206, and r=5.5 (40 instances 

each ratio), as well as all 60 uniform random 3-SAT instances (20 instances with 

r<4.267, 40 instances with r=4.267). 

The allocation strategy execution ratio (AS ratio) is calculated as frequency_AS/n 

(see below) and the experimental results are summarized in Table 1.  

x #frequency_AS: denotes the frequency of executing the allocation strategy for 

variables which is the total number of variables that satisfy the following 

formula with the setting of pad=1.8 and nad=0.56.  

4 1) i

i i

x

x x

p
pad

p n
� ! 

�  or 
i

i i

x

x x

p
nad

p n
� 

�
 

x # n:  the total number of variables that require the initial assignment. 

 
Clause-to-variable 

ratio 
r=4.3 r=5.5 ������r������ r<4.267 r=4.267 

Average AS ratio 0.3737 0.346 0.3075 0.3371 0.3285 

Table 1: Average AS ratio of the variables executing the allocation strategy for each ratio 

from SAT Competition 2017. 

As is demonstrated in Table 1, the allocation strategy is performed in about 30% of 

variables for 3-SAT instances with r�4.3, and closes to 40% for 3-SAT instances with 

r=4.3. Therefore, the allocation strategy plays a substantial role in the WalkSATvav 

algorithm. 

4.2 WalkSATvav Algorithm 

WalkSATvav differs from WalkSAT only in generating an initial assignment. The 

pseudo code of WalkSATvav algorithm is outlined in Algorithm 2 below. More 

specifically, WalkSATvav generates a complete assignment 1 by the allocation strategy as 

the initial solution. After initialization, WalkSATvav executes a loop until it finds a 

satisfying assignment or reaches the time limit. 

                                                           
3 https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/ 
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4.3 Evaluation of WalkSATvav Algorithm 

In this subsection, we first introduce the benchmarks, the competitors, and the 

experimental setup utilized in our experiments. Then, we report the experiments 

conducted on the random 3-SAT benchmarks to evaluate the efficiency of WalkSATvav. 

 
Algorithm 2:   WalkSATvav (F) 

    Input:  CNF-formula F, MaxTries, MaxSteps 

    Output:  A satisfying assignment 1 of F��RU�³QR�VROXWLRQ�IRXQG´ 

begin 

  1     1 8a generated truth assignment for F by the allocation strategy; 

2          for i = 1 to MaxTries do 

3                for j = 1 to MaxSteps do                         

4                         if 1 satisfies F then Return 1; 

5                          C 8an unsatisfied clause chosen at random; 

6                          With probability p 

7                                   v 8a random variable in C; 

8                          With probability 1 í p 

9                                   v 8�a variable in C with minimum break;  

10                        1: = 1 with v flipped; 

11              end for 

12       end for 

13      Return ³QR�VROXWLRQ�IRXQG´� 

14 end 

4.3.1 Benchmarks and experiment preliminaries 

We evaluate WalkSATvav on all random 3-SAT instances at the phase transition 

from SAT Competition 2016 and 2017 (r=4.267, 5000 �Q��12800, 80 instances, two 

instances each size). 

WalkSATvav is implemented in C language and compiled by Dev-C++. For the 

two parameters pad and nad in WalkSATvav, we test all groups of pad=1.5, 1.6, «, 3 

(the performance of WalkSATvav degrades significantly when pad exceeds 3) and 

nad=0.3, «, 0.6. The preliminary results show that, on solving random 3-SAT 

instances, pad=1.8 and nad=0.56 are the best setting. In order to find a more optimal 

parameters setting for WalkSATvav, we test the parameters near pad=1.8 and 

nad=0.56 in a higher degree of accuracy, but did not observe any noticeable 

improvement. This means that WalkSATvav is not so sensitive to its parameters. 

We compare WalkSATvav with five SLS solvers including YalSAT and 

Score2SAT 4 (the winder and the bronzer of the random track of SAT Competition 

2017 respectively), CSCCSat and DCCAlm 5 (the silver and the bronzes respectively 

at the random track of SAT Competition 2016), as well as WalkSAT which is the 

most influential SLS algorithms for solving 3-SAT instances. Especially, Score2SAT 

significantly outperformed other competitors on random 3-SAT instances, and 

CSCCSat and DCCAlm significantly outperformed other competitors on random 3-

SAT instances at the phase transition of SAT Competition 2016.  

