
Guidelines for Structuring Object-Oriented Product

Configuration Models in Standard Configuration

Software

Jeppe Bredahl Rasmussen
(Technical University of Denmark, Kgs. Lyngby, Denmark

jbrras@mek.dtu.dk)

Lars Hvam
(Technical University of Denmark, Kgs. Lyngby, Denmark

lahv@dtu.dk)

Katrin Kristjansdottir
(Technical University of Denmark, Kgs. Lyngby, Denmark

katkr@dtu.dk)

Niels Henrik Mortensen
(Technical University of Denmark, Kgs. Lyngby, Denmark

nhmo@mek.dtu.dk)

Abstract: Product configuration systems (PCSs) are increasingly being used in various

industries to manage product knowledge and create the required specifications of customized

products. Companies applying PCS face significant challenges in modelling, structuring and

documenting the systems. Some of the main challenges related to PCSs are formalising product

knowledge conceptually and structuring the product features. The modelling techniques

predominantly used to visualise and structure PCSs are the Unified Modelling Language

(UML) notations, Generic Bill of Materials (GBOM) and Product Variant Master (PVM),

associated with class collaboration cards (CRC-cards). These methods are used to both analyse

and model the products and create a basis for implementation to a PCS by using an object-

oriented approach. However, the modelling techniques do not consider that most commercial

PCSs are not fully object-oriented, but rather, they are expert systems with an inference engine

and a knowledge base; therefore, the constructed product models require modifications before

implementation in the configuration software. The consequences are that what is supposedly a

feasible structure of the product model is not always appropriate for the implementation in

standard PCS software. To address this challenge, this paper investigates the best practice in

modelling and implementation techniques for PCSs in standard software and alternative

structuring methods used in object-oriented software design. The paper proposes a method for a

modular design of a PCS in not fully object-oriented standard PCS software using design

patterns. The proposed method was tested in a case company that suffered from a poorly

structured product model in a not fully object-oriented PCS. The results show that its

maintainability can be improved by using design patterns in combination with an agile

documentation approach.

Keywords: Product Configuration System, Conceptual modelling, Maintenance, Product

modelling, Case study, Implementation framework

Category: D.2.2, H.1.m, J.6

 Journal of Universal Computer Science, vol. 26, no. 3 (2020), 374-401
 submitted: 19/12/18, accepted: 15/3/20, appeared: 28/3/20 CC BY-ND 4.0

1 Introduction

Poor or inappropriate product structure and knowledge representation in configuration

projects are known reasons for failures in configuration project development,

implementation and maintenance [Haug et al. 2019]; therefore, it is important to

consider how to structure and implement product models in product configuration

systems (PCSs). This article discusses the structuring and implementation of product

models in commercially available, standard, non-object-oriented PCSs. PCSs are

expert systems that support product customization by defining how predefined entities

(physical or non-physical) and their properties (fixed or variable) can be combined

[Hvam et al. 2008]. To build a PCS, a product model must be developed and

implemented in the software system. Product models for PCS implementations

contain rules for the construction of a product with its associated features and all its

variants, so that knowledge can be expressed explicitly in a software system [Hvam et

al. 2008].

Product models exist at different levels, as proposed in Duffy and Andreasen

[Duffy and Andreasen 1995] (Figure 1). The real world represents knowledge about

the product assortment and is often unstructured and not easily accessible. This real-

world knowledge can be represented in a product model as structured representations

that allow domain experts [1] to represent, analyse and communicate about this

reality. An example of such a product model is the Product Variant Master (PVM)

[Harlou 2008]. The information models in a configuration context can be Unified

Modelling Language (UML) diagrams or similar formal Information Technology (IT)

modelling techniques [Felfernig et al. 2001a, Hvam et al. 2008]. The information

models are usually developed by knowledge engineers [2] and implemented in a

computer model by either knowledge engineers or IT developers.

PCS modelling techniques are used to provide a basis for deciding what

information to include and how to structure the information in a PCS to allow for

future changes [Haug 2009]. This translation from unstructured information to IT

implementation is reported as a reason for PCS project failures [Forza and Salvador

2002a, Haug et al. 2019]. One explanation for the failures was reported to be that

development and maintenance are more time-consuming and challenging than

initially expected [Forza and Salvador 2002, Hvam 2004, Jørgensen 2001].

Furthermore, studies have shown that, if the documentation of the PCS is not

maintained, it can lead to companies having to restructure or abandon their PCSs

[Forza and Salvador 2002b, Haug 2009]. This indicates a need for improved

modelling and documentation approaches to develop and maintain PCS.

[1] Domain experts possess knowledge of the products and contribute to process analysis,

product analysis and further development. Domain experts could be employees from product

development or production [Hvam et al. 2008].

[2] Knowledge engineers translate the information obtained from domain experts to implement

the knowledge into IT models.

375Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

Figure 1: Different representation of product knowledge in PCS projects [Duffy and

Andreasen 1995]

Configuration ontologies have been developed to provide a basis for

communicating and documenting configuration knowledge in an easy-to-understand

form describing concepts like attributes, attribute types, referencing to attributes and

inheritance and its relation to the definition of a part-of hierarchy [Helo et al. 2010,

Soininen et al. 1998, Yang et al. 2009].

Modelling techniques have been developed specifically to develop and maintain

3&6�PRGHOV��ZKLFK�LQFOXGH�µProduct Variant MDVWHUV¶��390��DVVRFLDWed ZLWK�µClass

Collaboration Respensibility FDUGV¶� �&5&-cards) [Haug 2010, Hvam et al. 2008,

Hvam et al. 2003], UML diagrams [Felfernig et al. 2000a, 2001b], feature models

[Kang et al. 1990] and Generic Bills of Materials (GBOMs) [Forza and Salvador

2007, Olsen and Saetre 1997, Tseng et al. 2005]. The mentioned methods assume that

the concepts of object orientation can be used to model and implement a particular

family of products in a class, GHILQHG� DV� µD� GHVFULSWLRQ� RI� D� VHW� RI� REMHFWV�ZLWK� WKH�

same struFWXUH��EHKDYLRU��SDWWHUQV�DQG�DWWULEXWHV¶ [Hvam et al. 2008]. Inheritance is a

key concept in object-oriented modelling that allows for reuse and structuring of

code; that is, a subclass can inherit properties from a superclass. Inheritance in object-

oriented modelling makes it possible to define the FODVV�µFDU¶�ZLWK�FHUWDLQ�SURSHUWLHV�

(motor, colour, bodywork, chassis number, etc.), which can be inherited to a specific

instance, such as an µOpel¶ [Hvam et al. 2008].

Methods based on object-oriented design have proven to be successful in the

development of PCS models. However, PCS models are commonly implemented in

commercially available standard PCS software, representing expert systems with an

inference engine and a knowledge base that do not always support fully object-

oriented notations and implementations. In this paper, configuration systems that

support some object-oriented features are referred to as not fully object-oriented, and

software that does not support object orientation at all is referred to as non-object-

oriented. When an expert system cannot handle object-oriented knowledge

representations, the knowledge is non-hierarchical and cannot handle class±object

relationships, inheritance or encapsulation [Hvam et al. 2008], making the available

modelling techniques presented in the literature impractical to use for implementation

of IT models in standard non-object-oriented software; this may result in redundant

implementations. This creates a need for manually translating between the product

models, based on object-oriented assumptions, and computer models, based on not

fully object-oriented systems. Implementation and documentation techniques

specifically for non-object-oriented standard PCSs are currently not addressed in the

literature. This article aims to fill this gap. The consequence is that the product

knowledge must be maintained in two different systems [Shafiee et al. 2015], and as

376 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

the product models grow bigger and become more complex, the time needed for

documentation becomes a significant task in keeping the product models up to date

[Hvam et al. 2005].

A class of software tools dedicated to supporting product modelling and

documentation of PCS models was proposed by Haug [2010], but it was never used in

the industry. To avoid redundant documentation, extraction of the information model

and automatic generation of a PVM and CRC-cards have been proposed and

successfully implemented [Shafiee et al. 2017]. However, the ability to extract

documentation does not deal with redundant product model implementation. Other

modelling approaches are emerging to mitigate modelling challenges, such as variant

table representation [Haag 2017]. Based on the challenges experienced with

implementation of product models and documentation of PCSs, this article proposes a

framework for implementation of a modular design for PCSs that can be implemented

in a standard non-object-oriented system along with an agile documentation approach.

