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Abstract: Natural landscape image classification is a difficult problem in computer
vision. Many classes that can be found in such images are often ambiguous and can
easily be confused with each other (e.g. smoke and fog), and not just by a computer
algorithm, but by a human as well. Since natural landscape video surveillance became
relatively pervasive in recent years, in this paper we focus on the classification of natural
landscape images taken mostly from forest fire monitoring towers. Since these images
usually suffer from the lack of the usual low and middle level features (e.g. sharp edges
and corners), and since their quality is degraded by atmospheric conditions, this makes
the already difficult problem of natural landscape classification even more challenging.
In this paper we tackle the problem of automatic natural landscape classification by
proposing and evaluating a classifier based on a pretrained deep convolutional neural
network and transfer learning.
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1 Introduction

Automatic image classification has been one of the ultimate goals of artificial
intelligence since its inception. In recent years this area has shown a significant
progress that can mainly be attributed to the increased usege of deep learn-
ing. Deep learning encompasses deep convolutional neural networks (DNN) with
multiple hidden layers, and even though it is a novel label in computer science,
it is not a novel concept. Despite this fact, however, deep learning techniques
started to gain widespread popularity only in the last few years. One of the
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causes of this renewed focus of attention can be found in the availability of large
datasets needed for the development of deep learning based models, and in the
advances in hardware development that are able to support the requirements of
deep learning models.

In this paper we explore the possibility of using a pretrained deep convolu-
tional neural network and transfer learning approach for a very specific problem
of automatic classification of natural landscape images. Natural landscape im-
ages are very different from the ones usually encountered in general classification
problems as they do not contain a large number of artificial structures and are
generally poorer in low and middle level features like corners and edges, or typi-
cal and recognizable shapes. Furthermore, most of the images used in this paper
are collected from forest fire surveillance cameras mounted on wildland locations
that operate for 24 hours a day through the whole year and are prone to image
quality degradation due to atmospheric and weather conditions. An example of
a natural landscape image obtained from a wildfire surveillance camera is given
in Figure 1, and the degradation in the image quality is clearly observable.

ROC 2008-10-08 1 8:48:01

Figure 1: An example of a natural landscape image taken from a wildfire surveil-
lance camera

Natural landscape image classification is commonly used in the video surveil-
lance of the wide wildland areas. It is in the focus of this research because the
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authors have a strong background in image processing based wildfire monitoring
primarily oriented on early wildfire detection [Krstinié et al. 2009, Stula et al.
2012, Jakov¢evi¢ et al. 2013, Bugari¢ et al. 2013], and are working on a wildfire
monitoring system that is already deployed in a number of Croatian forests and
National parks. The authors would like to improve the already high accuracy
of the above mentioned wildfire monitoring system, so in this paper special at-
tention is given to the evaluation of the proposed method on the images that
contain wildfire smoke, which is the first visible sign of wildfires occurring in
heavily wooded areas.

Primary goals of this research are the development of specific methods useful
for natural landscape image classification, and the analysis of the impact and
potential of deep learning techniques in the same context. This area of research
differs significantly from the problem of classification of urban and close range
scenes and is conceptually a very distinct problem that is further complicated by
the non-existence of widely used natural landscape image datasets, the absence
of strongly expressed image features (e.g. hard edges and typical shapes of vari-
ous objects) and the vast similarity between different classes. Furthermore, some
image regions can be semi-transparent (e.g. smoke or fog) and allow a different
region to be seen through them, or they can contain reflections of other regions
(e.g. sea surface). Therefore, it is not uncommon that even human experts re-
sponsible for creating ground truth segmentations of these images cannot draw
a hard boundary between various regions or classify them into one of the pre-
defined classes. These experts usually have no choice but to leave some parts
of the image unclassified because they are often ambiguous and can be seen as
belonging to a number of classes instead of belonging to just one class.

Even though the proposed method is geared towards natural landscape im-
age classification, it can still be used in many other areas of research with little
adjustment. Examples of potential areas of research include image processing
based detection of climate change, forest biology and early detection of patho-
logical changes in vegetation, tracking of flooded areas, surveillance of agricul-
tural areas, automatic connection and calibration with geographical information
systems, and the applications of augmented reality.