                                                           
4 https://baldur.iti.kit.edu/sat-competition-2017/solvers/ 
5 https://baldur.iti.kit.edu/sat-competition-2016/solvers/ 
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In the subsequent sections, all experiments run on a machine with a 3.4 GHZ 

Intel Core i3-3240 CPU and 8 GB RAM under Windows. Each solver is performed 

for 10 runs for each instance with a cutoff time of 5000 seconds. We report the 

number of averaged successful runs �³num´���L�H���WKH�QXPEHU�RI�WRWDO�VXFFHVVIXO�UXQV�

GLYLGHG�E\�����DQG�³DOO´�UHSUHVHQWV�WKH�WRWDO�QXPEHU�RI�DYHUDJH successful runs, i.e. , 

WKH� VXP� RI� ³num´�� DV� ZHOO� DV the success rate �³VXF� UDWH´��� L�H�� �� WKH� QXPEHU� RI�

successful runs divided by the number of total runs. 

4.3.2 Comparing WalkSATvav with the state-of-the art SLS solvers on random 3-

SAT instances at the phase transition 

For the 80 instances from random track of SAT Competition 2016 and 2017, Table 2 

and Table 3 only show some instances which can be solved by these algorithms 

mentioned in this paper. However, other instances that are not shown in Table 2 or 

Table 3 cannot be solved by the algorithms mentioned in this paper.  

Table 2 summarizes the performance of WalkSATvav on the random 3-SAT at 

the phase transition from SAT Competition 2017. The experimental results show that 

WalkSATvav significantly outperforms the above five SLS solvers on these instances. 

In particular, WalkSATvav solves 2 instances more than WalkSAT, 5 instances more 

than YalSAT on the 3-SAT instances with r=4.267. A well-known hardest 

distribution of SAT instances is at the phase transition [Xu, 2012]. Thus, although one 

instance of solving success is increased, it is enough to show the better performance  

 
Instance 

Class 
YalSAT 

num 
Score2SAT 

num 
CSCCSat 

num 
DCCAlm 

num 
WalkSAT 

 num   
WalkSATvav 

num 

v5400 1 1 1 1 1 1 

v6400 0 0 0 0 0 1 

v7400 1 1 1 1 1 1 

v7600 0 0 0 1 1 1 

v8000 1 0 1 0 1 1 

v8200 1 1 1 1 1 1 

v9400 0 0 0 0 1 1 

v9600 1 1 1 1 1 1 

v10200 0 0 0 0 1 1 

v11000 1 1 1 1 1 1 

v11200 1 1 1 1 1 1 

v11600 0 1 1 1 0 1 

All 7 7 8 8 10 12 

suc rate 17.5% 17.5% 20% 20% 25% 30% 

Table 2: Experimental results on the 3-SAT benchmark based on 10 runs for each 

instance, with a cutoff time of 5000s. Instances are at the phase transition from SAT 

Competition 2017. 
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Instance 
Class 

YalSAT 
num 

Score2SAT 
num 

CSCCSat 
num 

DCCAlm 
num 

WalkSAT 
num 

WalkSATvav 
num 

v5800 0 0 0 0 1 1 

v9000 1 1 1 1 1 1 

All 1 1 1 1 2 2 

suc rate 2.5% 2.5% 2.5% 2.5% 5% 5% 

Table 3:  Experimental results on the 3-SAT benchmark based on 10 runs for each 

instance, with a cutoff time of 5000s. Instances are at the phase transition from SAT 

Competition 2016. 

 

Figure 1: Comparing averaged CPU time distributions for SAT solvers in the random 

track of SAT Competition 2017 on random 3-SAT instances at the phase transition, 

where the cutoff time is 5000 s. 

of WalkSATvav. Moreover, the good performance of WalkSATvav on the SAT 

Competition 2017 is clearly illustrated by Figure 1, which summarizes the run time 

distributions of the solvers on this benchmark. 

