
Ant-Set: A Subset-Oriented Ant Colony Optimization

Algorithm for the Set Covering Problem

Murilo Falleiros Lemos Schmitt

(Department of Informatics, Federal University of Paraná
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Abstract: This paper proposes an algorithm for the set covering problem based on
the metaheuristic Ant Colony Optimization (ACO) called Ant-Set, which uses a line-
oriented approach and a novelty pheromone manipulation based on the connections
between components of the construction graph, while also applying a local search. The
algorithm is compared with other ACO-based approaches. The results obtained show
the effectiveness of the algorithm and the impact of the pheromone manipulation.

Key Words: Ant Colony Optimization, Ant-Set, Set covering problem, Pheromone
manipulation, Line-orientation

Category: G.1, G.1.6

1 Introduction

NP-hard combinatorial optimization problems demand exact algorithms in su-

perpolynomial time to obtain an optimal solution, unless P = NP [Cormen
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et al., 2009]. This is the case of the Set Covering Problem (SCP) [Garey and

Johnson, 1979], in which given a binary matrix, consists in finding a subset of

its columns, where each column has an associated cost, that cover all its lines

while minimizing the cost. The SCP is applicable to several practical situations

such as crew scheduling problems [Desrochers and Soumis, 1989, Housos and

Elmroth, 1997]. In these practical cases, the instance problems can reach huge

sizes, making the use of exact algorithms impracticable.

An alternative to obtain satisfactory solutions to NP-hard problems in ac-

ceptable time is the use of metaheuristics, such as Ant Colony Optimization

(ACO) [Dorigo et al., 2006]. Metaheuristics are a set of algorithmic and data

structure concepts to develop and apply heuristic algorithms to satisfactory re-

solution of NP-hard problems.

In the present paper, we propose the Ant-Set algorithm, an ACO-based al-

gorithm applied to the SCP with two main features: (1) line-orientation, that

is, the construction of solutions is based on the selection of uncovered lines by

a solution of a SCP instance; and (2) pheromone manipulation associated with

the connections between components of the construction graph, which indicates

the desirability of including sets of components together to a solution. Ant-Set is

also applied with a local search based on the work of [Jacobs and Brusco, 1995]

that alters the obtained solution according to a column-cost threshold, in order

to improve the solutions obtained by the artificial ants.

The proposed algorithm is compared with other line-orientation ACO-based

approaches. The results of the experiments show the effectiveness of the proposed

approach, which is capable of obtaining the optimal solutions to several instance

classes. The results also suggest that the proposed pheromone manipulation

explore more combinations of sets of columns in the solution space.

The rest of the paper is organized as follows: Sections 2, 3 and 4 present the

theoretical foundations of this work. Section 5 presents related work. Section 6

presents the proposed approach. Section 7 reports the experiments and results

of the proposed approach and comparisons with other ACO-based approaches.

Conclusions and future works are presented in the Section 8.

2 The Set Covering Problem

The integer linear optimization problem SCP is a NP-hard problem [Cormen

et al., 2009], that belongs to the category of subset problems, in which a solution

to the problem is given by a subset of available items, subject to the specific

constraints of the problem.

The SCP can be defined by a binary m × n matrix A = [aij ], where each

element can be 0 or 1. Each column of the matrix A is associated with a non-

negative cost cj . A column j covers a line i if aij = 1. The objective is to choose
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a subset of columns - which can be represented by the indexes s ⊆ {1, . . . , n} -

minimizing the sum of their costs, in a way that each line is covered by at least

one column. The SCP can be formulated according to the Equations (1), (2) and

(3):

min

n
∑

j=1

cjxj (1)

s.t.
n
∑

j=1

aijxj ≥ 1 i = 1..m, (2)

xj ∈ {0, 1} j = 1..n, (3)

where the constrains in Equation (2) define that each row must be covered by

at least one column, and by Equation (3), the decision variables xj can assume

only the values of 0 or 1. We also define M as the set of all the lines and N as

the set of all the columns.

The SCP is important due to the fact that is applicable to several practi-

cal situations, such as: urban transit crew scheduling problem [Desrochers and

Soumis, 1989], crew scheduling in airlines [Housos and Elmroth, 1997], loca-

tion of emergency services facilities [Toregas et al., 1971], information retrieval

[Al-Sultan et al., 1996], test set compaction [Flores et al., 1999] and location of

components of an integrated circuit [Francis and White, 1977].

3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic based on the behavior of

ant colonies and has the objective of finding solutions to discrete combinatorial

optimization problems. The behavior of different species of ants is based on the

indirect communication through a chemical substance called pheromone. While

an ant makes a route in search for sources of food, it deposits pheromone on the

surface, making a pheromone trail. Other ants smells the deposited pheromone

and tend to choose the path with a higher amount of pheromone [Dorigo and

Stützle, 2004].

In ACO algorithms, artificial ants cooperate between them in order to obtain

good solutions to optimization problems. An artificial ant can be seen as a pro-

cedure that constructs a solution iteratively by adding components to a partial

solution. The ACO metaheuristic can be applied to any combinatorial optimiza-

tion problem in which a constructive heuristic can be used [Dorigo and Stützle,

2004].
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In ACO algorithms the time is usually discrete and the artificial ants have

the capacity of memorizing the constructed path. During the solution constru-

ction, the ants guide themselves by the heuristic information and by the existent

pheromone on the path.

After the solutions are constructed, it occurs the evaporation of a portion of

the current pheromone and, after that, the deposit of pheromone by a subset of

ants is made. The generic ACO metaheuristic is presented in Algorithm 1.

Algorithm 1 Generic ACO metaheuristic for static problems [Dorigo and

Stützle, 2004]

ACO metaheuristic

1 Initialize parameters

2 Initialize pheromone trails

3 while termination condition not met

4 Construct ants solutions

5 Apply local search (optional)

6 Update pheromone trails

The entire process results in a system that exhibits autocatalytic behavior:

the artificial ants reinforce the pheromone deposited on the best solutions, re-

sulting in convergence. ACO can be considered simultaneously a metaheuristic

with both improving and constructive features, since it constructs new solutions

at each iteration using information from previously constructed solutions.