This paper is structured as follows. In Section 2 related work is discussed,
with special attention being given to deep learning based approaches for image
classification, segmentation and object detection. Proposed approach to classi-
fication of natural landscape images and research methodology is elaborated in
section 3. In Section 4 the evaluation of the proposed method and its compar-
ison to the existing state-of-the-art approaches for image analysis is presented.
Finally, in Section 5 a conclusion is given and future work is discussed.
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2 Related work

Deep learning based approaches to digital image analysis have become increas-
ingly common and have been used in areas such as medicine [Sadanandan et al.
2017, Wang et al. 2018], biomedicine [Ronneberger et al. 2015], remote sens-
ing [Liu et al. 2018, Hu et al. 2018, Zou et al. 2015, Gao et al. 2018, Hu et al.
2015, Chen et al. 2019] and path finding for visually impaired or blind peo-
ple [Malukas et al. 2018]. These approaches are quickly overshadowing the ap-
proaches based solely on traditional digital image analysis methods (such as
template matching or histogram comparison) because they can usually offer
more accurate results. One of the potentially negative aspects of deep learning
based approaches to digital image analysis is its need for a large image dataset,
much larger than the ones usually needed for digital image analysis that do not
encompass deep learning techniques. This can present a problem in areas dealing
with digital image analysis of uncommon occurrences, but one of the ways that
this problem is being dealt with is image augmentation, i.e. obtaining a higher
number of images from the images that are already available.

Rapid development in this field and high motivation to develop a standard
evaluation methodology resulted in a standardized ImageNet [Deng et al. 2009]
dataset for general image classification problem that contains more than 1.2 mil-
lion hand labeled images. Each image is labeled with one of the 1000 predefined
classes such as lemon, espresso, trombone, polaroid camera, poncho, microphone,
castle, catamaran, golden retriever, etc. This image collection, divided in train-
ing, validation and testing dataset, is used in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [Russakovsky et al. 2015-1].

Beside this general classification dataset, task oriented datasets exist for some
problems of high scientific and practical interest, e.g. MNIST dataset [LeCun and
Cortes 2010] for the recognition of hand written characters. However, for most
specific classification problems high costs of hand labeling of images by an expert
in the field imposes a different approach based on transfer learning [Torrey and
Shavlik 2009]. In this scenario, relatively small dataset of hand labeled images
for a specific task is created and used to retrain model which was previously
trained with a bigger dataset.

Traditional methods for digital image analysis include techniques such as
contour detection, feature detection, template matching, histogram comparison,
texture analysis, various classifiers (e.g. SVM or k-NN), etc., and until a recent
increase in the popularity of deep learning techniques, traditional techniques
were the go-to methods for digital image analysis. Examples of traditional meth-
ods for digital image analysis can be found in [Braovi¢ et al. 2017], [Vogel and
Schiele 2004], [Fei-Fei and Perona 2005], etc. Even though various traditional
methods for digital image analysis have existed for quite some time, there still
does not seems to exist a commonly used measure for the evaluation of those
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approaches, and the researchers are left to choose between a rather large ensem-
ble of different metrics. This, of course, makes it difficult to compare the results
of various methods and is a problem that should potentially be addressed in the
near future.

In recent years deep learning methods have been commonly used for digital
image analysis, and it is demonstrated in [Buscombe and Ritchie 2018] that deep
convolutional neural networks can successfully be used in the classification of
landforms and land cover in medium-range imagery acquired from UAS; aerial,
and ground-based platforms. Examples of deep learning based image analysis
methods can be found in [Liu et al. 2018], [Socher et al. 2011], [Lam et al. 2017]
and [Krizhevsky et al. 2012].

Liu et al. [Liu et al. 2018] proposed a method for classification of high-
resolution remote sensing images that is based on deep random-scale stretched
convolutional neural network. Multiple views of one image were used so the
image was classified multiple times and the final image label was obtained by a
voting procedure.

Socher et al. [Socher et al. 2011] proposed a deep learning based method
for segmentation and annotation of complex scenes. The input image was over-
segmented into superpixels and the features (e.g. color, shape, texture, etc.) for
these superpixels were extracted. A simple neural network layer was used to map
the extracted features into the semantic n-dimensional space. Recursive neural
network was later used for tree structure prediction.

Lam et al. [Lam et al. 2017] proposed a method for deep learning based fine-
grained object recognition. Their method was based on the search for informative
image parts, i.e. the ones that could make it easier to differentiate between similar
object classes. This search was accomplished by searching the deep feature map
produced by a convolutional neural network (CNN). The evaluation metric that
was used in their paper was top-1 accuracy, where the predicted (automatic)
classification is considered accurate if the ground truth label is present in the
top 1 most confident predictions.

Krizhevsky et al. [Krizhevsky et al. 2012] proposed a method for deep learn-
ing based classification of images from ImageNet LSVRC-2010 dataset into 1000
classes. The CNN architecture that they used consisted of 8 layers: 5 convolu-
tional and 3 fully connected. The last fully connected layer output was used as
an input to a 1000-way softmax, which gave the distribution over the 1000 class
labels.

Table 1 presents an overview of recent deep learning based approaches for
digital image analysis. Results given in these tables have been obtained from the
corresponding papers.