5 Improving WalkSATvav Algorithm on Random 3-SAT 

Section 4 above shows the good performance of WalkSATvav on random 3-SAT at the 

phase transition. However, the performance of WalkSATvav degrades on the 3-SAT 

instances greater than the phase transition ratio, e.g., WalkSATvav is worse than other 

state-of-the-art SLS solvers such as YalSAT and Score2SAT, which are the top three 

solvers in the satisfiable random category of SAT Competition 2017. 
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Although the allocation strategy shows its effectiveness in the local search 

algorithms for solving random 3-SAT instances at the phase transition, it is still in its 

infancy. We consider the allocation strategy on random 3-SAT instances is too greedy 

for variable allocation value. The initial assignment largely determines the direction 

of the search. If an initial assignment is generated according to the allocation strategy, 

the restart strategy will occur when the number of flipping exceeds the search step 

limit in WalkSATvav, i.e., WalkSATvav would restart to obtain a new initial 

assignment based on the allocation strategy, and then to find an optimal solution. 

Since the allocation strategy is too greedy, WalkSATvav may result in a new initial 

assignment by restarting. However, the differences between the new initial 

assignment and the previous initial assignment may be small and even equal. Thus, 

WalkSATvav may perform the same search process as the previous one after 

restarting strategy activates. Especially, WalkSATvav could fall into a cycle, and 

waste a lot of time in a certain extent. Thus, this lack of differentiation is a serious 

disadvantage for WalkSATvav in our opinion. 

To overcome this drawback, we combine the improved GA (the GA using the 

allocation strategy) with the improved ACA (detailed in Section 5.1 below) that has 

global search capabilities in order to improve WalkSATvav further. According to the 

advantages and disadvantages of both GA and ACA, we make full use of their 

advantages in this work so that they can complement each other. The improved GA is 

used to generate the pheromone distribution for the subsequent improved ACA, which 

is then used to generate the suboptimal solution as the initial assignment of WalkSAT 

to guide the future search, which plays an important role in the whole search process. 

It is worth noting that in the improvement process, the allocation strategy is utilized to 

the GA instead of WalkSAT.  

5.1 Improved ACA 

Considering an example of a formula: assume that the number of variables is n  and 

the number of clauses is m. Suppose the variable set is Xn={x1, x2, «, xn} and the 

clause set is Cm={c1, c2,«, cm}. Construct a structure diagram as shown in Figure 2. 

There are two types of values for each variable xi, i Å {1, 2, «, n}, i.e. 0 or 1, and the 

structure diagram has 2*n edges 1 0

1 1{( , ) , ( , ) | {1,2, , }}i i i ix x x x i n� � � . (xi, xi+1)1 

indicates that the assignment of the variable ix  takes 1, and (xi, xi+1)2 means that the 

assignment of the variable ix  takes 0. An ant needs to travel n edges to get a set of 

assignments [Fu, 2018b]. 
 

 

Figure 2:   n variables structure diagram. 
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5.1.1 Edge selection rules 

In the search process, the ants calculate the transition probability based on the amount 

of information of each path. Then the ant goes from vertex xi to vertex xi+1, i Å {1, 

2, «, n}. There are two paths:  0 and 1, and the probability of xi taking 0 or 1 is the 

following two formulas respectively:  

� � � �
� � � � � � � �

1 1

1

1 1 0 0

*
5-1) ( )

* *

i i

i i i i

a

x x

i a a

x x x x

P x

E

E E

W K

W K W K
 

�
; 

� � � �
� � � � � � � �

0 0

0

1 1 0 0

*
5-2) ( )

* *

i i

i i i i

a

x x

i a a

x x x x

P x

E

E E

W K

W K W K
 

�
. 

When the ACA runs, it calculates the probability value according to Eqs. 5-1) and 5-2), 

and then chooses an edge according to the roulette rules. In Eqs. 5-1) and 5-2), . is a 

heuristic factor of pheromone, and � is the expected heuristic factor, and . and � reflect the 

relative importance of the information accumulated in the process of the ant colony 

algorithm and the heuristic information in the ant selection path, respectively. Here 1

ixW  is 

the pheromone value of ix , and 0

ixW  is the pheromone value of ix� , and 1

ixK  is the 

heuristic information value of ix , and 0

ixK  is the heuristic information value of ix� . 

5.1.2 Pheromone update rules 

As discussed in Section 3, we know that the disadvantage of GA is that it is not 

enough to make use of the feedback information, and the disadvantage of ACA is the 

lack of initial pheromone and low efficiency. Thus, we perform the improved GA, and 

then activate the ACA to select an individual with the maximum fitness value in THE 

restricted populations by the improved GA, i.e., a set of assignments with the maximal 

fitness value become the initial information of ACA.  