Inspired by best practices from object-oriented programming principles and the

aim of creating reliable, flexible and maintainable IT product models, the current

article explores a way to structure product models for IT implementations in

commercially available, not fully object-oriented PCSs by providing answers to the

following research questions (RQs):

RQ 1: How should companies structure modular product models for PCSs

that are not fully object-oriented?

RQ 2: What could be the possible benefits for companies of using the

proposed structuring principles on the usability and maintainability of a PCS

that is not fully object-oriented?

2 Research method

The current research adopts a four-phase approach from the Design Research

Methodology (DRM) framework [Blessing and Chakrabarti 2009] (Figure 2). The

first phase was identifying a worthwhile research objective, which was done from

literature searches and observed challenges in companies working with PCSs. The

research goal of this study was to improve the current methods to structure modular

product models for not fully object-oriented PCSs by developing a framework for not

fully object-oriented implementations.

377Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

Figure 2: Research methodology for the development of a modular PCS structure,

adapted from the design research methodology [Blessing and Chakrabarti 2009]

The second phase was an investigation of the current product modelling methods

described in the literature on PCS. The identified methods were reviewed in parallel

with the literature on object-oriented software design. The purpose was to learn the

current best practices from IT professionals to solve configuration-modelling

challenges and develop a theoretical framework for a modular PCS design adapted to

not fully object-oriented systems. The proposed framework relies on the literature on

product modelling [Harlou 2008, Hvam et al. 2008], combined with best practices in

object-oriented software design [Coplien et al. 1998, Martin and Micah 2006] and

agile documentation approaches [Staples 2004].

The third phase aimed to synthesise the knowledge gathered in the second phase

to develop a framework for structuring modular product models for not fully object-

oriented PCSs. In addition, the implications of software maintenance were identified

and used as evaluation criteria in the fourth phase.

The fourth phase focussed on the implementation and validation of the proposed

framework in a detailed case study in the company Altan.dk, allowing the theory to be

tested in practice. Altan.dk was selected because of the illustrative product assortment

and industry challenges experienced in structuring and maintaining its PCS. The case

company has been using PCS since 2011 and has suffered from poorly structured PCS

as the system has grown over the last 7 years. This has resulted in difficulties in

maintaining and further developing the system. During the FDVH�VWXG\��WKH�FRPSDQ\¶V�

PCS was restructured based on the proposed theoretical framework developed by

following the adapted DRM. The restructuring of the PCS was done over 3 months by

a configuration engineer who was responsible for the PCS. This study was performed

as a single case study because of the possibility of studying a phenomenon in its

natural setting and allowing µhow¶ and µwhat¶ questions to be answered [Karlsson

2016, Meredith 1998]. The single case study design allows the phenomenon of the

VWUXFWXUHV¶� influence on PCS features and maintainability to be studied in detail, but

this has the downside of reduced generalizability [Karlsson 2016]. This drawback can

be mitigated by repeating the results in other case companies [Eisenhardt 1991];

however, this is not always possible because of resource constraints. Another way to

improve reliability is using triangulation with data sources [Karlsson 2016]. In this

case, data triangulation was used for collecting performance measures from different

378 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

stakeholders; here, the end users of the system (salespeople), the backend users of the

system (configuration engineers) and observations from researchers were considered

to obtain a full picture of the implications of the proposed framework in the case

company. This was possible because the company maintained both the unstructured

and newly structured PCS over a certain period, allowing for a direct comparison. The

evaluation was done by the researcher in collaboration with the system users,

represented by the responsible configuration engineer, and daily users of the PCS,

represented by salespeople. The testing and validation for the case study were

performed by investigating the benefits from the modular PCS design compared with

the old PCS, which was validated by 12 PCS users in a workshop and follow-up

interviews of a few selected users (Appendix). The users validating the PCS were end

users, salespeople who sought to evaluate the new features and give some indications

of the reductions in resource consumption. In addition, interviews were performed

with an experienced configuration engineer with prior experience working with the

same PCS to detail the knowledge of the strengths and weaknesses of the ad hoc

structured PCS. An overview of the consulted stakeholders in relation to the data

requirements for the current research can be seen in Table 1. The interviews were

semi-structured because of unclear terminology in the area of configuration at the

company; therefore, a need to clarify meaning as the interview progressed was

identified.

Required data Data source

Information on the PCS structure Interviews with two configuration

engineers

Hands-on investigation of PCS done by

the researcher

Literature study to evaluate alternatives

Time spent introducing new product

variants into the system model

Interviews with two configuration

engineers

Time required to reconfigure between

product variants from different

product platforms

Interviews with 12 end users

(salespeople) before and after a

workshop presenting the new PCS

Documentation usefulness

Interviews with two configuration

engineers

Table 1: Required data and sources used in the case study

3 Theoretical background

The literature review aims to identify theories for product modelling of PCSs. Section

3.1 gives an overview of the current literature on PCS modelling and its applications.

Section 3.2 establishes a link between software structure and maintenance needs, as

well as identifying the criteria for the evaluation of software design based on noted

379Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

challenges. Finally, Section 3.3 gives a brief introduction to the current methods used

in software design to improve software quality; it serves as a basis for the

development of the structuring method proposed in this article.

3.1 Product modelling for PCS projects in not fully object-oriented expert

systems

In configuration research, the representation of domain knowledge is agreed to be one

of the main challenges [Mailharro 1998], and most studies on the knowledge

representation of PCSs address this topic from the knowledge engineering perspective

[Zhang 2014]. Examples of knowledge engineering approaches to knowledge

representation are the works of Felfernig et al. [Felfernig et al. 2001] , who describe

how to model PCS by means of UML, and Falkner et al. [Falkner et al. 2011], who

describe how to apply Artificial Intelligence (AI) methods when developing custom

software. Methods to support domain engineers in representing product models for

PCS have been proposed in various forms, including object-oriented approaches like

UML [Felfernig et al. 2000a, Felfernig et al. 2000b], GBOM relationships [Forza and

Salvador 2007], PVM and CRC-cards [Hvam et al. 2008] and product family

classification trees (PFCTs) >2¶'RQQHOO et al. 1996, Yu and MacCallum 1995]. These

methods have proven successful in the development of PCS. However, there has not

been much follow up in the literature when it comes to evaluating the maintainability

of the systems after they are implemented; they all lack specific implementation

guidelines or use an UML-based representation that assumes object-oriented

implementations [Hvam et al. 2008]. Most commercially available PCS software

comprises non-object-oriented expert systems, meaning that the classes, attributes and

methods (rules) have no hierarchical structure or do not follow the basic object-

oriented principles [Hvam et al. 2008]. Such not fully object-oriented expert systems

are referred to as µnon-object-oriented standard PCSV¶ throughout the paper. This

makes the product structure depend on the folder structure and requires modifications

to the product model representation developed using object-oriented approaches

[Hvam et al. 2008].

PCSs can also be developed in applications not meant to support object-oriented

features, for example, Excel [Wielinga and Schreiber 1997] or BOM configurations in

Enterprise Resource Planning systems [Hvam et al. 2008]. Furthermore, the rapid

development of commercially available configuration software has allowed domain

experts to handle more of the product-modelling task [Haug et al. 2010]. In many

FDVHV��µSURGXFW�GRPDLQ�H[SHUWV¶�DUH�QRW�IRUPDOO\�WUDLQHG�SURJUDPPHUV�ZLWK�H[WHQVLYH�

knowledge of UML-mapping and object-oriented models; their lack of knowledge

results in suboptimal product structures. Investigations of PCSs have shown that PCS

applications are often developed in an ad hoc fashion, lacking formal definitions of

logical relationships and hard coding, which produces severe maintenance overheads

[Boucher et al. 2012]. Another reason that PCS maintenance and development is a

challenge is the simultaneous development of the PCS and product model, which adds

to the differences between the documentation and software [Hvam et al. 2008]; this

leads to redundancy in the model and documentation [Haug 2010], and addressing

this has been identified as a laborious and time-consuming task [Hvam et al. 2005].