As can be seen from Table 1, results obtained by deep learning based digital
image analysis are generally good. This makes it clear that deep learning has
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Table 1: An overview of deep learning based methods for image classification,
segmentation, annotation or object detection

Classes

Image dataset

Method

Results

Aeroplane, bike, bird, boat, bottle, bus,
car, cat, chair, cow, dining table, dog,
horse, motorbike, person, plant, sheep,
sofa, train, TV monitor, background
(additional)

PASCAL VOC
2010 [Everingham
et al. 2010]

Zheng et
al. [Zheng
et al. 2015]

Average intersec-
tion over union
(TU): 75.7%

PASCAL VOC
2011 [Everingham
et al. 2011]

Zheng et
al. [Zheng
et al. 2015]

Average intersec-
tion over union:
75.0%

PASCAL VOC
2012 [Everingham
et al. 2012]

Zheng et
al. [Zheng
et al. 2015]

Average intersec-
tion over union:
74.7%

Roy and
Todor-

ovic [Roy
and Todor-

ovic 2017]

Average mean
intersection over

union: 53.7%

et
al. [Hong
et al. 2015]

Hong

Mean intersection
over union: 66.6%

Chen et al.
[Chen et al.
2018]

Mean intersection
over union: 79.7%

et
al.  [Islam
et al. 2016]

Islam

Mean intersection
over union span:
62.1%-64.5%

Yu and
Koltun [Yu
and Koltun
2016]

Mean intersection
over union: 67.6%

Road, building, sky, tree, side walk, car,
column pole, fence, pedestrian, bicycle,
sign

CamVid [Brostow
et al. 2009]

Kendall et
al. [Kendall
et al. 2015]

Average accu-

racy: 76.3%

Mahasseni
et al. [Ma-
hasseni

et al. 2017]

Accuracy  span:
53.5%-73.3%

Ardiyanto
and  Adji
[Ardiyanto
and  Adji
2017]

Average class
accuracy  span:

69.8%-71.5%
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Table 1: An overview of deep learning based methods for image classification,
segmentation, annotation or object detection (cont.)

Classes Image dataset Method |Results
Agriculture, airplane, baseball diamond,|UC Merced Land|Liu et al.|Average accu-
beach, buildings, chaparral, dense residen-| Use Dataset|[Liu et al.|racy: 95.57%
tial, forest, freeway, golf course, harbor,|[Newsam, Yang|2018|
intersection, medium residential, mobile|and Newsam 2010]
home park, overpass, parking lot, river,
runway, sparse residential, storage tanks,
tennis court
Meadow, pond, harbor, industrial, park,|Google dataset of|Liu et al.|Average accu-
river, residential, overpass, agriculture,|SIRI-WHU [Zhao|[Liu et al.|racy: 94.76% and
commercial, water, idle land et al. 2016, Zhong] |2018] 93.44% (when
trained on 80%
and 50% of the
samples from
the dataset,
respectively)
Dense residential, idle, industrial, medium|The Wuhan|Liu et al.|Average accu-
residential, parking lot, commercial, veg-TKONOS Dataset |[Liu et al.|racy: 85.00%
etation, water 2018]
‘Wall, floor, cabinet, bed, chair, sofa, table,|SUN RGB-|Kendall et |Average accu-
door, window, bookshelf, picture, counter,|D benchmark|al. [Kendall|racy: 45.92%
blinds, desk, shelves, curtain, dresser, pil-|dataset [Song et al.|et al. 2015]
low, mirror, floor mat, clothes, ceiling,|2015]
books, fridge, TV, paper, towel, shower
curtain, box, whiteboard, person, night
stand, toilet, sink, lamp, bathtub, bag
Types of clouds: cumulus, cirrus, altocu-|Multimodal Liu and Li|Average accu-
mulus, clear sky, stratocumulus, stratus,|ground-based [Liu and Li|racy: 86.30%
cumulonimbus cloud (MGC)|[2018]
dataset
Building, tree, sign, road, fence, pole, side-| KITTI [Geiger|Mahasseni |Accuracy span:
walk et al. 2012] et al. [Ma-|78.2%-92.7%
hasseni
et al. 2017]
Plane, bird, boat, car, cat, cow, dog,|YouTube-Objects |Tripathi Mean aver-
horse, motorbike, train dataset v2.0 [Prest|et al. [Tri-|age precision:
et al.] pathi et al.|37.413%
2016]
67 indoor scenes categories (classes) MIT Indoor scene|Li et al. [Li|Average accuracy
dataset [Quattoni|et al. 2017] [span: 74.86%-
and Torralba 2009] 87.97%
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Table 1: An overview of deep learning based methods for image classification,
segmentation, annotation or object detection (cont.)