Suppose that the suboptimal individual obtained by the improved GA is X, we regard 

it as an ant X. If X has traversed n edges from x1 to xn, X starts to initialize information 

according to the following two equations 5-3) and 5-4). Then ACA selects an ant Xm with 

the maximal fitness value, after each ant gets a set of assignments. Finally, the ant Xm 

updates the information according to the following two equations 5-5) and 5-6):  
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where p is the pheromone residue factor, p Å [0, 1]. If 1

ixW  or 0

ixW  exceeds the maximal 

pheromone 
maxt , then 1

maxix tW   or 0

maxix tW  ; if 1

ixW  or 0

ixW  is less than the minimal 

pheromone 
mint , then 1

minix tW   or 0

minix tW  . After each pheromone updates, ACA sets 

the pheromone between the maximal pheromone value maxt  and the minimal pheromone 

value mint . Q is a constant related to the pheromone quantity released by ants. 

5.1.3 Heuristic update rules 

The heuristic information reflects the degree of inspiration of adjacent two variables, and  

the values of heuristic information obtained by the GA are not changed in the whole 

operation of ACA. The heuristic information of a variable xi�Xn is given as follows, where 

 and  are described in Section 2. 

1 05 7) = ,i i

i i

i i i i

x x

x x

x x x x

p n

p n p n
K K�  

� �
.

 

5.1.4 Improved ACA 

All formulas from Eqs. 5-3) to Eqs. 5-7) are proposed based on the characteristics of 

random 3-SAT problem greater than the phase transition ratio. A new variable 

assignment heuristic strategy (varassign) named IAS is introduced in the ACA. The 

pseudo-code of IAS is given in Algorithm 3 below. The improved ACA applies 

crossover operation and mutation operation like the GA, where maxGenerations 

represents the maximum limit of evolutionary generation. 
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Algorithm 3:   varassign-heuristic IAS 

Input:  CNF-formula F, maxAnts= / 2n , maxGenerations, , , ,p QD E  

Output:  A satisfying assignment V  of F��RU�³8OWLPDWHO\�WKH�EHVW�DVVLJQPHQW 1 ´ 

begin 

1         1 : = a better truth assignment generated by GA; 

2         Initialize heuristic information; 

3         Initialize pheromone by 1; 

4         for step : = 1 to maxGenerations do 

5                Calculates the transition probability; 

6                 for step : = 1 to maxAnts do 

7                       P: = Get a new truth assignment 1 by roulette rules according to  

transition probability;  

8                       if 1 satisfies F then return 1; 

9                 end for 

10              P18Crossover operation on P; 

11              P28Mutate operation on P1; 

12              for step : = 1 to maxAnts do 

13                     if 1ÅP2 satisfies F then return 1; 

14               end for 

15             Update pheromone; 

16       end for 

17       Find the ant 1 with the greatest fitness; 

18       return ³Ultimately the best assignment 1´� 

19  end 

5.2 WalkSATga Algorithm 

We employ the improved GA and the improved ACA as detailed above into 

WalkSATvav, resulting in a new algorithm called WalkSATga, which integrates the 

global search algorithm with some local search strategies. The pseudo-code of 

WalkSATga algorithm is outlined in Algorithm 4 below.  

WalkSATga utilizes two global search schemes including the improved GA and the 

improved ACA. It is different from the WalkSATvav algorithm which is only based 

on the local search. Firstly, WalkSATga algorithm utilizes the improved GA to obtain 

an optimal assignment which serves as an initial pheromone of IAS, and then IAS is 

executed to get a suboptimal assignment which serves as an initial assignment of 

WalkSAT. This initial assignment determines the search direction of WalkSAT. The 

simply flow chart of WalkSATga is given in Figure 3 below. 
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Algorithm 4:   WalkSATga(F) 

Input:  CNF-formula F , MaxTries, MaxSteps 

Output:  A satisfying assignmentV of F��RU�³QR�VROXWLRQ�IRXQG´ 

   begin 

1      for i = 1 to MaxTries do 

2               1: = a better truth assignment generated by GA; 

3                if  1 satisfies F then Return 1; 

4               V : = a suboptimal truth assignment generated by varassign-heuristic IAS; 

5                if  1 satisfies F then Return 1; 