The Ant System [Colorni et al., 1991, Dorigo, 1992, Dorigo et al., 1996] is the

first proposed ACO algorithm, which was firstly applied to the Travelling Sale-

sman Problem (TSP). After that, many variations were created for different pro-

blems, such as the Max-Min Ant System (MMAS) [Stutzle and Hoos, 1998], Ant

Colony System (ACS) [Dorigo and Gambardella, 1997], a hybrid of MMAS and

ACS (MMACS) [Stützle and Hoos, 2000], Approximated Nondeterministic Tree

Search (ANTS) [Maniezzo, 1999], beyond many others. There is also the appli-

cation of ACO to diverse categories of problems, such as SCP [Leguizamon and

Michalewicz, 2000], the Multidimensional Knapsack Problem (MKP) [Solnon

and Bridge, 2006] and the Quadratic Assignment Problem (QAP) [Maniezzo

and Colorni, 1999].

In order to apply ACO algorithms to combinatorial optimization problems,

a few important aspects must be considered [Dorigo and Stützle, 2004]: the

construction graph, which represents the paths where the artificial ants walk; the

constraints of the problem; the definition of the pheromone trails and heuristic
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information; the way the solutions are built; the pheromone update; and when

required, the local search.

4 The JB Local Search

The JB Local Search used in this paper is an adaptation of a local search scheme

called SEARCH Module presented in [Jacobs and Brusco, 1995]. In that work, the

authors propose a heuristic algorithm for the SCP based on Simulated Annealing

(SA), which uses the SEARCH Module to find a neighbor solution required by

the main algorithm.

The SEARCH Module consists of removing a number of columns from the

solution, based on a cost threshold obtained through the multiplication of the

total number of columns in the current solution by the parameter ρJB1 . Columns

which exceed the cost threshold are removed from the current solution. This

action will likely result in several lines being uncovered. The algorithm then

performs the covering of the newly uncovered lines according to a criteria based

on the cost of the worst column on the solution multiplied by the parameter

ρJB2 . The result of this multiplication is the maximum cost allowed to a column

to be included. The feasibility of the solution is regained by adding candidate

columns based on its cover cost.

5 Related Work

One of the first papers about the use of heuristic algorithms to SCP was the

work of [Chvatal, 1979], that implemented a greedy algorithm. [Balas and Ho,

1980] also developed a greedy algorithm, based on five new greedy functions.

The paper of [Vasko, 1984] explored the heuristics of [Chvatal, 1979] and [Balas

and Ho, 1980], with new greedy functions and a procedure to remove redundant

columns of a feasible solution.

The SCP has been explored with several different approaches. In [Feo and Re-

sende, 1989], the authors proposed a non-deterministic variation of the [Chvatal,

1979] heuristic where a local search was developed. [Beasley, 1990a] and [Ha-

ddadi, 1997] developed algorithms based on Lagrangian heuristics. The work

of [Jacobs and Brusco, 1994] implemented a Simulated Annealing algorithm.

[Beasley and Chu, 1996], [Al-Sultan et al., 1996] and [Aickelin, 2002] developed

procedures based on Genetic Algorithms. [Yagiura et al., 2006] developed a 3-

flip neighborhood local search, with the application of Lagrangian relaxation to

reduce the problem size through the use of the subgradient method. In [Sundar

and Singh, 2012], the authors proposed an algorithm based on the Artificial Bee

Colony metaheuristic, with the application of a local search based on the work by

[Ren et al., 2010] to improve the quality of the solutions. The authors compared
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their results with several different approaches. The work of [Lanza-Gutierrez

et al., 2017] analysed the effects of binarization methods of metaheuristics. To

that end, the authors implemented a Binary Cat Swarm Optimization algorithm

for the SCP, and applied several different binarizarion approaches. For compre-

hensive reviews to the SCP, we refer the reader to the works of [Caprara et al.,

2000] and [Farahani et al., 2012].

Several ACO-based algorithms were proposed to the SCP. The initial ones

followed the Ant System algorithm guidelines, proposed by [Leguizamon and

Michalewicz, 2000] and [Hadji et al., 2000], as showed by [Dorigo and Stützle,

2004]. The results presented by [Leguizamon and Michalewicz, 2000] and [Hadji

et al., 2000] are not competitive with other approaches such as of [Caprara et al.,

1999] and [Marchiori and Steenbeek, 2000]. Another study derived from [Hadji

et al., 2000] is presented in the work of [Rahoual et al., 2002].

An application of the MMAS to the SCP is made by [Lessing et al., 2004],

comparing the application of the ACS, MMACS and ANTS to the SCP with

seven types of heuristic information. They also utilized a local search based on

[Yagiura et al., 2006]. The best results were obtained with the heuristic informa-

tion that uses Lagrangian relaxation [Fisher, 1981].

The work of [Aickelin, 2002] suggests choosing columns to the partial solution

through line-orientation. In that sense, [Ren et al., 2008] proposed the ACO-

based algorithm Ant-Cover (AC). In the work of [Ren et al., 2010], the AC with

a local search is compared with other metaheuristics approaches and with an

ACO approach from [Crawford and Castro, 2006], with the AC obtaining better

results. In [Mulati and Constantino, 2011], the authors proposed the Ant-Line

algorithm, an ACO-based algorithm with line-orientation that uses a greedy

heuristic information [Balas and Ho, 1980] with the application of a local search

based on the work of [Jacobs and Brusco, 1995]. The authors compared the Ant-

Line with the Ant-Cover, obtaining competitive results. In [Al-Shihabi et al.,

2015] the authors proposed the LP-MMAS-LS algorithm. The LP-MMAS-LS is

a hybrid of the MMAS [Stützle and Hoos, 2000], with the construction graph

and the local search used by [Ren et al., 2010], while also using information from

Lagrangian relaxation to reduce the size of the problem. The LP-MMAS-LS is

compared with the approaches of [Ren et al., 2010] and [Sundar and Singh, 2012],

obtaining superior results.

6 Proposed Method

In this section, we present the proposed method, the Ant-Set algorithm. The

algorithm is based on the Ant-Line algorithm, proposed by [Mulati and Cons-

tantino, 2011], which constructs its solution based on line-orientation. We first

present an overview of the Ant-Line, followed by the Ant-Set.
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6.1 Ant-Line

The Ant-Line [Mulati and Constantino, 2011] is an ACO based algorithm applied

to the SCP. The main novelty of the algorithm is a feature called line-orientation,

which differs from other ACO approaches since instead of constructing solutions

by adding sets of columns to the partial solution, the Ant-Line first chooses a

line uncovered by the current solution, and after that, chooses a column to cover

this specific line.