Classes Image dataset Method |Results
397 scene categories (classes), includ-|Scene UNder-|Li et al. [Li|Average accuracy
ing: coast, field wild, forest fire, forest|standing (SUN) et al. 2017] |span: 57.15%-
broadleaf, forest needleleaf, hill, house,|database [Xiao 72.01%
lake natural, mountain, ocean, pond,|et al. 2010, Xiao
river, tree farm, village and woodland et al.]
3 scene types are used in [Socher et al.|Stanford back-|Socher et|Pixel-level accu-
2011]: city, countryside and sea-side ground dataset|al. [Socher|racy: 78.1%
[Gould et al.|et al. 2011]
2009, Stanford
Background
Dataset|
200 species of birds CUB-2011  [Wah|Lam et al.|Top-1 accuracy:
et al. 2011] [Lam et al.|87.5%
2017]
196 types of cars Cars-196  [Krause|Lam et al.|Top-1 accuracy:
et al. 2013 [Lam et al.|93.9%
2017]
1000 object categories (classes), including: |ImageNet Large|Krizhevsky |Top-1 and top-5
seashore, lakeside, coral, box turtle, taran-|Scale Visual|et al.|test set error
tula, bee orchid and orange Recognition |Krizhevsky|rates, respec-
Challenge 2010|et al. 2012] |tively: 37.5% and
(ILSVRC2010) 17.0%
[Russakovsky
et al. 2015-2, Rus-
sakovsky et al.
2010]

great potential in image processing applications, and possibly represents a step
towards achieving strong artificial intelligence.

3 Transfer learning and the Classification of Natural
Landscape Images

The proposed method is based on a somewhat classical approach of transfer
learning where a pretrained DNN is retrained with newly encountered images
specific to a target task (e.g. [Cengil and Cinar 2019]). When dealing with deep
convolutional neural networks, convolutional layers are commonly preserved from
the pretrained model because it is assumed that they have acquired the ability
to extract low and middle level features present in many various images from the
large dataset that was used in the training process, while the last few layers are
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retrained with newly encountered images from a task-specific dataset. Examples
of algorithms for image analysis that are based on transfer learning can be found
in [Cengil and Cinar 2019], [Chang et al. 2017], [Alsabahi et al. 2018], etc.

3.1 Dataset

In the development and validation of the proposed method a Mediterranean
Landscape Image Dataset (FESB MLID) [Braovi¢ et al. 2017] was used. FESB
MLID dataset contains 400 images of wide wildland open space areas. Each image
is processed by a human observer and divided into regions marked as one of 11
predefined classes. These segmented images are called ground-truth (GT) images.
The classes that were used in the FESB MLID dataset are smoke, clouds and
fog, sun and light effects, sky, water surfaces, distant landscape, rocks, distant
vegetation, close vegetation, low vegetation and agricultural areas and buildings
and artificial objects. Additional class named unknown was used for the parts
of the image that cannot be classified to one of the predefined categories by
a human because of their ambiguity. Most of the images in the FESB MLID
dataset were collected from the real operational forest fire surveillance cameras
mounted on monitoring locations on the Croatian coastline and islands. These
cameras are covering wide open-space areas that mainly consist of a diverse and
heterogeneous Mediterranean landscape.

One of the implications of the fact that the images from the FESB MLID
dataset mostly came from real high-ground mounted cameras surveilling wide
open space areas is that it is very possible that most of the images may contain
many of the predefined classes of natural landscape. It is even possible and not
completely uncommon that all of the classes are present in a single image. On the
other hand, some of the classes representing landscape or phenomena which is by
nature less common in the overall data are present on a smaller number of images
in the dataset and often represented by a much smaller surface area compared to
the other classes. The best example of such a class is smoke. Favourably, smoke
should be recognized in the early stages of its development, thus examples of
this class in the training data are usually represented by small smoke plumes
covering a very small area of the image. On the other hand, classes such as sky or
distant vegetation are present in almost all of the images and are usually covering
a dominant part of the image. Trivial solution to which training process could
converge is to label all of the images with labels representing common classes,
and declaring less common classes not present in any of the images, as this would
result in low overall error rate and high accuracy.

To avoid this scenario, a dataset for this research is created from the original
FESB MLID dataset by dividing each image from the original dataset into a set
of smaller images. Each of the resulting images represents a small part of the
landscape and contains a lower number of predefined classes than the image they
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were extracted from. Furthermore, each of the classes in a smaller image occupies
a sufficiently large portion of the image area. Additional advantage is that the
resulting dataset is much larger in the number of images than the original FESB
MLID dataset. The final dataset is created by following the steps outlined below:

1. FESB MLID dataset is divided in two parts, one containing 300 images used
for training, and the other with 100 images used for testing.