6                     for j = 1 to MaxSteps do 

7                          C 8an unsatisfied clause chosen at random; 

8                          With probability p 

9                           v 8a random variable in C; 

10                         With probability 1 í p 

11                          v 8�a variable in C with the minimum break;  

12                          Flip v in 1; 

13                          if 1 satisfies F then Return 1; 

14                   end for 

15      end for 

16      Return ³QR VROXWLRQ�IRXQG´� 

17  end 

 

 

 

Figure 3: Flow chart of WalkSATga 

Since GA and ACA are not suitable for solving large SAT problem, we call 

WalkSATga for solving small SAT problem; otherwise, we call WalkSAT for solving 

SAT problem. 

WalkSATga algorithm has two important advantages: it makes full use of the 

advantages of GA and ACA, and also employ the advantages of both local search and 

global search.  

5.3 Evaluations of WalkSATga Algorithm 

5.3.1  Benchmarks and experiment preliminaries 

To evaluate WalkSATga, we set up the following three benchmarks:  

1. 3-SAT r=4.3: 40 hard random 3-SAT instances with r=4.3 from SAT 

Competition 2017 (400 �n �540, 5 instance each size). 

2. 3-SAT r=5.5: all random 3-SAT instances with r=5.5 from SAT Competition 

2017 (400 �n �540, 5 instance each size, 40 instances in all). 

3. 3-SAT r=4.3: 500 random generated instances with r=4.3 (200�n�600 variables, 

100 instances each size). 

Improved GA IAS WalkSAT 
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WalkSATga is implemented in C and compiled by Dev-C++. For the five 

parameters in WalkSATga, we test all groups of maxGenerations=2, ��«� 40 (the 

performance of WalkSATga degrades significantly when maxGenerations exceeds 

40), .=��������«���, � ���������«���, p=����������«�����, and Q=1, 2, 5, 10, 15, 20,«��

100 for solving random 3-SAT instances with r= 4.3 from SATLAB library. The 

experimental results show that the parameters ., p and Q have a very small impact on 

the algorithm, i.e., when they were set differently, there is no big changes on the 

success rate of the algorithm, but maxGenerations and � have a great impact on the 

algorithm, thus, they are the main parameters to be set, and other three parameters (., 

p and Q) can be fixed. The group of parameters maxGenerations=20, .=2, �=1, p=0.6 

and Q=5 is the best for 3-SAT instances with r=4.3. In order to find a more optimal 

setting, we tried different setting for ., p and Q with maxGenerations=20 and � 1 in 

a higher degree of accuracy but did not observe any noticeable improvement. This 

means WalkSATga is not so sensitive to those parameters ., p and Q. 

We compared WalkSATga with five SLS solvers including YalSAT, Score2SAT, 

CSCCSat, WalkSAT and WalkSATvav. Especially, YalSAT outperforms other 

competitors on random 3-SAT instances with r=4.3 and r=5.5 for SAT Competition 

2017. For the first two benchmarks, each solver performs 10 runs on each instance. 

For the generated random instances, each solver is performed for one run on each 

instance. The cut off time of each run is set to 5000 CPU seconds. 

5.3.1 Comparing WalkSATga with well-known SLS solvers on random 3-SAT 

instances greater than the phase transition ratio 

Tables 4, 5 and 6 summarize the performance of WalkSATga on the random 3-SAT 

instances greater than the phase transition ratio compared with other well-knowns 

SLS solvers. The results showed that WalkSATga performs far beyond CSCCSat and 

:DON6$7� RQ� WKHVH� LQVWDQFHV�� &RPSDUHG�ZLWK�:DON6$7� DQG� &6&&6DW�� WKH� ³AOO´�

increases by 30 respectively. WalkSATvav outperforms WalkSAT for the instances 

with r=4.3 and r=5.5. Thus, WalkSATvav works toward the improvement of 

 
Instance 

class 

YalSAT 

num 

Score2SAT 

num 

CSCCSat 

num 

 WalkSAT 

num 

WalkSATvav 

num 

WalkSATga 

num 

v400 5 5 5  5 4 5 

v420 5 5 3  3 1 5 

v440 5 5 1  1 3 5 

v460 5 5 1  1 3 5 

v480 5 5 0  0 3 5 

v500 5 5 0  0 2 5 

v520 5 5 0  0 3 5 

v540 5 5 0  0 2 5 

All 40 40 10  10 21 40 

suc rate 100% 100% 25%  25% 52.5% 100% 

Table 4: Experimental results on the 3-SAT benchmark with r=4.3 from SAT 

Competition 2017, based on 10 runs for each instance. 
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Instance 
class 