In the Ant-Line, the columns of SCP are mapped as the solution compo-

nents. All these components are in the set C and composes the vertices of the

construction graph, which is a complete graph. The pheromone value of a com-

ponent j is denoted by τj and indicates some desirability developed by the ants

of including j in a solution, thus the ants deposit and consult pheromone over a

component.

Each ant k is guided by a value called information choice: this value is given

by ταj η
β
j , which indicates the pheromone trails and heuristic information com-

bined desirability of including the component j in the solution sk, where α and

β are parameters that controls the importance of pheromone (τj) and heuristic

information (ηj), respectively. The heuristic information used by the Ant-Line

is the dynamic heuristic information cover cost (CC) [Balas and Ho, 1980]. CC

is related to each column, and is given by Equation (4):

ηj =
cardj(s)

cj
(4)

where cj is the cost of column j, cardj(s) is the cardinality of the column j, that

is, the number of lines that are covered by the column j but are not covered by

any column in the partial solution s.

In a construction step, the Ant-Line takes into account information beyond

the information choice. Each ant k is a constructive method that at each step: (1)

randomly chooses a line e which is not covered yet by any column in the partial

solution and (2) chooses a column to cover this line by using a deterministic

decision rule based on the information choice.

The probability of selecting a line e is given by a uniform distribution, as

defined in Equation (5):

pke =







1

|M \R(sk)|
if e /∈ R(sk)

0 if e ∈ R(sk)
∀e ∈ M (5)

where R(sk) is the set of all lines that are already covered by a column in

sk. Following the selection of a line e, the algorithm defines a set of candidate

components, given by the Equation (6):

N(e, sk) = {j ∈ C : j /∈ sk, e /∈ R(sk), aej = 1} (6)
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The algorithm then deterministically selects a component from N(e, sk) fol-

lowing the Equation (7):

j = argmaxh∈N(e,sk)
{ταh η

β
h} (7)

The solution constructed by an artificial ant k repeats this process until the

feasibility of the solution sk is achieved. After the construction of the solution,

a local search can be applied, followed by the elimination of redundant compo-

nents.

After the construction of feasible solutions by all the ants, the pheromone

trails are updated by respectively evaporation and deposit operations. The eva-

poration is done according to Equation (8):

τj = (1− ρ)τj ∀j ∈ C (8)

where ρ is the evaporation rate, a parameter of the algorithm.

Following the evaporation, the deposit of pheromone is performed. The so-

lution to be reinforced is chosen between the best solution made by an artificial

ant in the current iteration (s ′) or the best solution so far made by an ant (s∗).

Initially, s ′ is reinforced more often than s∗. A gradual exchange on this fre-

quency is done based on the maximum number of iterations of the algorithm.

Assuming that the value of s is already selected between s′ and s∗, the deposit

of pheromone is done by only one ant, according to the Equation (9):

τj = τj +

(

f(s∗)

f(s)

)y

∀j ∈ s (9)

where y is a parameter which regulates the value to be deposited in the compo-

nents of the solution.

6.2 Ant-Set

Different ways to manipulate pheromone for the SCP are proposed in [Mulati,

2009]. One of the proposed manipulation is the use of consult, evaporation and

deposit operations of pheromone on the connections (relationship) between all

column pairs of a solution of the problem. In the present paper, we apply this

pheromone manipulation and use the Ant-Line constructive procedure, resulting

in the Ant-Set algorithm.

In the Ant-Set, the pheromone trails are associated with the edges (con-

nections between components) of the constructive graph, which indicates the

desirability of including sets of components together in the solution.

The Ant-Set presents similar behavior to the Ant-Line, with differences on the

pheromone manipulation, and consequently in the construction of the solutions

by the artificial ants. The manipulation of pheromone between all column pairs

300 Schmitt M.F.L., Mulati M.H., Constantino A.A., Hernandes F., Hild T.A.  ...



results in each existent column in the partial solution under construction having

direct influence in the evaluation of the candidate columns, and consequently in

the selection of the next column to be added to the solution.

In the Ant-Set decision rule, after selecting the line, according to Equation

(5), the artificial ant must evaluate each candidate column considering the exis-

tent pheromone in the connections (edges) between all columns existent in the

partial solution and the candidate column. In the first iteration of the algorithm,

given that the pheromone deposited between all connections is the same, the first

column to be added to the solution is selected randomly. The pheromone consult

operation is defined according to Equation (10):

τsk j =
∑

i∈sk

τij (10)

where j is the candidate column and sk is the partial solution under construction

by the ant k .

The pheromone evaporation in the Ant-Set is made over the connections

between all existing column pairs in the instance of the problem, as given in

Equation (11):

τij = (1− ρ)τij ∀i, j ∈ C (11)

In the pheromone deposit, each artificial ant assigned to effectuate the deposit

must deposit pheromone in all the connections between the existent columns in

the obtained solution, as defined in Equation (12):

τij = τij +

(

f(s∗)

f(s)

)y

∀i, j ∈ s (12)

The pheromone manipulation has a direct impact on the way of choosing

a component to a partial solution. In the Ant-Line, the pheromone deposit is

made on the solution columns, that is, the algorithm evaluate the desirability

of adding a specific component to the solution. Conversely, the manipulation of

pheromone between connections of all solution column pairs refers to the desira-

bility of choosing certain columns together to the same solution. A visualization

of the pheromone deposits for algorithms Ant-Line and Ant-Set, respectively, is

presented in Figure 1.

The Ant-Set is presented in Algorithm 2. The algorithm has three stopping

criteria as stated in the while loop in line 4: maximum time (mt), maximum num-

ber of iterations (mi) and maximum number of iterations without improving the

solution s∗, which is defined by the procedureReachMaxItsWithoutImprov()

and the parameter miwi. The for loop in the lines 6-15 makes the artificial ants

construct their solutions considering the number of ants defined by the parame-

ter nants, following the Equations (5), (6), (7) and (10).
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Figure 1: Pheromone deposit operation for the Ant-Line and Ant-Set algorithms,

respectively. In the Ant-Line, the pheromone is deposited on the vertices of

a solution in the construction graph, while in the Ant-Set the pheromone is

deposited on all the edges among the vertices of a solution [Mulati, 2009].

