
Model Driven Software Engineering Meta-Workbenches:

An XTools Approach

Tony Clark

(Aston University, Birmingham, United Kingdom

tony.clark@aston.ac.uk)

Jens Gulden

(Utrecht University, Utrecht, The Netherlands

jensgulden@acm.org)

Abstract: Model Driven Software Engineering aims to provide a quality assured pro-
cess for designing and generating software. Modelling frameworks that offer technologies
for domain specific language and associated tool construction are called language work-
benches. Since modelling is itself a domain, there are benefits to applying a workbench-
based approach to the construction of modelling languages and tools. Such a framework
is a meta-modelling tool and those that can generate themselves are reflective meta-
tools. This article reviews the current state of the art for modelling tools and proposes
a set of reflective meta-modelling tool requirements. The XTools framework has been
designed as a reflective meta-tool and is used as a benchmark.

Key Words: Model Driven Engineering, Meta Modelling, Reflexive Software Tools.

Category: D 2, D 2.2

1 Model Based Tool Interfaces

The use of models in system development is widespread and its systematic use

is termed Model Driven Software Engineering (MDSE, [Beydeda et al., 2005,

Stahl and Voelter, 2006]). Tools that support aspects of the MDSE process often

support standards such as the Unified Modeling Language (UML, [OMG, 2015]).

Other tools support the creation and use of domain specific modelling languages.

Although tools for MDSE have a common aim there has been little scientific

attention to the subject of applying MDSE to itself. Our claim is that the ap-

plication of MDSE to the construction of MDSE tooling is a valid field of study

that will allow us to build reflexive software engineering product line tooling,

adaptive tooling, self-healing tooling, and tooling that is capable of self improve-

ment by generating new generations. The starting point for such a vision for

reflexive MDSE tooling is to identify a language that is capable of describing

itself. It is likely that there will be many such languages, however if we can

demonstrate that it is possible, variations can be generated by following the

process. Tool meta-circularity aims to achieve a single system that is capable

of generating a family of systems including itself that are characterised by a

set of common capabilities. The benefits of achieving meta-circularity include:

 Journal of Universal Computer Science, vol. 26, no. 9 (2020), 1148-1176
 submitted: 14/5/20, accepted: 25/9/20, appeared: 28/9/20 CC BY-ND 4.0

improved quality control, a reduction in the effort required and an increase in

tool compatibility.

This article describes an approach to reflexive MDSE tooling called XTools

which is a language that has been designed with a representative set of MDSE

tool features. It is able to reflect on its own behaviour and to generate tools

including itself because it is built on a meta-circular kernel language called XCore.

We provide an overview of XCore and identify the key features that lead to

XTools being able to generate a family of modelling tools including itself.

Our method is to review the MDSE process from the perspective of tooling

and identify common tool requirements leading to a set of concepts that form

our domain choice for XTools. We then describe how these concepts are im-

plemented in terms of XCore. We demonstrate the novelty of our approach by

reviewing other MDSE tooling, identifying their key MDSE features, and ana-

lyzing to what extent the particular tool can be used to build itself. Our claim

is that XTools is the only tool that can be used to build itself. The contribu-

tion of this work is as follows: (1) We identify a common representative set of

requirements for DSL tooling. Such tools are typically object-oriented and of-

fer encapsulation and extensibility in the usual way. Our proposition is that an

MDSE workbench that is meta-circular and extensible captures the class of tools

based on the requirements as a single system. (2) We describe a meta-circular

extensible workbench called XTools. (3) We show how XTools is constructed

through a simple meta-circular language called XCore that is self-descriptive in

terms of both structure and behaviour. (4) We contribute a review of estab-

lished MDSE workbenches with respect to the criteria for meta-circularity and

extensibility concluding with a comparison table showing the extent to which

the common features are supported by each candidate workbench.

Section 2 provides a domain analysis of MDSE language workbenches and

produces a set of requirements which are then shown to be supported in a re-

flexive way by the XTools package within the XModeler toolkit in section 3. Es-

tablished MDSE technologies are reviewed in section 4 leading to a comparison

with respect to meta-circular MDSE capabilities in section 5. The comparison is

not intended to be a competitive evaluation since it is not complete with respect

to MDSE tooling being limited to meta-circularity. Although we conclude that

XTools is more mature with respect to meta-circularity, there are other features,

e.g. engineering maturity, where workbenches such as Sirius [Viyović et al., 2014]

and MetaEdit+ [Tolvanen and Kelly, 2009] win out.

2 Domain Analysis

MDSE workbenches support the construction of MDSE tools where the mod-

elling domain contains language and tool definition concepts. A human user must

1149Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

use languages to express concepts which are typically supported in the following

ways:

Diagrams: It should be possible to define a language in terms of graphical

display elements. Diagrams should support a range of user generated events and

respond accordingly and it should be possible to express constraints on diagrams

to ensure that the syntax is well-formed.