2. The number of images in the training data set is increased by data augmen-
tation: (a) each image is reflected horizontally, and (b) each image (original
and reflected) is rotated by a random angle. To avoid unnatural landscape
scenes, rotational angle is limited to a 30°.

3. Each image generated in step 2 (original image, reflected image and rotated
images) is divided into a set of smaller sub images.

4. For each image in the FESB MLID dataset, appropriate GT segmentation
created by a human expert is used, alongside with the parameters from the
data augmentation step (rotation angles of the original and reflected images),
to extract a list of classes of natural landscape present in each of the smaller
sub images.

Using the technique outlined above, three data sets are created with image
sizes of 32 x 32, 64 x 64 and 128 x 128 pixels. Data augmentation is used only
in the generation of the train dataset. For test dataset step two is skipped and
only the original images are divided into smaller samples. The first data set with
the image size of 32 x 32 pixels contains 1688563 train images and 152889 test
images. Dataset of size 64 x 64 pixels contains 383688 train images and 34934
test images. Dataset with the sample size of 128 x 128 pixels contains 77418 train
and 7178 test images.

3.2 Classifier

The classifier is based on the Inception V3 convolutional neural network [Szegedy
et al. 2015, Szegedy et al. 2016] trained on the ImageNet dataset [Deng et al.
2009]. Originally, Inception is trained for single-label image classification. To
adapt Inception to a multi-label image classification where each image is labeled
with more than one label, i.e. where each image contains more then one of the
non-exclusive classes, we followed the approach proposed in [Bartyzal|. The main
difference to the original Inception architecture is a modified fully-connected
layer which is retrained with new images, and new evaluation method used to
evaluate model prediction and compare its output with multi-class GT vectors
that describe each image in the dataset. A diagram of the proposed classifier is
shown in Figure 2.
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Figure 2: A diagram of the proposed classifier

The output of the model for one image is a set of probabilities for each of the
12 classes, including the class unknown. By introducing this class it is ensured
that at least one class is present in each image. In extreme cases it is possible
that all 12 classes are present in a single image. Therefore, in each image one
or more classes are present and probabilities do not sum up to one. The final
stage of the algorithm is to select which classes will be accepted as present in the
image based on the output of the model. Straightforward solution is to accept
all of the classes with probability above 0.5. However, by examining statistical
distribution of the top probability on the train data set we found that the top
probability is sometimes below 0.5 which is in contrast with the model premise
that at least one class is present in each image. More detailed examination of
the output of the model shows that any value of fixed threshold is too lenient for
some images, i.e. it accepts classes that do not exist in GT segmentation, while
too rigorous for others which would result in an output where no class is present
in the image.

To determine a threshold for the acceptance or the rejection of the classes
present in the image an adaptive criterion has to be established. We set this
threshold to the first sharp fall in the sorted probabilities.

In Figure 3 examples of sorted probabilities obtained from the DNN model
and their second derivatives for three different images are shown. In example (a)
the first minimum of the second derivative of sorted probabilities p’ ,(n) marks
steep fall of the sorted probabilities after second highest probability, indicating
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Figure 3: Probabilities for all 12 classes (including unknown) for three different
images. First row: probabilities computed by the retrained neural network. Prob-
abilities are sorted from the highest to the lowest. Second row: second derivative
of the sorted probabilities. Last class to be accepted as present in the image
corresponds with the first minimum of the second derivative of the sorted prob-
abilities.

the presence of two classes in the image. This is a point where sorted probabil-
ity function pe,:(n) has a concave form, before point of inflection. After this,
Psort(n) exhibits convex behavior and difference between subsequent probabil-
ities becomes smaller and smaller. For image in example (b) first minimum of
the pZ ., (n) corresponds to a third highest probability, implicating that there
are three classes present in the image. In the example (c) sorted probabilities
exhibit convex shape from the first element, with strongest fall in subsequent
probabilities between the first two classes. This suggests that only the class with
the highest probability is present in the observed image.

Having in mind the above observations, adaptive criterion for accepting

classes is created based on two simple rules:
(a) all classes with the probability above 0.5 are accepted,

(b) first k classes, sorted by their probabilities from highest to lowest, are ac-
cepted, where £ is the location of the first minimum of the second derivative
of sorted probabilities pZ ., (n).
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Figure 4: Training history - accuracy and cross entropy loss

4 Results and discussion

The proposed method of classification based on transfer learning and adaptive
class acceptance is evaluated on three different datasets generated from the same
FESB MLID set of images by using different sample image size, as depicted in
subsection 3.1. For each of the three datasets with different image size, a classifier
is trained using the train dataset. After this process is complete, trained classifier
is evaluated on the dataset generated from 100 images from the FESB MLID
dataset which were not used in the training stage. Except for the different input
sample image size used for training and testing of the classifier, there is no
difference between the three evaluated classifiers. All three classifiers are trained
for equal number of iterations, with training logs given in Figure 4.