380 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

3.2 Implications of structure for software maintenance

The challenges experienced in PCS development and maintenance are not unique to

PCS; rather, they are a challenge in software development and maintenance in

general. Most software projects involve understanding legacy code [Sharon 1996],

and most of the time is spent identifying the errors resulting from unexpected effects

rather than the time needed to correct them [Shalloway and Trott 2002]. The

challenges in software stem from the following: (1) poor system design and structure,

(2) excessive system complexity, (3) limited system flexibility, (4) limited or non-

existing documentation, (5) inadequate project and process management, (6)

inadequate change and version management, (7) inadequate release management and

(8) inadequate maintenance tools [Sharon 1996]. All the mentioned areas are relevant

to PCSs, but this paper focusses on addressing the first four challenges. The

remaining challenges are not addressed in this article because they are not directly

affected by product structure decisions.

3.3 Approaches to object-oriented software design

One way of approaching the challenges of software maintenance is by addressing the

first four challenges outlined above, which can be restated as follows: (1) poor system

design, (2) excessive system complexity, (3) limited system flexibility and (4) limited

documentation. Various approaches have been proposed by computer scientists to

mitigate these challenges [Dijkstra 1982, Freeman 2015, Martin 2002, McConnell

2004]. One approach LV� WKH� FRQFHSW� RI� µVHSDUDWLRQ� RI� FRQFHUQV¶�� ZKLFK� LV� D� GHVLJQ�

principle used to aid modular programming by dividing problem spaces into distinct

elements where no elements share the responsibility of others [Dijkstra 1982].

Numerous methods have been developed to aid the design of software that upholds

the separation of concerns [Larman 2004, Martin and Micah 2006, Thomas and

Wesley 1999].

Three dominating views of recognised object-oriented software design practices

are as follows: general, responsibility, assignment, software, patterns (GRASP)

[Larman 2004]; µGRQ¶W�UHSHDW�\RXUVHOI¶ (DRY) [Thomas and Wesley 1999]; and single

responsibility, open-closed, Liskov substitution, dependency inversion and interface

segregation (SOLID) [Martin and Micah 2006]. The GRASP guidelines for object-

oriented design lay out how to assign responsibilities to classes and objects to develop

software with high cohesion and low coupling [Larman 2004]. The DRY principle

aims at the reduction of repetitions by ensuring that every piece of system knowledge

has one authoritative, unambiguous representation, reducing the chance of errors and

minimising inconsistencies [Thomas and Wesley 1999]. Martin and Micah [Martin

and Micah 2006] list five principles for agile software design, known as SOLID; as

indicated above, these principles are as follows: (1) single responsibility, (2) open-

closed, (3) Liskov substitution, (4) dependency inversion and (5) interface

segregation. All three views of object-oriented design revolve around the same

topic²simplifying the code by controlling interfaces, module sizes and

interdependencies to make the source code maintainable and flexible. The three

frameworks all primarily focus on isolated concepts when it comes to the separation

of concerns, such as couplings, cohesion, dependencies and abstractions. To reduce

the level of knowledge needed to understand and implement the concepts the concept

381Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

of design patterns was introduced as a µVROXWLRQ�WR�D�SUREOHP�LQ�D�FRQWH[W¶�[Gamma et

al. 2002].

Design patterns have proven to be reusable structuring principles between classes

that can solve specific software design challenges. Some pattern examples are the

facade pattern, which aims to introduce a higher level interface that makes a system

easier to use by others without the need for an overview of the entire system; the

adapter pattern, which is used to create new interfaces to connect with incompatible

interfaces; and the bridge pattern, which strives to decouple abstraction from

implementation [Gamma et al. 2002]. Numerous other design patterns exist, and more

evolve as software design problems are solved and the same solution repeatedly

emerges and is eventually consolidated into a design pattern. Shalloway and Trott

[Shalloway and Trott 2002] state that the use of design patterns in the specification

phase enables a programmer to abstract and implement code that is more flexible and

open to changes. Coplien et al. [Coplien et al. 1998] suggest a scope, commonality

and variability (SCV) analysis as a starting point for the development of software

family lines. Here, S is the product line driven by the market, C comprises the

characteristics common to all products and V represents the variation among the

products.

The current paper seeks to contribute to the literature on PCS knowledge

representation by applying design patterns inspired by software engineering to

provide standard design patterns for knowledge representation of PCSs. This will

enable domain engineers to design and take better care of the knowledge base.

Furthermore, the present article suggests a shift from code-level documentation to

design rationale documentation as used in agile documentation [Staples 2004].

4 The proposed approach for the development of a modular-

structured PCS

This section presents a three-step framework to structure modular product models for

PCSs based on both the literature relating to product modelling for PCS projects and

approaches to object-oriented software design. The first step aims to analyse the PCS

requirements and decide on a structure based on the strategic goals for the business

and the product assortment by using a commonality and variability analysis. The

second step is structuring the PCS according to the best practice of object-oriented

GHVLJQ�XVLQJ�GHVLJQ�SDWWHUQV��)LQDOO\�� WKH� WKLUG� VWHS� LV� WR�FUHDWH� µOLJKW�EXW� VXIILFLHQW¶�

documentation to provide an overview and understanding of the interfaces and

dynamics of the model. Figure 3 gives an overview of the different steps of the

framework, which are described in more detail in the next sections.

382 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

Figure 3: Proposed framework for the development of a modular PCS

4.1 Step 1: Analysis of the PCS structural requirements using an SCV

analysis

The development of IT systems is costly and time consuming, and a proper analysis

before making design decisions for product lines has ramifications for cost and

quality [Ramachandran and Allen 2005]. The SCV framework [Coplien et al. 1998]

has been used to identify the scope of the product model and what parts of it are

changing. In a PCS context, the scope (S) can be viewed as the number of product

platforms to be included in the PCS. If the S in a PCS handles numerous (different)

product families, the structure can be complex and suffer from too little commonality.

If the S is too small, there are a lot of commonalities, but there may not be enough to

justify the need for structuring efforts. Guidelines for what to look for when

identifying the scope in a PCS are outlined below.

1. How many product platforms should be handled by a single product

model, or would it be beneficial to split the product model into

different, simpler models?

The commonality (C) is the main source of reusable code and interfaces, and the

variability (V) is the necessary differentiation in the programme or product. To

identify commonality and variability, the key questions to ask are as follows:

2. What parts of the product structure are not likely to change

significantly within the next 3±5 years?

3. What parts of the product structure are likely to change significantly

within the next 3±5 years?

The first question finds the right coverage of the PCS, addressing system

complexity, and the second and third questions aid the designer in performing a

commonality and variability analysis to identify what part of the model should be

modelled as abstractions and implementations in Step 2. The purpose of Step 1 is to

address the structural challenges of poor system design, poor structure and model

flexibility. An example of the practical use of Step 1 is described in Section 5.2.1.

383Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

4.2 Step 2: Structuring of a PCS with design patterns

The product assortments change over time in companies, and so does the need for

knowledge representation of the valid product combinations in the PCS. Some parts

of the PCS logic will be relatively stable over time, while others will need to be

updated frequently. Design patterns are a way of describing general solutions to a

design problem that recurs repeatedly in projects [Khwaja and Alshayeb 2013]. Many

patterns exist that could be relevant to the PCS. In this case, the bridge pattern is

chosen as the base pattern to be adapted to standard PCS modelling because of its

properties of dividing abstraction and implementation [Shalloway and Trott 2002] and

ability to isolate the effects of changes [Freeman 2015]. The purpose of the bridge

pattern (Figure 4) is decoupling an abstraction from implementation to create well-

defined interfaces. The abstraction defines the interface for the objects being

implemented, and the implementor defines the interface for the specific

implementation classes [Shalloway and Trott 2002]. In other words, the abstraction

class contains few details that will change, and the implementor class contains the

details that may change in the future. The stability of the abstraction class ensures

stable interfaces for the actual implementation class.