The rest of the algorithm, defined in the lines 16-21, refers to the pheromone

manipulation, following Equations (11) and (12), and the selection of the best

found solution. The procedure ChooseByFrequency(), presented in the line

19, selects the solution to be reinforced according to the Equation (12).

The procedure uses the parameter nich, which indicates the number of ite-

rations of an interval used to change the updating solution. The value of s is

selected as follows. In the first interval, s′ is used for all the iterations, while

s∗ is not used. At each succeeding interval, the number of iterations to use s∗

is incremented by 1 and the number of iterations in the interval to use s′ is

decremented by 1, and this rule runs until the end of the execution.

7 Experiments and Results

In this section, we report the experiments carried with the Ant-Set, the metho-

dology adopted and the results obtained. We compare the results of the Ant-Set

with other ACO-based approaches and also present a discussion based on the

results.

7.1 Methodology

The Ant-Set was implemented in C++11 language and the experiments were

carried on a computer Intel Core i7-4770 of 3.4 GHz with 16 GB of main memory

running Ubuntu 16.04 as the operational system.

The experiments were carried with 70 SCP instances from OR-Library1

[Beasley, 1990b]. Information regarding the instances are presented in Table

1 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html, accessed in
August, 2018
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Algorithm 2 Ant-Set

AntSet(scp-instance, parameters)

1 τj = 1 ∀j ∈ C

2 f(s∗) = ∞

3 i = 0

4 while i < mi and not ReachMaxItsWithoutImprov(i , s∗,miwi) and

TimeElapsed() < mt

5 f(s ′) = ∞

6 for k = 1 to nants

7 sk = ∅

8 while sk is not feasible

9 e = Randomly choose a line which is not covered by any

column in the sk, as in Eq. (5)

10 j = argmaxh∈N(e,sk)
{ταh η

β
h}, where N(e, sk) contain all the

columns that cover the line e, except the ones in sk, as in

Eqs. (6), (7) and (10)

11 sk = sk ∪ {j}

12 ApplyJbLocalSearch(sk , ρ
JB
1 , ρJB2 )

13 EliminateRedundantColumns(sk )

14 if f(sk ) < f(s ′)

15 s ′ = sk
16 if f(s ′) < f(s∗)

17 s∗ = s ′

18 τij = (1− ρ)τij ∀i, j ∈ C (as in Eq. (11))

19 s = ChooseByFrequency(i , nich, s ′, s∗)

20 τij = τij +
(

f(s∗)
f(s)

)y

∀i, j ∈ s (as in Eq. (12))

21 i = i + 1

22 return s∗

1. The first column (C) indicates the instance classes, where the SCP 4 and 5

classes contains 10 instances each and the remaining classes contains 5 instances.

The second column (OBK of SCP Instances) indicates the optimal or best known

solution (OBK) for each instance of the class, where values in bold indicates that

a optimal solution is known, according to [Ren et al., 2010]. The third column

shows the sizes of the instances (m×n) and the last column presents the density

of each instance in percentage (D%). We perform pre-processing to reduce a SCP

instance in the same way as described in [de Oliveira, 1999].

For each instance, the algorithm was executed 10 times, each time with a
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different random seed. From these 10 executions, for each instance, we extract

the mean time of execution, the mean quality of the solutions, the value of

the worst found solution, the number of iterations taken to find the first best

solution, the time taken to find the first best solution and the value of the best

found solution.

Table 1: Classes of SCP instances

C OBK of SCP Instances m× n D

1 2 3 4 5 6 7 8 9 10 %

4 429 512 516 494 512 560 430 492 641 514 200 × 1000 2

5 253 302 226 242 211 213 293 288 279 265 200 × 2000 2

6 138 146 145 131 161 200 × 1000 5

a 253 252 232 234 236 300 × 3000 2

b 69 76 80 79 72 300 × 3000 5

c 227 219 243 219 215 400 × 4000 2

d 60 66 72 62 61 400 × 4000 5

e 5 5 5 5 5 50 × 500 20

nre 29 30 27 28 28 500 × 5000 10

nrf 14 15 14 14 13 500 × 5000 20

nrg 176 154 166 168 168 1000 × 10000 2

nrh 63 63 59 58 55 1000 × 10000 5

In [Mulati and Constantino, 2011], the parameters nants , α, β, ρ, and y are

fixed and based on the literature as well as on some preliminary experiments,

while calibration is done over the parameters related to iterations and times. In

the present paper, we calibrate and use the same set of parameters for every

SCP instance. We set the maximum time of execution (mt) to 1800 seconds and

the maximum number of iterations (mi) to 900. The remaining parameters were

tuned through the irace package [López-Ibáñez et al., 2016] on a subset of SCP

instances. The parameters number of ants (nants), importance of pheromone

(α), importance of heuristic information (β), evaporation rate (ρ), pheromone

deposit rate (y), number of iterations of an interval to change the updating

solution (nich) and maximum number of iterations without improvement (miwi)

were set to be tuned over the variations that follows:

– nants ∈ {4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64};

– α ∈ [1, 16];

– β ∈ [1, 16];
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– ρ ∈ [0.1, 0.9];

– y ∈ [2, 4];

– nich ∈ [5, 30];

– miwi ∈ {5, 7, 10, 13, 20, 29, 39, 58, 80, 115, 180}.

The parameters that achieved the best results are: nants = 60, α = 1,

β = 14, ρ = 0.2, y = 2, nich = 16 and miwi = 115. For the JB local search,

we executed experiments with the four combinations of parameters presented in

[Jacobs and Brusco, 1994] and found that the best results were obtained with

ρJB1 = 0.4 and ρJB2 = 1.1.

7.2 Results

The results obtained in the experiments with the Ant-Set without and with local

search, respectively, are presented in Table 2. Each row presents the results for

one instance class, where the results are averaged by the number of instances

from the given instance class. The first column of Table 2 contains the SCP

instance class (C). The second column (#) presents the number of instances from

the referred instance class. The columns ATT, WS and AS contains summarized

data from the 10 trials executed over each instance from the class, where ATT is

the average time in seconds, WS is the distance between the worst solutions and

the OBK in percentage, and AS is the distance between the average solutions

and the OBK in percentage.

The remaining columns, IFB, TFB and BS contains information from the

best trial of each run. IFB is the number of iterations to find the first best

solution, TFB is the time taken, in seconds, to find the first best solution and

BS is the percentage distance between the best solutions and the OBK.