Several standard measures are calculated, namely Accuracy, Balanced accu-
racy, Precision, Recall and Fj-score. These measures are given in equations (1),

(2), (3), (4) and (5).
TP+ TN

Accuracy = (1)
TP+TN+FP+FN
TP f TN
Balanced accuracy = TPHPN 5 FP4TN 2)
TP
Precision = —————— 3)

TP+ FP
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TP
Recall = m (4)

2 - precision - recall
Fy — score =

precision + recall

The parameters of the above equations are defined as follows:

— TP (True Positive) - the number of times that the class is detected as present
and exists in the GT segmentation,

— TN (True Negative) - the number of times that the class is detected as not
present and does not exist in the GT segmentation,

— FP (False Positive) - the number of times that the class is detected as
present, but does not exist in the GT segmentation,

— F'N (False Negative) - the number of times that the class is detected as not
present, but exists in GT segmentation.

Results achieved for each of the three sample image resolutions are given in
Tables 2, 3 and 4. In all of these tables the results are shown for each of the
predefined classes separately, thus depicting the ability of the trained classifier
to accurately detect a specific class. Class unknown, used for areas of the image
that cannot be clearly classified to any of the predefined categories by a human
expert, was not taken into consideration in the evaluation of the classifier results.

As can be seen from tables 2, 3 and 4, Accuracy is relatively high for all of
the classes. However, this measure does not give clear insight into the classifier
performance. Accuracy does not give us information about F'P to F'N ratio. If a
particular class is present only in a small number of images, the classifier could
have high False negative rate and still have high Accuracy for the observed class.
By using smaller sub images from the original dataset where only a small part
of the surveilled area is contained in an image, as depicted in subsection 3.1,
this assumption is correct for most, if not all classes. In fact, whenever a single
class is present in only a limited number of samples, the classifier will achieve
good accuracy as long as it keeps T'N rate high. Even if Precision is also low,
i.e. if the significant ratio of samples labeled with a particular label does not
really contain that class (if TP ~ FP), the accuracy will be high as long as
TP+ FP <TN+ FN.

A clearer picture of the classifier performance on unbalanced data set for a
different classes can be obtained from Precision, Recall and Balanced accuracy.



258 Krstinic D., Braovic M., Bozic-Stulic D.: Convolutional Neural Networks ...

Precision measures the ratio of images from the test dataset that are labeled
with a particular label by the classifier and actually contain this type of land-
scape (in human assigned GT segmentations). Recall shows the share of images
that contain a particular type of landscape for which that class is accurately
recognized by the classifier. Balanced or normalized accuracy [Brodersen et al.
2010] is the arithmetic mean of true positive rate (Recall or Sensitivity) and
true negative rate (Specificity). Fy -score is a balanced function of the Precision
and Recall, and can be considered as an objective measure of per class classifier
performance.

In Table 2 results are shown for the classifier that was trained and evaluated
on image size of 32 x 32 pixels. It can be seen that there is a large discrepancy in
the classifier performance for different classes. Best results are achieved on classes
Sun and light effects and Sky. We assume that for these classes the classifier
managed to learn a distinct typical class color which is very different from other
colors usually present in natural landscape images. Other classes with relatively
high results include classes with distinct details that the classifier can relay on,
e.g. Rocks. The worst results are achieved for the class Smoke, where Recall is
only 0.383, meaning that only 38.2% of the images containing smoke (in human
assigned GT segmentation) are accurately recognized. Precision for class Smoke
is 0.320, suggesting that from all images labeled with this label by the classifier,
only 32% actually contain that class.

Table 2: Accuracy, balanced accuracy, precision, recall and Fj-score per classes,
resolution 32 x 32 pixels

Class Accuracy|Bal.Acc.|Precision|Recall| ' -score
Smoke 0.961 0.679 0.295 0.383 | 0.333
Clouds and fog 0.914 0.792 0.591 0.636 | 0.612
Sun and light effects 0.952 0.857 0.841 0.732 | 0.782
Sky 0.963 0.854 0.736 0.727 | 0.731
Sea 0.975 0.709 0.631 0.425 | 0.508
Dst. landscape 0.928 0.744 0.625 0.520 | 0.568
Rocks 0.945 0.767 0.685 0.556 | 0.614
Dst. vegetation 0.827 0.662 0.511 0.408 | 0.454
Close vegetation 0.865 0.775 0.550 0.646 | 0.594
Low veg. and agriculture|| 0.919 0.695 0.546 0.424 | 0477
Buildings 0.944 0.671 0.736 0.352 | 0.477
Average 0.927 0.746 0.613 |0.528 | 0.559

More stable results are achieved when the classifier is trained on image size
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64 x 64 pixels, as shown in Table 3. Precision is significantly better for all classes,
and the improvement in Recall is visible for all classes for which the classifier
achieved relatively weak results in 32 x 32 sample image resolution. Recall re-
mains constant for classes with good results for image size 32 x 32 pixels and
even falls for the best performing category in lower resolution.