Abstraction

- impl : Implementor

+ function()

RefinedAbstraction

+ refinedFunction()

Implementor

+ Implementation()

ConcreteImplementor

+ Implementation()

Figure 4: Bridge pattern adapted from Shalloway and Trott [Shalloway and Trott

2002], denoted in Unified Modelling Language (UML) notation

4.2.1 Modifying the bridge pattern to a non-object-oriented standard PCS

The purpose of the bridge pattern is to decouple an abstraction from implementation

[Shalloway and Trott 2002]. Figure 5 depicts the bridge pattern adapted to PCS

implementations with the UML notation. In PCS, an abstract class can be created to

handle attributes that describe a product architecture from an abstract view, such as

functional elements and abstract variations. This corresponds to the identified

commonalities in Step 1. The abstract class can be further refined to contain

abstractions of sub-parts. The implementor class comprises variants and rules related

to product platforms at a higher level and includes the implementation of specific

instances of a platform derived from abstract attributes corresponding to the

variability identified in Step 1. By dividing the structure into abstraction and

implementation, the methods relevant to the product architecture at a general level are

384 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

given in the abstract class, while the rules related to different product platform

variants are found in the implementor classes. This allows for increased extensibility

of implementations [Shalloway and Trott 2002]. The benefits of this structure are that

product changes related to the product architecture and product variant

implementations are situated in different objects. The clear interface between the

objects helps the modeller identify where to implement changes without the need to

introduce corresponding changes in other parts of the model [Freeman 2015]. Note

that the generalization arrows have been removed in Figure 5 for the PCS-specific

bridge pattern for non-object-oriented standard PCS because inheritance does not

exist in such a system. By definition, the rules and methods work globally. The

aggregation arrow remains because it describes that the abstraction class shares a

reference to the implementor class. The purpose is to address the structural challenges

of poor system design, poor structure and model flexibility.

Abstraction (product architecture)

-Generic attributes

-Generic methods ()

RefinedAbstraction

(sub-parts)

-Refined generic attributes

-Refined generic methods

Implementor (product platform)

-Local attributes ()

-Local methods ()

ConcreteImplementor

(Product variants)

-Local attributes

-Local methods

Figure 5: Bridge pattern modified for PCS implementations in UML notation

4.2.2 Example of the bridge pattern for PCS

The purpose of the bridge pattern is to decouple an abstraction from implementation

[Shalloway and Trott 2002]. In Figure 6, an example of a PVM describing a simple

car family is presented from Harlou [Harlou 2008]. In Figure 7, a class diagram is

drawn in terms of the bridge pattern. The car family is described as an abstraction

class with the car model containing generic attributes, but these can include

subclasses describing subparts that are used across all product variants, for example,

the engine, windshield, door and wheel parts. The descriptions used in the abstract

classes should be as abstract and generic as possible to secure the flexibility of the

model. The implementor class refers to the abstract class as the interface, and it

contains classes with rules and attributes concerning specific product variants. This

concept is close to the PVM concept, incorporating a generic architecture (sub-part

structure) and family-specific sub-types (specialization). The difference is that it is

not a real object-oriented representation, where different sub-classes can have

different sub-structures beneath them. Consequently, the links between the generic

architecture and family-specific sub-types must be specified, implemented and

385Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

maintained manually. The benefits of the bridge pattern structure are that, when

changes occur, the rules related to the product architecture at a general level and

product variant implementations at a model-specific level are located in different

object classes. Therefore, the rules are easy to find and modify manually.

Figure 6: PVM notation of a simple car adopted from Harlou [Harlou 2008]

Car family (Abstraction)

Car model(Sedan, Station Wagon, Van)

-Generic methods ()

Common sub-parts

(RefinedAbstraction)

-Engine [1.6..2.0] litres capacity

-Windshield

-Door position [front, back]

-Wheel [14..15] inches diameter

-Refined methods

Car model (Implementor)

-Car model (Sedan, Station wagon, Van)

-Local methods ()

Station Wagon

(Implementation)

-Extended roof

-Fold down seats

-Cargo volume

-Methods for specific car

model

Van (Implementation)

-Door type[slide door,

double door]

-Cargo barrier [true/

false]

-storage rack [small,

medium, Large]

-Methods for specific car

model

Sedan

(Implementation)

-Retractable hard top

-Hardtop mechanism

-Methods for specific

car model

§ Sedan is only offered

with 2.0 Engine

Figure 7: Class diagram drawn in relation to the bridge pattern in UML notation

4.3 6WHS����µ/LJKW�EXW�VXIILFLHQW¶�PDintenance guidelines

The idea of step 3 is to document the design rationale over details. By documenting

the design pattern and model dynamics used in the system instead of making

comprehensive lists of all the available attributes and rules in the PCS, it will be

easier to make changes that comply with the original design rationale and purpose

[Selic 2009]. The division between abstraction and implementation classes is shown

to increase the system overview and clarify the purpose of different classes [Staples

386 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

2004], and this approach has proven to make the code more reusable and result in

lower maintenance costs in software development [McConnell 2004]. The same is

likely true for PCS modelling. By documenting the guidelines, not the details, the

correct documentation is always available in the system, and the need for redundant

documentation is reduced to the need for documentation of design pattern principles

and examples of the most common product model modifications. The examples can

be generated by saving screenshots and writing a corresponding text describing the

changes. A practical way to guide the use of in-system documentation can simply be

adding detailed and consistent naming to the classes, such as _AbstractionClass or

_ImplementationClass. A good test to make sure the documentation is relevant is to

DVN�WKH�IROORZLQJ��µ:KDW�ZRXOG�\RX�ZDQW�WR�NQRZ�LI�\RX�MRLQHG�WKH�WHDP�WRPRUURZ"¶

[Wiseman 2007]. The purpose of Step 3 is to address the challenges of limited model

flexibility and limited documentation.

5 Case study: Configuration of balconies

The case company introduced in the study is a medium-sized Danish company; since

2009, the company has used a PCS to generate quotation letters for system deliveries

of balconies. The PCS was initially developed by a consultant trained in the

modelling methods proposed by Hvam et al. [Hvam et al. 2008] in the Configit

Model® to handle a single product platform, but as the business evolved, new major

updates, including new product platforms, were added to the existing model a few

years apart by different modellers. As the product model grew in complexity over

time, maintaining an in-depth understanding of the model became a challenge, and no

one understood all the facets of the model and its interactions. This resulted in major

problems when products and product features were added, removed or changed in the

configuration model. In addition, some structural problems affected the 3&6¶V�ability

to handle reconfigurations, meaning users had to configure complicated products from

scratch. A decision to redesign and improve the product model was agreed on to

improve the current situation and avoid future problems. The focus of the project was

to build a flexible and maintainable model. To illustrate the principle, a subset of the

model related to balcony bottom plates is used as an example. First, a description of

the situation before intervention in the PCS of the company was elaborated on.

Second, the structural redesign was made by following the three-step framework

proposed in this article. Third, each of the proposed steps was validated for usefulness

by conducting interviews with a configuration expert who had worked for the

company and had experience with maintenance of its configuration models.

5.1 Case example: A poorly structured configuration model of balcony

bottom plates

The configuration model contains three different kinds of balcony bottom plates that

represent three kinds of product platforms named ²µaluminium¶, µsteel¶ and µplate¶.

The bottom plates are designed with three different principles, allowing different

dimensions to be used. The steel plates can be any width or depth, the aluminium

offers free width and a fixed number of depths and the plate comes in predetermined

combinations of fixed depth and fixed width (Table 2). Since the PCS used at the

387Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

company does not support object-oriented features, such as inheritance, specific

instances of each combination of width/depth needed to be generated manually for

every family-specific sub-type to define the solution space and relate to the rules and

constraints. The new product families were added as a parallel design principle in the

product model without relating in depth to the existing ones. The result was multiple

implementations of length/width combinations based on different entries in the

system that randomly related to other width/depth product combinations without any

clear pattern.

 Steel Aluminium Plate

Bottom

plate

dimen-

sions

Free width, free

depth

Free width, fixed

depth

Fixed width, fixed

depth

Drawing

Table 2: Three different types of bottom plates representing different product families

and their valid selections of width/depth

A simplified class diagram showing an example of the content from poorly

VWUXFWXUHG�µERWWRP�SODWH¶�classes is presented in Figure 8, and a screenshot from the

PCS is shown in Figure 9. Note that the representations of rules, attributes and

constraints are written in natural language, since syntax and implementations will

vary from system to system.

The diagram reveals that a single class is responsible for several different bottom-

plate-related variables, including a comprehensive set of rules for selecting and

deselecting relevant product numbers, dimensions, colour choices and product-

specific rules determining the legal combinations with other parts of the model. The

class contains no abstraction, only implementations, resulting in a model that is

difficult to comprehend. The documentation present in the company only reflected the

first implementation of the product model and included a long list of outdated rules

and relations. The consequence of the structural choice of the ad hoc product model

was that it was difficult to find and change relevant parts in the model because of

excessive information and unclear dynamically interconnected parts, making it

difficult to implement changes without unforeseen consequences. The challenges

resulted in maintenance difficulties and required extensive modelling and product

knowledge competencies to make small changes in the model.