The results presented in Table 2 are grouped by instance class. The detailed

results obtained with the Ant-Set for the 70 SCP instances are presented in

Appendix A on Tables 5, 6 and 7.

7.2.1 Ant-Set

Observing the results presented in Table 2 it is possible to see that, without

the application of the JB local search, the Ant-Set obtained results in average

(AS%) 0.63% distant from the OBK solutions. Considering the worst obtained

solutions in the runs (WS%), the results are 1.19% distant from the optimal

solutions, while the best obtained solutions (BS%) are 0.24% distant from the

optimal solutions. The Ant-Set algorithm obtained the optimal solutions for 8

of the 12 SCP instance classes, with an average execution time of 5.8 seconds.
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Table 2: Results by Ant-Set without and with JB local search grouped by SCP

class.

Ant-Set (without JB) Ant-Set+JB

C # ATT WS AS IFB TFB BS ATT WS AS IFB TFB BS

s % % s % s % % s %

4 10 0.5 0.22 0.06 31 0.1 0 9.4 0.23 0.10 26 1.6 0.02

5 10 0.9 0.31 0.09 31.5 0.2 0 16.3 0.35 0.08 21.2 2.0 0

6 10 0.6 0.56 0.14 11.4 0.0 0 4.7 0 0 8.8 0.3 0

a 5 2.0 0.65 0.40 30.8 0.4 0.25 37.5 0.49 0.21 45.8 10.7 0

b 5 2.0 0.25 0.02 3.0 0.0 0 14.1 0 0 1.6 0.2 0

c 5 3.8 0.97 0.25 54.0 1.0 0 69.9 0.26 0.12 58.4 21.5 0

d 5 3.5 0.91 0.33 7.8 0.2 0 25.8 0.58 0.09 6.8 1.2 0

e 5 0.2 0 0 1.0 0.0 0 0.5 0 0 1.0 0.0 0

nre 5 6.9 2.12 0.93 3.2 0.2 0 22.5 0 0 2.2 0.3 0

nrf 5 11.5 4.40 2.40 5.0 0.4 1.54 21.3 1.54 0.15 7.0 1.1 0

nrg 5 17.7 1.21 0.80 53.0 5.1 0.49 396.6 1.22 0.52 98.8 163.0 0.25

nrh 5 20.6 2.64 2.13 44.0 6.4 0.63 131.6 2.95 1.77 34.6 27.3 1.31

5.8 1.19 0.63 23.0 1.2 0.24 62.5 0.64 0.25 26.0 19.1 0.13

The application of the JB local search improves significantly the obtained

solutions in terms of solution quality. Considering the average, worst and best

solutions, the distances to the optimal solutions decreased to 0.25%, 0.64% and

0.13% respectively. The Ant-Set with the application of the JB local search was

also able to obtain the optimal solutions for more instance classes, finding the

optimal solutions for 9 of the 12 SCP instance classes, however, for the SCP 4

class, the algorithm lost the optimality for the solution of the best trial. While

the application of the JB procedure resulted in improvements to the solutions,

there was a high increase in execution time, with the algorithm taking in average

62.5 seconds to run, although that can be mainly attributed to the nrg class,

which took in average 396.6 seconds to execute.

It is worth noting that, for the Ant-Set with and without the application

of the JB local search, the stopping criteria was always number of iterations

without improvement (miwi parameter). In terms of iterations to find the first

best solution, considering the best trial of the run, the Ant-Set with and without

the JB procedure required in average almost the same number of iterations: 23

and 26, respectively.
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7.2.2 Comparison with Ant-Line

In order to compare the Ant-Set with the Ant-Line, we executed experiments

with the Ant-Line algorithm using the same methodology as described in Section

7.1, also setting the parametersmt to 1800 seconds andmi to 900, and using irace

[López-Ibáñez et al., 2016] to select the remaining parameters. The parameters

that obtained the best results for the Ant-Line are: nants = 64, α = 1, β = 15,

ρ = 0.1, y = 2, nich = 11 and miwi = 115. The results obtained by the Ant-

Line without and with the application of the JB procedure, grouped by instance

classes, are presented in Table 3.

Table 3: Results by Ant-Line without and with JB local search grouped by SCP

class.

Ant-Line (without JB) Ant-Line+JB

C # ATT WS AS IFB TFB BS ATT WS AS IFB TFB BS

s % % s % s % % s %

4 10 0.5 0.07 0.02 32.4 0.1 0 5.7 0.13 0.06 32.0 1.3 0

5 10 0.7 0.11 0.04 20.9 0.1 0.03 5.8 0.26 0.04 23.5 0.8 0

6 10 0.5 0 0 7.4 0.0 0 1.9 0 0 3.6 0.1 0

a 5 1.3 0.41 0.26 79.8 0.6 0 9.7 0.33 0.27 44.6 2.8 0.17

b 5 1.4 0 0 1.6 0.0 0 3.7 0 0 1.2 0.0 0

c 5 2.3 0.35 0.12 61.4 0.7 0 16.2 0.26 0.11 46.6 4.2 0.08

d 5 2.6 0.61 0.27 7.4 0.1 0 6.5 0.61 0.06 4.8 0.2 0

e 5 0.2 0 0 1.0 0.0 0 0.3 0 0 1.0 0.0 0

nre 5 5.4 2.12 0.77 1.4 0.1 0 10.1 0.74 0.07 2.0 0.2 0

nrf 5 9.2 2.97 2.40 2.8 0.2 1.54 15.9 2.97 0.45 2.6 0.3 0

nrg 5 9.1 1.22 0.76 64.0 3.1 0.49 61.9 1.11 0.56 86.0 22.7 0.13

nrh 5 13.4 2.64 1.77 26.4 2.6 0.63 32.4 2.29 1.64 23.0 4.9 1.31

3.9 0.88 0.53 25.5 0.6 0.22 14.2 0.72 0.27 22.6 3.1 0.14

The Ant-Line algorithm without the JB procedure, obtained results in ave-

rage 0.53% distant from the OBK solutions, with an average execution time

of 3.9 seconds. Considering the worst obtained solutions, the results are 0.88%

away from the OBK solutions, while the best solutions are 0.22% distant from

the OBK solutions. The Ant-Line with the application of the JB local search im-

proved the quality of the solutions, obtaining in terms of average, worst and best

solutions 0.27%, 0.72% and 0.14% distant from the OBK solutions, respectively,

with an average time of 14.2 seconds.