Table 3: Accuracy, ballanced accuracy, precision, recall and Fj-score per classes,
resolution 64 x 64 pixels

Class Accuracy|Bal.Acc.|Precision|Recall| F-score
Smoke 0.961 0.754 0.476 0.530 | 0.502
Clouds and fog 0.916 0.797 0.673 0.639 | 0.655
Sun and light effects 0.943 0.828 0.872 0.671 | 0.758
Sky 0.964 0.853 0.809 0.721 | 0.763
Sea 0.977 0.808 0.728 0.624 | 0.672
Dst. landscape 0.919 0.785 0.710 0.605 | 0.653
Rocks 0.940 0.775 0.790 0.567 | 0.660
Dst. vegetation 0.820 0.722 0.621 0.541 | 0.579
Close vegetation 0.871 0.776 0.651 0.627 | 0.639
Low veg. and agriculture|| 0.912 0.731 0.613 0.500 | 0.551
Buildings 0.930 0.740 0.775 0.499 | 0.607
Average 0.923 0.779 0.702 |0.593 | 0.640

The results for the classifier trained with the sample image size of 128 x
128 pixels are shown in Table 4. The classifier improves the performance for
classes for which its performance was weaker on lower sample image size. The
classifier performance remains relatively constant or even slightly decreases for
classes for which it achieved good performance on smaller image size. The overall
results for different classes are very stable. The ratio of the worst to best per
class performance in F} score is 0.85, compared to the results in sample image
resolution 32 x 32 where the classifier performance for class Smoke is only 0.44
of the performance for class Sun and light effects in Fj-score.

Even though the motivation for the work proposed in this paper was rooted
in our intention of improving the accuracy of our image processing based wildfire
smoke recognition system, we can see from Tables 2, 3 and 4 that the overall F}-
scores for class Smoke are lower than the Fj-scores for other classes. Even though
these results seem counterintuitive for the task at hand, we can still use the
proposed method to classify classes other than Smoke, and then use additional
image processing techniques on the remaining regions to detect Smoke. In other
words, the proposed method can be used as a preprocessing step for Smoke
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Table 4: Accuracy, balanced accuracy, precision, recall and Fj-score per classes,
resolution 128 x 128 pixels

Class Accuracy|Bal.Acc.|Precision|Recall| ' -score
Smoke 0.954 0.792 0.705 0.603 | 0.650
Clouds and fog 0.891 0.782 0.651 0.625 | 0.638
Sun and light effects 0.919 0.778 0.867 0.572 | 0.689
Sky 0.941 0.786 0.773 0.592 | 0.670
Sea 0.974 0.828 0.820 0.664 | 0.734
Dst. landscape 0.881 0.800 0.723 0.665 | 0.693
Rocks 0.926 0.782 0.868 0.579 | 0.695
Dst. vegetation 0.801 0.767 0.699 0.672 | 0.685
Close vegetation 0.853 0.793 0.697 0.679 | 0.688
Low veg. and agriculture 0.897 0.772 0.684 0.594 | 0.636
Buildings 0.905 0.795 0.810 0.622 | 0.704
Average 0.904 0.789 0.754 |0.624 | 0.680

detection, i.e. it can be used as a method that can clean the input image by
detecting the majority of the non-Smoke pixels.

Table 5 shows the comparison of results achieved in this work to other deep
learning based image classification method discussed in Section 2. It should be
noted that, although these problem share common characteristics, each of them
has its own specificities. Thus the results given in this table are not directly
comparable but are only illustrative to evaluate the method efficiency.

Another disadvantage of this comparison is that most of the authors give only
accuracy as the measure of algorithm performance. Even though the average ac-
curacy is often used as an evaluation measure of image classification algorithms,
high accuracy does not necessarily mean high correctness of the algorithm pre-
dictions, as discussed previously in this paper. Other statistical measures should
also be considered in the evaluation process in order to give a complete picture of
the algorithm performance. An illustrative example of this are the results of the
proposed classifier for different image resolutions. Highest accuracy is achieved
on resolution 32 x 32. However, precision, recall and consequently Fj-score are
much better for higher image resolutions.