The same ad hoc structuring principles with unclear structuring had been used for

the rest of the configuration model (i.e. railings, hand railings, floors, doors,

accessories, etc.). The result was a complicated dynamic model where rule

interactions did not reflect the structure of the configuration model. The most tangible

consequence of the structure was a reconfiguration problem experienced by the users,

388 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

as the system did not allow changes from one kind of balcony to another without

serious problems. It was not possible to change from one kind of bottom plate to

another without starting over. In the past, some initiatives were taken to fix the

problem, but all attempts ended up being rolled back because of unforeseen

consequences relating to the restriction of product variations that were not supposed

to be restricted.

Ad-Hoc Bottom plate

Bottom plate [alu, steel, plate]

Depth[0..2000] mm

Width[0..2000] mm

Alu_depth[500,750,1000,1250,1500]mm

Plate_depth[1100, 1300, 1500] mm

Plate_width[1500,2000,2500,3000]mm

-§Rules restricting combinations in width

and length for aluminium, steel and plate

balconies

-§Rules restricting color choices for

aluminum, steel and plate balconies

§Rules restricting shapes for aluminum and

steel balconies

§Additional rules removed for simplicity of

example

Figure 8: %RWWRP�SODWH�µFODVV¶�representing different choices of bottom plates, widths

and depths. Represented in UML notation

Figure 9: Screenshot of the in-system ad-hoc bottom plate group

389Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

5.2 A redesigned configuration model of balcony bottom plates

To address the problem at the case company, the proposed framework was tested and

validated. The next sections describe the results from testing the individual steps of

the framework.

5.2.1 Step 1: Analysing PCS structural requirements by SCV analysis

The first step was to analyse the requirements of the PCS through the SCV analysis.

The scope analysis was based on the SCV framework. Question 1 (Section 4.1)

initiated a discussion about the possibility of splitting the PCS model into different

models representing every product platform individually to simplify the configuration

model. However, changes in the scope of the PCS were dismissed by the company

because of synergy effects between product platforms, many shared configuration

elements and convenience for the salespeople, who required a single model to

configure all the variants. The commonality and variability analyses were performed

with domain engineers to identify which parts of the model would change frequently

and which parts would not (questions 2 and 3; Section 4.1). The product offerings and

architecture were not going to change significantly over the next couple of years, but

the product components, variant possibilities and rules would be subject to many

updates in the same period. Consequently, the abstraction class would consist of the

most generic balcony description possible, such as selection of the product platform,

dimensions, number of components and so forth, and the implementor classes would

contain the specific balcony variations, such as steel, aluminium and plate, and their

legal variants, specific component choices and product-specific rules at a sub-type

level. It was agreed on by the users and responsible configuration employees that the

new product structure would be a better fit for the business.

5.2.2 Step 2: Structuring of a PCS with design patterns

To distinguish between abstractions and implementations, a redesign of the model

was performed using the bridge pattern modified to the PCS (Section 4.2). In Step 2,

abstract attributes of the bottom plate class were identified as common elements

representing a generic architecture. An example relates to the dimensions and balcony

model; no matter what kind of bottom plate is chosen for a given balcony, the

dimensions must always be specified. The same is true for the choice of the balcony

model. This indicates that the dimension and bottom plate types could be considered

time-stable abstract elements belonging to an abstraction class. The specific balcony

variants would be subject to variation, as identified in Step 1. The variations could

then be realised in an implementor class representing product-specific sub-type

knowledge, such as the possible dimensions that depend on product series, colour

variations and legal combinations with other parts of the balcony model. These

elements were grouped in logical modules according to the product platforms. The

new structure based on the bridge pattern that was designed for the new system can be

seen in a UML model representation in Figure 10, and a screenshot from the actual

implementation in the configuration software can be seen in Figure 11. The new

solution includes an abstraction class called µVWDUW¶�� FRQWDLQLQJ� DOO� DEVWUDFW� JHQHULF�

attributes in the model, such as Abstract_width, Abstract_depth and Balcony model.

These names are chosen to be consistent with the terminology used to describe the

390 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

bridge pattern and illustrate generic attributes that specific implementations must

relate to as the interface. In addition, a group for every kind of bottom plate relating to

different Balcony model sub-types was generated, comprising the rules for the

corresponding variant and checking against the abstract interface (Figure 10). The

steel plate was free in any dimension, so the implementation could obtain depth and

width definitions directly from the abstract class. The aluminium plate allowed for all

widths and restricted depths, making it possible to refer directly to Abstract_width but

necessary to create new attributes containing µAlu_depth¶ specifically for that product

platform. If Balcony model has the value µAlu¶, a rule is made to restrict that

Abstract_depth is only allowed to take values defined in Alu_depth, and the correct

Alu_depth is selected. The plate balcony is restricted in both width and depth, and it is

designed with the same principle, needing rules to check against both Abstract_depth

and Abstract_width. In this way, all product platforms refer to the same generic

definition of depth and width, and the rules related to the different plates are placed in

µLPSOHPHQWDWLRQ�FODVVHV¶. This approach makes it easier to find relevant rules when a

product changes because the rules are encapsulated and always relate to the abstract

attributes of the dimensions and choice of the bottom plate. The product variants now

check the rules against the stable Abstract_width and Abstract_depth instead of

between many definitions of width and depth that depend on the implementations of

specific bottom plates and other related rules. The use of the bridge pattern in the

modular PCS allowed the company to solve the reconfiguration between the product

platforms and implement changes that the company had failed to make in the ad hoc

model.

Balcony Architecture

(Abstraction)

-Balcony model (Alu, Steel, Plate)

-Abstract_width[0..3000] mm

-Abstract_depth[0..3000] mm

-Generic methods ()

Common sub-parts

(RefinedAbstraction)

-Bottom

-Railing

-Door

-Mounting

-Accesories

-Refined methods

Balcony model (Implementor)

-Balcony model (Alu, Steel, Plate)

-Local methods ()

Aluminum

(Implementation)

-Abstract_width-

Alu_depth[500,750,1000,125

0,1500]mm

-§If the 'balcony model' is

'Alu' then restrict values in

'Abstract_depth' to be the

same as 'Alu_depth'

-§If the 'balcony model' is

'Alu' then select Alu_depth

from Abstract_depth

-§ Rules restricting color

choices for aluminum

balconies

Steel

(Implementation)

-Abstract_width

-Abstract_depth

-§ Rules restricting color

choices for steel

balconies

Plate (Implementation)

-Plate_depth[1100, 1300, 1500] mm

-Plate_width[1500,2000,2500,3000]mm

-§If the 'balcony model' is 'Plate'

then restrict values in

'Abstract_depth' to be the same as

'Plate_depth'

-§If the 'balcony model' is 'Plate'

then restrict values in

'Abstract_width' to be the same as

'Plate_width'

-§If the 'balcony model' is 'Plate'

then select plate_depth and

plate_width from Abstract_depth

and abstract_width

-§ Rules restricting color choices for

plate balconies

Figure 10: Bottom plate groups related to Master_width and Master_depth with local

rules in UML notation

391Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

Figure 11: Actual implementation of the bridge pattern with an abstraction class as

the interface for product-specific variables and rules.

5.2.3 6WHS����µ/LJKW�EXW�VXIILFLHQW¶�PDLQWHQDQFH�JXLGHOLQHV

The third step was to improve the documentation of the PCS model by documenting

implementation guidelines. The case company had detailed documentation of all the

rules and product combinations of the first version of the system; however, they had

never used it, and instead, based implementations on in-system data without the use of

guidelines. Since the documentation was never used, the company decided to

document details on an in-system basis along with implementation guidelines.

7KHUHIRUH�� µOLJKW� EXW� VXIILFLHQW¶� GRFXPHQWDWLRQ� RI� WKH� GHVLJQ� SDWWHUQ� DQG� JXLGHOLQHV�

for common update tasks was created by documenting the design rationale²not the

details. Screenshots of the product structure, design pattern overview and guidelines

on where to implement certain common product changes were created as

documentation. The documentation included guidelines on how to perform the most

common tasks, such as changes in architecture (requires changes in both the

abstraction and implementation classes) and changes at a product variant level (only

requiring updates in the implementation classes) to avoid violations of the selected

structure. The consequence of the approach was that correct documentation could

always be found in the system, and the need for redundant documentation was

reduced because of a clear and understandable structure. The focus on the design

rationale over the details was presented to a configuration engineer who had

experience working in the PCS, and the engineer found this new system to be more

useful than was the original documentation that had described each and every rule in

the system externally. The engineer further mentioned that the approach was

392 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

comparable to how µmodel documentation would be handled in his new job in a big

company¶� stating that µthe IT architects were usually lacking behind on the

documentation and rarely corresponding to the data in-system¶.