YalSAT 
num  

Score2SAT 
num  

CSCCSat 
num  

WalkSAT 
num  

WalkSATvav 
num  

WalkSATga 
num  

v400 1 1 1 1 1 1 

v420 2 2 1 1 2 1 

v440 0 0 0 0 0 0 

v460 1 1 0 0 1 1 

v480 1 1 0 0 1 1 

v500 2 2 0 0 2 2 

v520 1 1 0 0 1 1 

v540 1 1 0 0 1 0 

All 9 9 2 2 9 7 

suc rate 22.5% 22.5% 5% 5% 22.5% 17.5% 

Table 5: Experimental results on random 3-SAT based on 100 runs for each instance, with 

a cutoff time of 5000 s. Instances with r=5.5 are from SAT Competition 2017. 

Instance 

class 

YalSAT 

num 

Score2SAT 

num 

CSCCSat 

num 

WalkSAT 

num 

WalkSATvav 

num 

WalkSATga 

num 

v200 100 100 100 100 100 100 

v300 100 100 73 72 80 100 

v400 100 100 25 23 32 100 

v500 100 100 20 0 22 100 

v600 100 100 0 0 16 100 

Table 6: Experimental results on the 3-SAT benchmark with r=4.3 from generated 

instances, based on one run for each instance, with a cutoff time of 5000 s. 

WalkSAT for these instances. However, the performance of WalkSATga is far better 

than that of WalkSAT and WalkSATvav, which indicates that WalkSATga has 

improved the success rate of WalkSAT on the instances with r=4.3. The experimental 

results show that the proposed heuristics have played a great role in the improvement 

of WalkSAT. Moreover, WalkSATga is highly competitive with that of YalSAT and 

Score2SAT. 

It was noted in Section 3 that the total number of variables satisfying the 

allocation strategy is different based on different parameters, which have a great 

impact on the proposed algorithms for solving the SAT problems. Thus, compared to 

solving random 3-SAT instances with r=4.3, the success rate for solving random 3-

SAT instances with r=5.5 is lower. If parameter settings are tuned based on random 3-

SAT instances with r= 5.5, the success rate of the solution for the random 3-SAT 

instances with r=5.5 can be further improved. 

6 WalkSATlg Solver and Results on Random 3-SAT instances for 

SAT Competition 2017 

As we can clearly see from Section 4 and Section 5 that WalkSATvav and 

WalkSATga have their own advantages, this section presents a new SAT solver called 

WalkSATlg, which is a combination of WalkSATvav and WalkSATga, along with 
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experimental study to evaluate WalkSATlg on random 3-SAT instances at and near 

the phase transition.  

6.1 Experimental Result on Random 3-SAT instances  

The SAT Competition in 2017 is a competitive event for SAT solvers. All random 3-

SAT instances (180 instances) from SAT Competition 2017 are generated randomly. 

In this subsection, we carry out experiments to evaluate the performance of 

WalkSATlg on random 3-SAT instances with various ratio. 

6.1.1 Benchmarks and experiment preliminaries 

To evaluate WalkSATlg, we set up four benchmarks:  

1. 3-SAT ������� r ������: all 20 random 3-SAT instances with �������r ������ 

from SAT Competition 2017 (n=1000000, one instance each ratio). 

2. 3-SAT r=4.267: all 40 random 3-SAT instances with r=4.267 from SAT 

Competition 2017 (n=5000, 5200, ..., 12800, one instance each size). 

3. 3-SAT r=4.3: all 40 random 3-SAT instances with r=4.3 from SAT 

Competition 2017 (n=400, 420, ..., 540, 5 instances each size). 

4. 3-SAT r=5.5: all 40 random 3-SAT instances with r=5.5 from SAT 

Competition 2017 (n=400, 420, ..., 540, 5 instances each size). 

The instances with 5.2050r05.206 for SAT Competition 2017 are too hard for all 

incomplete solvers so that they are not included in our experiments. 