Comparing the results presented in Tables 2 and 3, without the JB local

search, it can be seen that the Ant-Line outperforms the Ant-Set. The Ant-Line
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algorithm obtained better solutions in terms of quality of the worst found solu-

tion, and slightly better results in terms of average quality and quality of the

best found solution. Considering the best found solutions, the Ant-Line obtained

slightly better results, while requiring in average more iterations to found the

best solutions (25.5). Both algorithms obtained the optimal solutions to 8 of

the 12 instance classes. In terms of execution time, the Ant-Line outperforms

the Ant-Set, with average times of execution of 3.9 and 5.8 seconds respec-

tively, although it is important to note that the computational complexity of

the pheromone operations is different for both algorithms.

The application of the JB local search improved the results of both algo-

rithms, with the Ant-Set obtaining the best results in terms of averaged solution

quality, quality of the worst found solution and quality of the best found so-

lution. Considering the best found solutions, the Ant-Set obtained the optimal

solutions to 9 of the 12 instance classes, while the Ant-Line obtained the optimal

solutions for 8 of the 12 classes. The main issue with the Ant-Set algorithm is

execution time: the Ant-Set is considerably slower, requiring in average 62.5 sec-

onds to execute, but that can be partially attributed to the nrg and nrh classes,

which require a high number of iterations to find the best solutions. The higher

amount of iterations required are associated with the pheromone manipulation,

which suggests that the pheromone manipulation based on the desirability of in-

cluding subsets of columns together to the solution results in a more diversified

exploration of the solution space.

7.2.3 Comparison with State-of-the-Art

Although there are other metaheuristics that present interesting results in terms

of solution quality and execution time [Sundar and Singh, 2012], our major

interest is comparing the Ant-Set with other ACO approaches. The current best

ACO algorithm to the SCP is the LP-MMAS-LS, proposed by [Al-Shihabi et al.,

2015]. The LP-MMAS-LS is a hybrid of the MMAS [Stützle and Hoos, 2000],

with the construction graph and the local search used by [Ren et al., 2010],

while also using information from Lagrangian relaxation to reduce the size of

the problem.

Table 4 presents results by the Ant-Set with the JB local search and the

LP-MMAS-LS, containing the average time of execution in seconds (ATT), the

distance between the average solutions and the OBK (AS) and the distance

between the best solutions and the OBK (BS), grouped by instance classes. The

information regarding the Ant-Set was extracted from Table 2, excluding the

SCP e instance class. The experiments for the LP-MMAS-LS were conducted

on a computer Intel Core i5-3210M of 2.5 GHz with 8 GB of main memory.

As reported in Table 4, the LP-MMAS-LS outperforms the Ant-Set. LP-

MMAS-LS is the first ACO algorithm to obtain the optimal solution for all 65
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instances [Al-Shihabi et al., 2015]. In comparison, the Ant-Set with JB local

search is able to obtain the optimal solution for 59 of the 65 instances, with the

best solutions being 0.14% distant from the optimal solutions.

In terms of average solution, the results are competitive, with the LP-MMAS-

LS obtaining results 0.22% distant from the OBK solutions and the Ant-Set

obtaining results 0.28% distant from the OBK solutions. Considering the average

time of execution, the LP-MMAS-LS significantly outperforms the Ant-Set. The

high amount of time required by the Ant-Set can be attributed to the JB local

search, while the low amount of time required by the LP-MMAS-LS is related

to the reduction in the number of columns.

Table 4: Results by Ant-Set with JB local search and LP-MMAS-LS [Al-Shihabi

et al., 2015] grouped by SCP class.

Ant-Set+JB LP-MMAS-LS

C # ATT AS BS ATT AS BS

s % % s % %

4 10 9.4 0.10 0.02 1.0 0 0

5 10 16.3 0.08 0 1.1 0 0

6 10 4.7 0 0 1.0 0 0

a 5 37.5 0.21 0 2.1 0.17 0

b 5 14.1 0 0 1.0 0 0

c 5 69.9 0.12 0 3.3 0.03 0

d 5 25.8 0.09 0 1.1 0 0

nre 5 22.5 0 0 1.3 0 0

nrf 5 21.3 0.15 0 1.3 0.46 0

nrg 5 396.6 0.52 0.25 11.1 0.50 0

nrh 5 131.6 1.77 1.31 6.8 1.25 0

68.2 0.28 0.14 2.8 0.22 0

8 Conclusions and Future Work

In this paper, we proposed an ACO-based algorithm to solve the SCP problem

called Ant-Set. The algorithm is based on line-orientation, that is, the constru-

ction of solutions is firstly based on the uncovered lines, while it also uses a

novelty way to manipulate pheromone, where the pheromone trails are associ-

ated with the connections between components of a constructive graph, which

indicates the desirability of including sets of components together to the solution.
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We performed experiments with 70 instances from OR-Library, while also

applying a local search in order to improve the solutions found by the artificial

ants. The results suggests that the proposed pheromone manipulation is capable

of exploring different combinations in the solution space, being able to obtain

optimal solutions for more instances classes than the Ant-Line algorithm and

also improving the quality of the obtained solutions.

Future works will consist in incorporate maximum and minimum limits to the

pheromone values, improving the heuristic information, including SCP and lin-

ear programming specific techniques, the application of different local searches,

adaptive adjustment of parameters during the execution of the algorithm, and

parallel implementations of the Ant-Set algorithm in order to improve execution

time.
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port.

References

[Aickelin, 2002] Aickelin, U. (2002). An indirect genetic algorithm for set covering
problems. Journal of the Operational Research Society, pages 1118–1126.

[Al-Shihabi et al., 2015] Al-Shihabi, S., Arafeh, M., and Barghash, M. (2015). An
improved hybrid algorithm for the set covering problem. Computers & Industrial
Engineering, 85:328–334.

[Al-Sultan et al., 1996] Al-Sultan, K., Hussain, M., and Nizami, J. (1996). A genetic
algorithm for the set covering problem. Journal of the Operational Research Society,
pages 702–709.

[Balas and Ho, 1980] Balas, E. and Ho, A. (1980). Set covering algorithms using cut-
ting planes, heuristics, and subgradient optimization: A computational study. Math.
Program. Study, 12:37–60.