5.2.4 Benefits of the restructured modular PCS-based method

The improvements in the modular configuration model were, first, an improved

ability to identify what parts of the model would be relevant to investigate and change

for the desired outcome. Second, some annoyances in the model were corrected,

allowing for reconfiguration; third, the maintenance and product updates were made

less dependent on the original developer or configuration specialists. The number of

rules and attributes in the ad hoc PCS structure and the new PCS structure were

practically identical, indicating a product model of a similar scope. However, the

claim is that the relevant rules, attributes and interactions will be much easier to

identify and modify because of the improved structural overview.

5.3 Evaluation of the modular PCS case implementation

The company decided to develop and support both the ad hoc model and the

restructured modular model for a certain period to secure backward compatibility and

test WKH� DG� KRF� V\VWHP¶V DQG� QHZ� VWUXFWXUH¶V� SHUIRUPDQFH� VLGH� E\� VLGe. To test the

differences between the ad hoc PCS performance and the new modular PCS, updates

to the product assortment were made in both systems by the responsible configuration

engineer. At that point, both PCSs contained approximately the same number of rules,

relations and attributes. An update on the product variant level by adding new

standard dimensions for the plate balconies was a longstanding wish of the company.

In the ad hoc model, the company never succeeded in implementing the change

because of unforeseen consequences from coupled relations. The requested change

could be made in the modular PCS in 15 minutes because of a better overview and

understanding of what the rules referred to. Furthermore, the configuration engineer

added a new product platform to the ad hoc and new product models, and the time

used was registered. Adding a new product to the ad hoc model took four working

days on top of a half year of experience working with the model and product

assortment. The product platform was added to the new model in a single working

day and had fewer bugs. The PCS restructuring project took approximately 4 days of

work (not including the time to develop the theoretical framework). In addition,

persistent annoyances for the users generated by the ad hoc structured PCS were

fixed, such as the reconfiguration problem, now allowing the users to revise an offer

from one product type to another without starting over. This feature was tested in a

workshop comparing the two systems side by side, and by itself, the new system has

the potential to save 3±4 hours for every salesperson each time the customer requests

a revised price based on another product platform. The company makes over 1,000

offers yearly, with multiple revisions in approximately half of them, so the new

capability amounts to substantial reductions in time expenditures. The company

estimated the reduced time expenditure to represent approximately half a full-time

salesperson¶V� ZRUNLQJ� KRXUV�� 7KLV� ZDV� D� GLUHFW� FRQVHTXHQFH� RI� OLQNLQJ�

implementations to abstractions and using the bridge pattern, allowing for fast

reconfigurations. The experienced benefits reported in the case include better

393Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

understandability of the product model, increased modularity, solving the

reconfiguration and easier expandability of the product assortment. This is in

alignment with research showing that the strength of the bridge pattern is mostly

related to expandability, understandability and modularity [Khomh et al. 2009].

An overview of some measurable benefits such as reduced time expenditure for

maintenance and increased flexibility for users can be seen in Table 3. In addition to

these benefits, more subtle benefits were noted, such as reduced dependence on single

employees, increased ownership of the product model, and consequently, reduced risk

for the company.

 Ad hoc structured

PCS

Modular PCS Difference

PCS maintainability

Addition of new standard

dimensions for plate

balconies

Never succeeded without

unforeseen implications,

multiple attempts

performed

15 minutes Now

possible

Time needed to introduce

a new product platform to

the system with new

standard dimensions by a

configuration engineer

4 working days

(and half a year of

experience working with

the model)

1 working day

(and half a year of

experience working

with the model)

3±5

working

days

PCS flexibility for users

Reconfiguration between

platforms

Time consumption 3±4

hours, depending on the

configuration scope by

starting from scratch

Introduction of

unforeseen configuration

mistakes likely

5±10 minutes*

Introduction of

mistakes unlikely

3±4 hours

*Tested and quantified by salespeople in the company by reconfiguring problems.

Table 5: Comparison of the ad hoc structured PCS and modular PCS

6 Discussion

The following identified challenges of software design were used as the evaluation

criteria: (1) poor system design, (2) excessive complexity, (3) limited system

flexibility and (4) limited documentation. The challenges in software development are

complex, and it is difficult to determine when one structure is better than another.

Evidence for the benefits of design patterns in software development is inconclusive

and depends on the pattern used, context and software developer assessment [Khomh

et al. 2009, Khomh and Gueheneuce 2008]. The bridge pattern has been found to have

an overall positive impact on code quality [Abul Khaer 2007], especially when it

comes to expandability, understandability and modularity [Khomh et al. 2009]. This

is in alignment with the benefits reported in the case with better understandability of

394 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

the product model, increased modularity, solving the reconfiguration problem

between products and easier expandability of the product assortment.

The proposed framework in the current study should ideally contribute to

improvements in the area of modelling product models for PCS computer model

implementations. The method proposed in the present paper was inspired by software

development, and we found that the method had similar benefits to the approaches

experienced in other software contexts [Coplien et al. 1998, Shalloway and Trott

2002].

Poor system design is often a result of ad hoc structuring, creating a high risk of

poor structural design. By using design patterns and considering the SCV framework

[Coplien et al. 1998] to introduce abstraction classes in the design phase of PCS, the

structural quality and flexibility should improve when it comes to software product

lines [Ramachandran and Allen 2005]; according to what was expressed in the

interviews, these features improved in the presented case study.

Excessive complexity in the PCS arguably stems from the design of the products

to be implemented in the system. If the scope of the PCS can be redesigned to contain

more similar variants, the complexity can be reduced [Falkner and Haselböck 2009].

However, it may not be possible to change the product design to reduce the

complexity of the PCS, as occurred in this case study; therefore, the PCS must be

adapted to fit the product.

In the case study, limited system flexibility and maintainability were improved by

clear differentiation between abstractions and implementations, as validated with

expert interviews. This indicates that, if the principles are followed, it should result in

a loosely coupled model and provide maintenance guidelines to update the model in

accordance with the known benefits of the bridge pattern [Shalloway and Trott 2002].

The most prevalent documentation approach in PCS projects presented in the

literature is documentation of everything relating to the product configuration model,

which is time consuming, bothersome and results in mistakes [Hvam 2004]. However,

the agile approach to software documentation, namely, documenting a high-level

design rationale, is considered useful for the implementation of finer details. The agile

documentation practice was preferred by the experts interviewed in the case study.

The structuring approach and resulting improved flexibility of the product model may

enable domain engineers to handle a greater part of the model and possibly enable

outsourcing of product modelling responsibilities in some companies with relatively

stable product assortments. A well-structured PCS with µlight but sufficient¶

documentation may also help companies reduce the risk of experiencing a situation

with an overcomplicated PCS, which can be difficult to oversee and maintain.

Furthermore, the approach may speed up new development in non-object-oriented

standard PCSs by providing a clear structure during development.

7 Conclusion

This paper analysed the current modelling practices of standard PCSs and developed a

framework based on best practices from object-oriented design for implementation in

non-object-oriented standard PCS software. The framework was tested in a case

company, and the results provided an improved product structure and a solution to

longstanding problems with configuration maintainability and usability. In

395Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

conclusion, the contributions of the current paper are a case study and a three-step

framework for the structuring of modular product models for standard PCS software

implementations. The proposed framework was tested in a case company both for

validation and to assess its usefulness.

As mentioned above, the proposed framework to build modular PCSs consists of

three steps, which are as follows: (1) analysing the PCS structural requirements

through an SCV analysis [Coplien et al. 1998, Ramachandran and Allen 2005], (2)

structuring of a PCS with design patterns [Gamma et al. 2002, Martin and Micah

2006] and (3) modifying the bridge pattern to non-object-oriented standard PCS

software. The framework was tested in a case company by redesigning a poorly

structured PCS to aid in the creation of an improved structure of a PCS in non-object-

oriented standard PCS software. Comparison of an ad hoc structured PCS and a

modular PCS based on the guidelines in the proposed framework improved its

usability for both salespeople and configuration engineers due to the improved

understandability of system and bug fixes that were noticeable to the salespeople.