WalkSATlg is implemented in C and compiled by Dev-C++. All the parameters 

are set in the same way as those in Section 4 and Section 5. Firstly, we compare 

WalkSATlg with five SLS solvers including YalSAT, Score2SAT, CSCCSat, 

DCCAlm and WalkSAT. Particularly, Score2SAT significantly outperformed other 

competitors on random 3-SAT instances of SAT Competition 2017. Secondly, we 

compare AS [Fu et al. 2018a], WalkSATvav, GAGR [Fu et al. 2017] and WalkSATga. 

Each solver performs ten runs on each instance with a cutoff time of 5000 seconds. 

6.1.2 Experimental results on random 3-SAT for SAT competition 2017 

Table 7 shows experimental results on the random 3-SAT instances. From Table 7, it 

is apparent that WalkSATlg dramatically outperforms other solvers. Although 

WalkSATlg and its competitors solves the same number of instances with r<4.267 

expect for YalSAT, WalkSATlg solves most of instances. Overall, WalkSATlg solves 

39 instances more than WalkSAT, 41 instances more than CSCCSat, 7 instances more 

than YalSAT, 5 instances more than Score2SAT, and 4 instances more than DCCAlm, 

respectively. 

It is very competitive for all kinds of algorithms on solving the random 3-SAT 

instances. Although the YalSAT solver received a gold medal and the Score2SAT 

won the bronze medal on random track of SAT Competition 2017, it can be seen from 

Table 7 that Score2SAT performs better than YalSAT on random 3-SAT instances. 

DCCAlm won the bronze award and CSCCSat won the silver award on random track 

of SAT Competition 2016. However, the performance of the DCCAlm on random 3-
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SAT instances is better than CSCCSat. Score2SAT had the best performance on 

random 3-SAT instances for SAT competition 2017, and DCCAlm had the best 

performance on random 3-SAT instances for SAT competition 2016. However, it is 

worth noting that WalkSATlg significantly outperforms DCCAlm and Score2SAT. 

Therefore, WalkSATlg shows the state-of-the-art performance on random 3-SAT 

instances. 
 

Instance 

class 

YalSAT 

num 

Score2SAT 

num 

CSCCSat 

num 

DCCAlm 

num 

WalkSAT 

num 

WalkSATlg 

num 

r<4.267 16 18 18 18 18 18 

r=4.267 7 7 8 8 10 12 

r=4.3 40 40 10 40 10 40 

r=5.5 9 9 2 9 2 9 

All 72 74 38 75 40 79 

suc rate 51.4% 52.9% 27.1% 53.6% 28.6% 56.4% 

Table 7: Experimental results on random 3-SAT instances based on 10 runs for each 

instance, with a cut off time of 5000 seconds for SAT Competition 2017. 

Instance 
class 

AS 
num 

WalkSATvav 
num 

GAGR 
num 

WalkSATga 
num 

r<4.267 0 18 0 18 

r=4.267 0 12 0 10 

r=4.3 14 21 0 40 

r=5.5 0 9 0 9 

All 14 60 0 77 

suc rate 10% 42.8% 0% 55% 

Table 8: Experimental results on random 3-SAT instances based on 10 runs for each 

instance, with a cutoff time of 5000 seconds for SAT Competition 2017. 

According to Table 7 and Table 8, WalkSATlg gives the best performance on random 

3-SAT instances. WalkSATlg solves 79 instances; WalkSATga solvers 77 instances, 

WalkSATvav solves 60 instances; AS solves 14 instances; GAGR solves 0 instances.  

7 Comparative Discussions 

In this section, we present a discussion compared with some related work to further show 

and clarify the originality and novelty of the proposed algorithms. More specifically, we 

discuss the major differences between AS [Fu et al. 2018a] and WalkSATvav, as well as 

the main differences between GAGR [Fu et al. 2017] and WalkSATga. 

7.1 Main Differences between WalkSATvav and AS  

Although WalkSATvav is related to the AS [Fu et al. 2018a], there exist major differences 

between WalkSATvav and AS, which are summarized as below:  

1) Variable selection mechanism: the WalkSATvav algorithm prefers to select the 

variable with the minimum break to be flipped, i.e., the variable selection of WalkSATvav 
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is based on the WalkSAT algorithm, while the AS algorithm uses the general score 

property to choose the variable to be flipped, i.e., the variable selection of AS is based on 

GSAT algorithm. 