[Beasley, 1990a] Beasley, J. (1990a). A lagrangian heuristic for set-covering problems.
Naval Research Logistics (NRL), 37(1):151–164.

[Beasley, 1990b] Beasley, J. (1990b). OR-Library: distributing test problems by elec-
tronic mail. Journal of the Operational Research Society, 41(11):1069–1072.

[Beasley and Chu, 1996] Beasley, J. and Chu, P. (1996). A genetic algorithm for the
set covering problem. European Journal of Operational Research, 94(2):392–404.

[Caprara et al., 1999] Caprara, A., Fischetti, M., and Toth, P. (1999). A Heuristic
Method for the Set Covering Problem. Operations Research, 47(5):730–743.

[Caprara et al., 2000] Caprara, A., Toth, P., and Fischetti, M. (2000). Algorithms for
the set covering problem. Annals of Operations Research, 98(1):353–371.

[Chvatal, 1979] Chvatal, V. (1979). A greedy heuristic for the set-covering problem.
Mathematics of operations research, pages 233–235.

[Colorni et al., 1991] Colorni, A., Dorigo, M., Maniezzo, V., et al. (1991). Distributed
optimization by ant colonies. In Proceedings of the First European Conference on
Artificial Life, pages 134–142. Paris, France: Elsevier Publishing.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to Algorithms. MIT Press, Cambridge, Massachusetts, 3rd edi-
tion.

310 Schmitt M.F.L., Mulati M.H., Constantino A.A., Hernandes F., Hild T.A.  ...



[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to Algorithms, Third Edition. MIT Press, 3rd edition.

[Crawford and Castro, 2006] Crawford, B. and Castro, C. (2006). Integrating looka-
head and post processing procedures with aco for solving set partitioning and covering
problems. In International Conference on Artificial Intelligence and Soft Computing,
pages 1082–1090. Springer.

[de Oliveira, 1999] de Oliveira, N. V. (1999). Problema de Cobertura de Conjuntos –
Uma Comparação Numérica de Algoritmos Heuŕısticos. Master’s thesis, Universidade
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A Detailed Results by Ant-Set

This appendix presents the detailed results obtained in the experiments with

the Ant-Set. The results obtained without and with local search are reported on

Tables 5, 6 and 7, including the averaged data by SCP instance class.

The first column of those tables contains the SCP instance (C). The second

column presents the OBK for the referred instance, according to [Ren et al.,

2010]. The columns ATT, WS and AS contains summarized data from the 10

trials executed over an instance, where ATT is the average time from the trials

of the run in seconds, WS is the distance between the worst solution reported

by a trial of the run and the OBK of the instance in percentage, and AS is the

distance between the average solution of the run and the OBK of the instance

in percentage.

The remaining columns, IFB, TFB and BS contains information from the

best trial of the run, where IFB is the number of iterations to find the first best

solution of the trial, TFB is the time taken, in seconds, to find the first best

solution and BS is the percentage distance between the best solution find by the

trial and the OBK of the instance.

313Schmitt M.F.L., Mulati M.H., Constantino A.A., Hernandes F., Hild T.A.  ...



Table 5: Results by Ant-Set for the instances of SCP classes 4, 5 and 6.

Ant-Set (without JB) Ant-Set+JB

C OBK ATT WS AS IFB TFB BS ATT WS AS IFB TFB BS

s % % s % s % % s %

4.1 429 0.5 0 0 30 0.1 0 8.8 0.23 0.19 48 2.8 0

4.2 512 0.4 0 0 24 0.1 0 9.9 0 0 30 1.7 0

4.3 516 0.5 0.19 0.02 40 0.1 0 9.8 0.78 0.08 17 1.1 0

4.4 494 0.5 0.20 0.16 61 0.2 0 9.8 0.20 0.14 32 1.9 0

4.5 512 0.4 0.39 0.12 20 0.1 0 7.4 0.39 0.31 38 1.9 0

4.6 560 0.5 0.18 0.04 24 0.1 0 8.8 0 0 19 1.2 0

4.7 430 0.5 0.47 0.05 21 0.1 0 9.5 0.47 0.05 1 0.1 0

4.8 492 0.4 0 0 23 0.1 0 7.0 0.20 0.20 4 0.2 0.20

4.9 641 0.5 0.78 0.23 62 0.2 0 15.5 0 0 68 5.0 0

4.10 514 0.4 0 0 5 0.0 0 8.0 0 0 3 0.2 0

4 0.5 0.22 0.06 31 0.1 0 9.4 0.23 0.10 26 1.6 0.02

5.1 253 0.9 0 0 29 0.2 0 15.6 0 0 14 1.3 0

5.2 302 1.0 0.33 0.26 132 0.7 0 30.0 0.99 0.17 121 11.7 0

5.3 226 0.9 0.88 0.18 38 0.3 0 15.3 0.88 0.44 23 2.0 0

5.4 242 0.8 0 0 15 0.1 0 14.4 0.41 0.04 16 1.5 0

5.5 211 0.9 0.47 0.19 18 0.1 0 13.3 0.47 0.05 2 0.2 0

5.6 213 0.8 0 0 4 0.0 0 13.4 0 0 1 0.1 0

5.7 293 1.0 0.34 0.17 24 0.2 0 16.3 0.34 0.07 19 2.0 0

5.8 288 0.9 0.69 0.07 15 0.1 0 14.8 0 0 5 0.5 0

5.9 279 0.8 0.36 0.07 20 0.2 0 14.5 0.36 0.07 3 0.3 0

5.10 265 0.9 0 0 20 0.1 0 15.7 0 0 8 0.8 0

5 0.9 0.31 0.09 31.5 0.2 0 16.3 0.35 0.08 21.2 2.0 0

6.1 138 0.6 1.45 0.29 15 0.1 0 5.6 0 0 17 0.6 0

6.2 146 0.5 1.37 0.41 11 0.0 0 4.6 0 0 8 0.3 0

6.3 145 0.5 0 0 4 0.0 0 4.4 0 0 4 0.1 0

6.4 131 0.5 0 0 7 0.0 0 4.3 0 0 7 0.2 0

6.5 161 0.6 0 0 20 0.1 0 4.9 0 0 8 0.3 0

6 0.6 0.56 0.14 11.4 0.0 0 4.7 0 0 8.8 0.3 0
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Table 6: Results by Ant-Set for the instances of SCP classes a, b, c, d and e.