The long-term effects of the proposed method are still unknown. The presented

results are based only on a single case study in a single commercially available PCS,

which limits their generalizability. Therefore, further studies should both aim to test

the long-term effects of using the proposed framework and test the framework in

more companies in different industries, as well as in different software systems.

Despite these limitations, it is our opinion that the field of product configuration

modelling can learn a great deal from advancements in object-oriented design, design

patterns and agile documentation. It is highly likely that other suitable patterns exist

that can be explored in future research or derived from practical experiences in the

industry.

Acknowledgements

We wish to thank the two anonymous reviewers for their valuable suggestions and

comments, which helped improve both the presentation and quality of the paper. We

would like to acknowledge Rasmuss Fiil Svarrer for his major contributions to the

collection of the empirical data, which created the basis for the evaluation of the

conceptual model presented here. The permission to evaluate systems and provide

feedback in the company at a detailed level is gratefully acknowledged.

References

[Abul Khaer 2007] Abul Khaer, M.: ³An Empirical Analysis of Software Systems for

Measurement of Design Quality Level Based on Design Patterns´; 10th International

Conference on Computer and Information Technology, Dhaka, Bangladesh (2007), 1-6.

https://doi.org/10.1.1.465.2467

[Blessing and Chakrabarti 2009] Blessing, L. T. M., Chakrabarti, A.: ³DRM, a Design

Research Methodology´; Springer London, London (2009). https://doi.org/10.1007/978-1-

84882-587-1

[Boucher et al. 2012] Boucher, Q., Abbasi, E. K., Hubaux, A., Perrouin, G., Acher, M.,

Heymans, P.: ³Towards More Reliable Configurators: A Re-engineering Perspective´; 2012

3rd International Workshop on Product LinE Approaches in Software Engineering, PLEASE

396 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

2012²Proceedings (2012), 29-32. https://doi.org/10.1109/PLEASE.2012.6229766

[Coplien et al. 1998] Coplien, J., Hoffman, D., Weiss, D.: ³Commonality and Variability in

Software Engineering´; IEEE Software, 15, 6 (1998), 37-45. https://doi.org/10.1109/52.730836

[Dijkstra 1982] Dijkstra, E. W.: ³On the Role of Scientific Thought´; Selected Writings on

Computing: A Personal Perspective, Springer-Verlag, New York (1982), 60-66.

https://doi.org/10.1007/978-1-4612-5695-3

[Duffy and Andreasen 1995] Duffy, A., Andreasen, M.: ³Enhancing the Evolution of Design

Science´; Proceedings of ICED 95, Praha, August 22-24, (1995).

[Eisenhardt 1991] Eisenhardt, K. M.: ³%HWWHU�6WRULHV�DQG�%HWWHU�&RQVWUXFWV×��7KH�&DVH�IRU�5LJRU�

and Comparative Logic Author´; Academy of Management Review Journal, 16, 3 (1991), 620-

627. https://doi.org/10.1105/tpc.019349.Rolland

[Falkner and Haselböck 2009] Falkner, A., Haselböck, A.: ³A Simple Evaluation Process for

Configurability´; Proceedings of the IJCAI±09 Workshop on Configuration (ConfWS±09)

(2009), 17±22.

[Falkner et al. 2011] Falkner, A., Haselböck, A., Schenner, G., Schreiner, H.: ³Modeling and

Solving Technical Product Configuration Problems´; Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 25, 02 (2011), 115-129.

https://doi.org/10.1017/S0890060410000570

[Felfernig et al. 2000a] Felfernig, A., Jannach, D., Zanker, M.: ³Contextual Diagrams as

Structuring Mechanisms for Designing Configuration Knowledge Bases in UML´; Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 1939 (2000), 240-254. https://doi.org/10.1007/3-540-40011-

7

[Felfernig et al. 2000b] Felfernig, A., Friedrich, G. E., Jannach, D.: ³UML as Domain Specific

Language for the Construction of Knowledge-Based Configuration Systems´; International

Journal of Software Engineering and Knowledge Engineering, 10, 4 (2000), 449-469.

https://doi.org/10.1016/S0218-1940(00)00024-9

[Felfernig et al. 2001] Felfernig, A., Friedrich, G., Jannach, D.: ³Conceptual Modeling for

Configuration of Mass-Customizable Products´; Artificial Intelligence in Engineering, 15, 2

(2001a), 165-176. https://doi.org/10.1016/S0954-1810(01)00016-4

[Forza and Salvador 2002a] Forza, C., Salvador, F.: ³Product Configuration and Inter-Firm Co-

ordination: An Innovative Solution from a Small Manufacturing Enterprise´; Computers in

Industry, 49, 1 (2002), 37-46. https://doi.org/10.1016/S0166-3615(02)00057-X

[Forza and Salvador 2002b] Forza, C., Salvador, F.: ³Managing for Variety in the Order

Acquisition and Fulfilment Process: The Contribution of Product &RQILJXUDWLRQ� 6\VWHPV¶;

International Journal of Production Economics, 76, 1 (2002), 87-98.

https://doi.org/10.1016/S0925-5273(01)00157-8

[Forza and Salvador 2007] Forza, C., Salvador, F.: ³Product Information Management for Mass

&XVWRPL]DWLRQ¶, Palgrave Macmillan, New York (2007).

[Freeman 2015] Freeman, A.: ³The Bridge Pattern´; In Pro Design Patterns in Swift, Apress,

Berkeley, CA (2015), 271-292. https://doi.org/10.1007/978-1-4842-0394-1_13

[Gamma et al. 2002] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: ³Design Patterns²

Elements of Reusable Object-Oriented Software´; In A New Perspective on Object-Oriented

397Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

Design Addison-Wesley (2002). https://doi.org/10.1093/carcin/bgs084

[Haag 2017] Haag, A.: ³Managing Variants of a Personalized Product´; Journal of Intelligent

Information Systems, 49, 1 (2017), 59-86. https://doi.org/10.1007/s10844-016-0432-5

[Harlou 2008] Harlou, U.: ³Developing Product Families Based on Architectures: Contribution

to a theory of product families (PhD thesis)´; Orbit (Vol. 2007) (2008).

[Haug 2009] Haug, A.: ³Implementation of Conceptual Product Models into Configurators:

From Months to Minutes´; Proceedings of MCPC (2009).

[Haug 2010] Haug, A.: ³A Software System to Support the Development and Maintenance of

Complex Product Configurators´; International Journal of Advanced Manufacturing

Technology (2010), 393-406. https://doi.org/10.1007/s00170-009-2396-x

[Haug et al. 2010] Haug, A., Hvam, L., Mortensen, N. H.: ³A Layout Technique for Class

Diagrams to Be Used in Product Configuration Projects´; Computers in Industry, 61, 5 (2010),

409-418. https://doi.org/10.1016/j.compind.2009.10.002

[Haug et al. 2019] Haug, A., Shafiee, S., Hvam, L.: ³The Causes of Product Configuration

Project Failure´; Computers in Industry, 108 (2019), 121-131.

https://doi.org/10.1016/j.compind.2019.03.002

[Helo et al. 2010] Helo, P. T., Xu, Q. L., Kyllönen, S. J., Jiao, R. J.: ³Integrated Vehicle

Configuration System²Connecting the Domains of Mass Customization´; Computers in

Industry, 61, 1 (2010), 44-52. https://doi.org/10.1016/j.compind.2009.07.006

[Hvam 2004] Hvam, L.: ³A Multi-Perspective Approach for the Design of Product

Configuration Systems²An Evaluation of Industry Applications´; Conference Proceedings

(2004).

[Hvam et al. 2008] Hvam, L., Mortensen, N. H., Riis, J.: ³Product &XVWRPL]DWLRQ´; Springer-

Verlag, Berlin (2008). https://doi.org/10.1007/978-3-540-71449-1

[Hvam et al. 2005] Hvam, L., Pape, S., Jensen, K. L., Riis, J.: ³Development and Maintenance

of Product Configuration Systems: Requirements for a Documentation Tool´; International

Journal oI�,QGXVWULDO�(QJLQHHULQJ×��7KHRU\�$SSOLFDWLRQV�DQG�3UDFWLFH��12, 1 (2005), 79-88.