A clearer picture of the effectiveness of the proposed method can be obtained
by comparing it with the results achieved by Cogent confabulation based expert
system for segmentation and classification of natural landscape images [Braovi¢
et al. 2017]. This expert system was developed and evaluated using the same
FESB MLID dataset, and the evaluational results are given in Fj-score. The
system achieved 0.441 in Fj-score, while the proposed method achieves average
Fy-score from 0.575 for image size 32 x 32 pixels to 0.677 for image resolution of



Krstinic D., Braovic M., Bozic-Stulic D.: Convolutional Neural Networks ...

261

Table 5: A comparison of the proposed work with various deep learning based

image classification methods

Method Accuracy ||Precision||Recall|| [} -score
Kendall et. al. [Kendall et al. 2015] 0.763 / / /
(on CamVid dataset)
Kendall et al. [Kendall et al. 2015] 0.450 / / /
(on SUN RGB-D dataset)
Liu et al. [Liu et al. 2018 0,056 / / )
(on UCM dataset)
Liu et al. [Liu et al. 2018]
(on Google SIRI-WHU dataset when|| 0.948 / / /
trained on 80% of the samples)
Liu et al. [Liu et al. 2018]
(on Google SIRI-WHU dataset when|| 0.934 / / /
trained on 50% of the samples)
Liu et al. [Liu et al. 2018] 0.850 / / /
(on Wuhan IKONS dataset)
Liu and Li [Liu and Li 2018| 0.863 / / /
Braovi¢ et al. [Braovi¢ et al. 2017]
(our previous work that does not / / / 0.441
use deep learning)
Proposed method

0.929 0.619 0.548 0.575
(32 x 32)
Proposed method

0.925 0.702 0.596 0.642
(64 x 64)
P d method

roposed metlo 0.902 0.750 || 0.623 || 0.677

(128 x 128)

128 x 128 pixels.

5 Conclusions and Future Work

In this paper we presented our research on the exploration of the possibility of

application of convolutional neural networks to the analysis of natural landscape
images. Automatic classification of this type of images comes with its own set
of challenges and differs from the classification of urban, indoor or close range
scenes. Specific challenges related to the natural landscape image classification
make if difficult to develop an unambiguous evaluation methodology or to com-
pare evaluation results to other classification methods. Many published methods
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on natural landscape image classification offer only the average accuracy as a
statistical measure of their performance. We found that this measure is not infor-
mative enough even if it is computed on a per class basis (i.e. if the accuracy is
computed separately for each class). Furthermore, relaying solely on the measure
of accuracy could even mislead the evaluation and suggest that the classifier per-
forms acceptably well even though it could have high rates of both false positive
and false negative errors for particular classes. Because of these shortcomings
attached to the accuracy measure, in this paper we rely on Precision, Recall and
F-score measures. These measures give us a more clear insight into the classifier
performance for different classes and different input image sizes. Furthermore, we
compared the results obtained by the proposed method to the results obtained
by similar methods.

Comparative analysis of the classifier performance for different input image
sizes highlights the fact that the best performance for different natural landscape
image classes is achieved at different scales. These scales do not necessarily coin-
cide with the sizes of landscape types or phenomena. For example, class Smoke
is usually very small in size but is best recognized on larger input image sizes,
while other classes that normally occupy larger areas on input images (e.g. Sun
and light effects or Sky) are best recognized on smaller input image sizes. The
reasons behind this can be found in the internal ability of the classifier to re-
veal contextual features that are not visible on smaller image samples. It is also
possible that the phenomena that is small in size and covers only a small area
of a high resolution image and coupled with a small sample image size results
in a low number of training data samples containing this category. This conse-
quently results in a low classifier performance for that class. For larger image
sizes phenomena is contained in more training samples and this results in a
better performance.

Achieved results strongly support further research in this direction as they
are much higher than the ones obtained on the same dataset by a Cogent Con-
fabulation based expert system. Based on the research presented in this paper,
we have set the guidelines for further work. First of all, to continue research in
this direction it is necessary to extend the dataset of natural landscape images.
This is not only important for training neural network models, but also to es-
tablish a standardized testbed and methodology to be able to compare different
methods. This methodology should comprise and reveal fine details of the per
class classifier performance and give clear and comparable results for different
classifiers.

Result achieved by a DNN model trained on general image dataset and trans-
fer learning approach supports further research on the topic discussed in this
work. However, further efforts will be steered towards the development of a
novel neural network model specifically designed for natural landscape image
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classification which will incorporate specificities of the problem. Regardless of
the architecture, designed deep learning model should work on multi-scale reso-
lution, detecting features and assigning class labels on different resolutions.
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