Ant-Set (without JB) Ant-Set+JB

C OBK ATT WS AS IFB TFB BS ATT WS AS IFB TFB BS

s % % s % s % % s %

a.1 253 1.8 1.19 0.75 41 0.5 0.40 44.3 0.79 0.32 85 20.4 0

a.2 252 2.3 0.79 0.08 48 0.6 0 37.6 0.79 0.16 32 9.7 0

a.3 232 2.0 0.43 0.43 24 0.3 0.43 31.8 0.43 0.39 27 6.4 0

a.4 234 1.8 0.43 0.43 14 0.2 0.43 41.4 0.43 0.17 70 14.1 0

a.5 236 2.0 0.42 0.30 27 0.3 0 32.7 0 0 15 3.1 0

a 2.0 0.65 0.40 30.8 0.4 0.25 37.5 0.49 0.21 45.8 10.7 0

b.1 69 2.1 0 0 1 0.0 0 13.2 0 0 1 0.1 0

b.2 76 2.1 0 0 5 0.1 0 14.7 0 0 2 0.2 0

b.3 80 2.0 1.25 0.12 2 0.0 0 13.5 0 0 1 0.1 0

b.4 79 2.1 0 0 5 0.1 0 15.6 0 0 3 0.3 0

b.5 72 1.9 0 0 2 0.0 0 13.4 0 0 1 0.1 0

b 2.0 0.25 0.02 3.0 0.0 0 14.1 0 0 1.6 0.2 0

c.1 227 4.0 0.88 0.18 59 1.1 0 88.9 0 0 90 34.2 0

c.2 219 4.0 1.37 0.50 79 1.5 0 76.1 0.91 0.27 68 23.4 0

c.3 243 4.1 1.65 0.41 64 1.2 0 71.8 0.41 0.33 97 35.4 0

c.4 219 2.7 0 0 24 0.4 0 53.1 0 0 11 3.6 0

c.5 215 3.9 0.93 0.14 44 0.9 0 59.4 0 0 26 10.6 0

c 3.8 0.97 0.25 54.0 1.0 0 69.9 0.26 0.12 58.4 21.5 0

d.1 60 3.8 1.67 0.67 17 0.4 0 28.3 0 0 9 1.6 0

d.2 66 3.6 1.52 0.15 7 0.2 0 25.5 1.52 0.15 8 1.3 0

d.3 72 3.6 1.39 0.83 7 0.3 0 29.5 1.39 0.28 15 2.7 0

d.4 62 3.2 0 0 2 0.0 0 22.3 0 0 1 0.3 0

d.5 61 3.3 0 0 6 0.1 0 23.7 0 0 1 0.1 0

d 3.5 0.91 0.33 7.8 0.2 0 25.8 0.58 0.09 6.8 1.2 0

e.1 5 0.2 0 0 1 0.0 0 0.5 0 0 1 0.0 0

e.2 5 0.2 0 0 1 0.0 0 0.5 0 0 1 0.0 0

e.3 5 0.2 0 0 1 0.0 0 0.5 0 0 1 0.0 0

e.4 5 0.2 0 0 1 0.0 0 0.5 0 0 1 0.0 0

e.5 5 0.2 0 0 1 0.0 0 0.6 0 0 1 0.0 0

e 0.2 0 0 1.0 0.0 0 0.5 0 0 1.0 0.0 0
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Table 7: Results by Ant-Set for the instances of SCP classes nre, nrf, nrg, and

nrh.

Ant-Set (without JB) Ant-Set+JB

C OBK ATT WS AS IFB TFB BS ATT WS AS IFB TFB BS

s % % s % s % % s %

nre.1 29 6.7 0 0 1 0.0 0 19.8 0 0 1 0.2 0

nre.2 30 7.5 3.33 0.67 6 0.4 0 24.3 0 0 3 0.5 0

nre.3 27 6.7 3.70 1.48 2 0.1 0 24.5 0 0 2 0.3 0

nre.4 28 6.8 3.57 2.50 6 0.3 0 23.8 0 0 4 0.6 0

nre.5 28 6.8 0 0 1 0.0 0 20.3 0 0 1 0.1 0

nre 6.9 2.12 0.93 3.2 0.2 0 22.5 0 0 2.2 0.3 0

nrf.1 14 11.4 0 0 1 0.1 0 20.1 0 0 1 0.1 0

nrf.2 15 11.5 0 0 1 0.1 0 20.0 0 0 1 0.2 0

nrf.3 14 11.8 7.14 3.57 19 1.6 0 20.7 0 0 3 0.5 0

nrf.4 14 11.5 7.14 0.71 3 0.3 0 19.8 0 0 1 0.1 0

nrf.5 13 11.1 7.69 7.69 1 0.1 7.69 26.0 7.69 0.77 29 4.7 0

nrf 11.5 4.40 2.40 5.0 0.4 1.54 21.3 1.54 0.15 7.0 1.1 0

nrg.1 176 15.0 0.57 0.06 33 3.2 0 293.8 0 0 32 52.0 0

nrg.2 154 17.7 1.30 0.91 41 4.1 0.65 414.2 1.30 0.91 87 142.0 0.65

nrg.3 166 22.0 3.01 1.93 94 8.8 1.20 486.4 3.01 1.20 209 338.2 0.60

nrg.4 168 18.5 1.19 1.13 59 5.6 0.60 442.6 1.79 0.48 115 197.4 0

nrg.5 168 15.1 0 0 38 3.7 0 346.2 0 0 51 85.3 0

nrg 17.7 1.21 0.80 53.0 5.1 0.49 396.6 1.22 0.52 98.8 163.0 0.25

nrh.1 63 23.4 3.17 3.02 57 7.5 1.59 137.1 4.76 2.38 37 29.7 1.59

nrh.2 63 19.3 3.17 2.86 56 7.5 1.59 143.4 3.17 2.06 38 30.9 1.59

nrh.3 59 21.3 3.39 2.88 45 9.0 0 108.5 3.39 3.39 11 7.6 3.39

nrh.4 58 21.4 3.45 1.90 52 6.9 0 160.6 3.45 1.03 79 61.6 0

nrh.5 55 17.9 0 0 10 1.3 0 108.4 0 0 8 6.6 0

nrh 20.6 2.64 2.13 44.0 6.4 0.63 131.6 2.95 1.77 34.6 27.3 1.31
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