2) Empirical performance on random 3-SAT benchmarks: as can be clearly seen 

from the experiments illustrated in Table 8 in Section 6, the WalkSATvav algorithm 

performs much better than the AS algorithm on random 3-SAT benchmarks. 

7.2 Main Differences between WalkSATga and GAGR 

The main differences between GAGR [Fu et al. 2017] and WalkSATga are summarized 

below: 

1) Basic framework: the WalkSATga algorithm is based on the WalkSAT algorithm 

which has been applied successfully to solving random 3-SAT, while the GAGR 

algorithm is developed following the GSAT algorithm and the GA algorithm which is a 

global search algorithm which is not suitable for solving large SAT instances. 

2) Initial assignment strategy: the WalkSATga algorithm utilizes a combination of 

GAGR and the allocation strategy, as well as the heuristic IAS to generate a complete 

assignment as the initial solution, while the GAGR algorithm does not use the heuristic 

IAS and the allocation strategy, and simply generates an initial assignment based on the 

GA algorithm. 

3) Variable selection mechanism: the WalkSATga algorithm prefers to select the 

variable with the minimum break to be flipped, i.e., the variable selection of WalkSATga 

is based on the WalkSAT algorithm, while the GAGR algorithm uses the general score 

property to choose the variable to be flipped, i.e., the variable selection of GAGR is based 

on the GSAT algorithm. 

4) Empirical performance on random 3-SAT benchmarks: according to the 

experimental results presented in Table 8 in Section 6, it can be clearly observed that 

WalkSATga significantly outperforms GAGR on random 3-SAT benchmarks. Since the 

GAGR algorithm is not suitable for solving large 3-SAT instances, the WalkSATga 

utilizes WalkSAT framework to solve the large 3-SAT benchmarks. 

8 Conclusions 

The present work focused on improving the performance of a well-known SLS SAT 

solver WalkSAT on solving random 3-SAT instances equal to and greater than the 

phase transition ratio. Three effective algorithms have been proposed respectively for 

this purpose, namely WalkSATvav, WalkSATga, and WalkSATlg. WalkSATvav 

applied the idea of the allocation strategy on random 3-SAT instances at the phase 

transition. WalkSATga further enhanced WalkSATvav to target on random 3-SAT 

instances greater than the phase transition ratio by combining an improved GA and an 

improved ACA, while WalkSATlg was an integration of WalkSATga and 

WalkSATvav to target for all random 3-SAT instances. 

The key ideas centralized in the present work was summarized as follows: the 

allocation strategy was utilized to generate an initial assignment for solving 3-SAT 

instances, and to guide the trend of optimal assignment in advance, and to accelerate 

finding the optimal solution. Then the allocation strategy is further adopted by the GA 

and the ACA, resulting in a new heuristic namely IAS. According to IAS heuristic, 
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there are two different priorities in the global search while the improved GA and the 

improved ACA are combined to complement each other and overcome their 

shortcomings. 

The experimental studies on random 3-SAT instances at the phase transition 

indicated that WalkSATvav outperformed the state-of-the-art SLS solvers YalSAT, 

Score2SAT, CSCCSat, DCCAlm and WalkSAT, where YalSAT and Score2SAT were 

the gold winner and the bronzer on the random track of SAT Competition 2017 

respectively, and CSCCSat and DCCAlm won the silver and the bronzer respectively 

on the random track of SAT Competition 2016. In addition, the experimental studies 

on random 3-SAT instances greater than the phase transition ratio indicated that the 

performance of WalkSATga is far better than that of CSCCSat, WalkSAT and 

WalkSATvav, and WalkSATga is highly competitive with that of YalSAT and 

Score2SAT. Finally, WalkSATlg significantly outperformed the existing SLA 

algorithms according to the experiments on random 3-SAT instances at and near the 

phase transition from SAT Competition 2017. 

As for the future work, we would like to design ehanced functions on pheromone 

update and heuristic update. We will then further improve the state-of-the-art SLS 

algorithms using enhanced functions on random 3-SAT instances. Moreover, we're 

going to generate extensive random 3-SAT instances with r=5.5 by a random 

generator, and then the parameters of WalkSATlg are trained to find a set of 

parameters adapting to such instances. Furthermore, we would like to apply the 

allocation strategy, the improved GA, as well as the improved ACA to other 

combinatorial search problems. 
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