[Hvam et al. 2003] Hvam, L., Riis, J., Hansen, B. L.: ³CRC Cards for Product Modelling´;

Computers in Industry, 50, 1 (2003), 57-70. https://doi.org/10.1016/S0166-3615(02)00143-4

[Jørgensen 2001] Jørgensen, K. A.: ³Product Configuration²Concepts and Methodology´;

Manufacturing Information Systems, Proceedings of the Fourth Smesme International

Conference (2001).

[Kang et al. 1990] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: ³Feature-Oriented

Domain Analysis Feasibility Study (FODA)´; Technical Report, Pittsburgh, PA (1990).

[Karlsson 2016] Karlsson, C.: ³Research Methods for Operations Management´; Taylor &

Francis, New York (2016).

[Khomh et al. 2009] Khomh, F.; Guéhéneuc, Y.-G.; ³An Empirical Study of Design Patterns

and Software Quality´; 12th European Conference on Software Maintenance and

Reengineering (2009), 274-278. https://doi.org/10.1.1.150.1235

[Khomh and Gueheneuce 2008] Khomh, F., Gueheneuce, Y.-G.: ³Do Design Patterns Impact

Software Quality Positively?´; 2008 12th European Conference on Software Maintenance and

Reengineering. IEEE (2008), 274-278. https://doi.org/10.1109/CSMR.2008.4493325

398 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

[Khwaja and Alshayeb 2013] Khwaja, S., Alshayeb, M.: ³Towards Design Pattern Definition

Language´; Software: Practice and Experience, 43, 7 (2013), 747-757.

https://doi.org/10.1002/spe.1122

[Larman 2004] Larman, C.: ³Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process´; Prentice Hall, (2001).

https://doi.org/10.1016/j.nec.2006.05.008

[Mailharro 1998] Mailharro, D.: ³A Classification and Constraint-Based Framework for

Configuration´; AI EDAM, 12, 4, 383-397 (1998).

https://doi.org/10.1017/S0890060498124101

[Martin 2002] Martin, R. C.: ³Agile Software Development: Principles, Patterns, and

Practices´; Pearson (2002).

[Martin and Micah 2006] Martin, R. C., Micah, M.: ³Agile Principles, Patterns, and Practices in

C#´; Pearson, (2006).

[McConnell 2004] McConnell, S. C.: ³Code Complete´; Microsoft Press, Seattle (2004).

https://doi.org/10.1039/c0an90005b

[Meredith 1998] Meredith, J.: ³Building Operations Management Theory Through Case and

)LHOG�5HVHDUFK´; Journal of Operations Management, vol. 16 issue 4, 441-454 (1998).

>2¶'RQQHOO et al. ����@�2¶'RQQHOO��)�� -���0DF&DOOXP��.�� -��� +RJJ�� 7��'���<X�� %��� ³Product

Structuring in a Small Manufacturing Enterprise´; Computers in Industry, 31, 3 (1996), 281-

292. https://doi.org/10.1016/S0166-3615(96)00056-5

[Olsen and Saetre 1997] Olsen, K. A., Saetre, P.: ³Managing Product Variability by Virtual

Products´; International Journal of Production Research, 35, 8 (1997), 2093-2108.

https://doi.org/10.1080/002075497194750

[Ramachandran and Allen 2005] Ramachandran, M., Allen, P.: ³Commonality and Variability

Analysis in Industrial Practice for Product Line Improvement´; Software Process: Improvement

and Practice, 10, 1 (2005), 31-40. https://doi.org/10.1002/spip.212

[Selic 2009] Selic, B.: ³Agile Documentation, Anyone?´; IEEE Software, 26, 6 (2009), 11-12.

https://doi.org/10.1109/MS.2009.167

[Shafiee et al. 2015] Shafiee, S.; Hvam, L.; Kristjansdottir, K.: ³An Agile Documentation

System for Highly Engineered, Complex Product Configuration Systems´; Proceedings of the

22nd Euroma Conference (2015).

[Shafiee et al. 2017] Shafiee, S., Hvam, L., Haug, A., Dam, M., Kristjansdottir, K.: ³The

Documentation of Product Configuration Systems: A Framework and an IT 6ROXWLRQ´;

Advanced Engineering Informatics, 32 (2017), 163-175.

https://doi.org/10.1016/j.aei.2017.02.004

[Shalloway and Trott 2002] Shalloway, A., Trott, J. R.: ³Design Patterns Explained: A New

Perspective on Object-Oriented Design´; AddisonWesley Publ Co, United States (2002).

[Sharon 1996] Sharon, D.: ³Meeting the Challenge of Software Maintenance´; IEEE Software,

13, 1 (1996), 122-125. https://doi.org/10.1109/52.476304

[Soininen et al. 1998] Soininen, T., Tiihonen, J., Tomi, M., Sulonen, R., Männistö, T.:

³Towards a General Ontology of Configuration´; Aiedam, 12, 4 (1998), 357-372.

https://doi.org/10.1017/S0890060498124083

[Staples 2004] Staples, J.: ³Agile Documentation: A Pattern Guide to Producing Lightweight

399Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

Documents for Software Projects´; Technical Communication, (Vol. 51, Issue. 4 p. 560-561)

(2004).

[Thomas and Wesley 1999] Thomas, D., Wesley, P. A.: ³The Pragmatic Programmer´;

Addison Wesley, United States (1999).

[Tseng et al. 2005] Tseng, H.-E., Chang, C.-C., Chang, S.-H.: ³Applying Case-Based

Reasoning for Product Configuration in Mass Customization Environments´; Expert Systems

with Applications, 29, 4 (2005), 913-925. https://doi.org/10.1016/j.eswa.2005.06.026

[Wielinga and Schreiber 1997] Wielinga, B. J., Schreiber, A. T.: ³Configuration Design

Problem Solving´; Special Issue on AI and Design, 12 (1997), 49-56.

[Wiseman 2007] Wiseman, G.: ³Do Agile Methods Require Documentation?´; (2007).

Retrieved 19 December 2017, from https://www.infoq.com/news/2007/07/agile-methods-

documentation

[Yang et al. 2009] Yang, D., Miao, R., Wu, H., Zhou, Y.: ³Product Configuration Knowledge

Modeling Using Ontology Web Language´; Expert Systems with Applications, 36, 3 (2009),

4399-4411. https://doi.org/10.1016/j.eswa.2008.05.026

[Yu and MacCallum 1995] Yu, B., MacCallum, K.: ³A Product Structure Methodology to

Support Configuration Design´; W'.�,QWHUQDWLRQDO�:RUNVKRS�RQ�µ3URGXFW�6WUXFWXULQJ¶����-23

June, Delft, The Netherland (1995), 1-8.

[Zhang 2014] Zhang, L. L.: ³Product Configuration: A Review of the State-of-the-Art and

Future Research´; International Journal of Production Research, 52, 21 (2014), 6381-6398.

https://doi.org/10.1080/00207543.2014.942012

400 Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

Appendix

Workshop presenting of the new PCS to end users (Salespeople)

Program 9.30 AM to 3.00 PM.

Participants were twelve salespeople, including head of sales, head of research and

development (R&D), a configuration engineer and a researcher.

Presentation of the new PCS compared with ad hoc PCS

x New user interface

x How to reconfigure from one product series to another

Testing the new system (3 hours)

x Assignment 1: Find a relevant case from real-life experiences with a requirement to

change between product series.

x Assignment 2: Re-create relevant case in modular PCS and change between product

series

x Assignment 3: Estimate how much time consumption has been reduced and the

benefits of the restructured model

Evaluation of the system in plenum

x Discussion of the new system, including change recommendations

Evaluation of system structure and documentation (semi-structured informal interviews

with prior configuration engineer, answers not transcribed)

Presentation of the framework and new documentation

Presentation of new structure compared to ad hoc structure

x Can you see the value of Step 1?

x Can you see the value of Step 2?

x Can you see the value of Step 3?

x Do you think this structure is better/worse than the ad hoc structure?

x Would the division of the abstraction/implementation be useful for future modelling?

x Do you see any drawbacks?

x Can you see other benefits of the modular structure?

Questions regarding new documentation approach based on the structure

x Do you find this documentation more useful than the old documentation?

x Do you believe it will be more useful over time than the old documentation?

x Could you see yourself starting to adopt some of the guidelines in your modelling?

401Bredahl Rasmussen J., Hvam L., Kristjansdottir K., Mortensen N.H. ...