Trees: Language elements can often be grouped into categories and can be

arranged in terms of a parent-child relationship. A tree browser provides a con-

venient way of organising model elements written in a particular language and

of providing access to domain-specific functionality over the elements.

Forms: Model elements often have properties whose values can be set by a user.

The properties of an element can be expressed using a form that lists the names

of the properties and allows the values to be set.

Text: It is often convenient to support concept construction through graphical

elements that show relationships whose visual features convey semantics. When

model features become large and complex it is necessary to be able to mix

graphical and textual representations.

Events: When creating models a user will typically interact with a user interface

through a keyboard or mouse. The interactions give rise to a fixed range of events

that cause changes to the model under construction.

The basic concepts described above capture the main features of MDSE tool-

ing and are therefore the basis of any meta-circular definition of an MDSE work-

bench. As noted in [Paige et al., 2017] “Despite the inroads that MD[S]E has

made in industry, a recurring complaint and obstacle for industrial organisa-

tions considering MD[S]E is the lack of sufficient tool support”. The article goes

on to propose a challenge for MDSE tooling that achieves “a uniform, cohesive,

and seamless integrated experience when progressing from concept to deployed

system”. In order to address this issue it is important to understand the key

features required by MDSE tooling and how they can be supported to achieve

the desirable characteristics.

A survey of MDSE [da Silva, 2015] reviews model-driven engineering in terms

of questions such as the definition of a model, its relationship to meta-models,

and the key facets of modelling languages. This survey finds that diagrams are

a key feature of virtually all modelling languages and refers to this as being an

appropriate mechanism to express the structural semantics required by MDSE.

However, the authors go on to make the point that graphical models do not scale

as well as text or tables (forms) where these approaches may be more appropriate

[Voelter et al., 2013]. In addition, due to a variety of syntax it should be possible

to combine both.

A DSL requirement for MDSE has led to the idea of a language work-

bench [Erdweg et al., 2013] that promotes reuse through a collection of tools

1150 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

for engineering and subsequently using languages. An example of such a work-

bench is the Graphical Modelling Framework (GMF) [Eclipse Foundation, b,

Gronback, 2009] which provides a collection of meta-languages (Ecore, OCL, a

tooling model, and a graph diagram definition language) for defining different

aspects of DSLs including its abstract syntax, its behaviour, and its concrete syn-

tax (Sect. 4.1). A danger with this approach is that the different meta-languages

need to integrate cleanly and should be extensible both individually and in com-

bination, therefore we would like to aim for closely integrated languages for the

different facets.

DSL design guidelines [Karsai et al., 2014] include a requirement to use de-

scriptive notations and to make elements distinguishable. This implies a degree

of control over the interface features (diagram elements, icons, etc.) that are

provided to the user of the DSL. Given that languages may be used by different

stakeholders, it also implies that it may be necessary to tailor the notations both

in terms of a-priori configuration and at run-time.

The design guidelines also advocate the provision of organisational structures

for models that reflect the domain and the users’ expectations. Our proposal is

that these structures can be provided through support for domain-specific tree-

based tools. Understanding notations involves principles of semiotics and fun-

damental Gestalt theory [Gulden, 2016] leading to criteria such as Perceptual

Discriminability, Semiotic Clarity, and Cognitive Fit [Moody, 2009]. Require-

ments for cognitive perception are also discussed in [Gulden and Reijers, 2015,

Gulden et al., 2016].

Nesting occurs in a number of standard modelling languages including state-

machines, packages, and business processes. As noted in [Karsai et al., 2003],

hierarchical nesting is an abstract structuring principle and therefore should be

supported by meta-tools for DSL development.

The domain analysis above leads us to a collection of core requirements for

DSL meta-tools that are defined in Table 1. The requirements cover both nota-

tion features such as the ability to represent language concepts using trees and

diagrams, language organisation features such as nesting, and tool facilities such

as the ability to access the semantics of a model written in the language.

3 The XTools Approach

XModeler is a tool for language and tool engineering [Clark et al., 2015b,

Clark et al., 2015a, Clark and Willans, 2013] that is based on a single meta-

circular meta-model called XCore that is comparable to ECore [Gronback, 2009,

Steinberg et al., 2009]. Everything in XModeler is an object, including classes

and meta-classes, which facilitates the construction of reusable languages and

tools. XModeler is implemented as a small VM written in Java; XCore is created

1151Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

RQ-1 Diagrams: A key feature of most DSLs is
the use of diagrams. Therefore a language
for defining DSL tools must support the
definition and manipulation of diagrams.

RQ-2 Forms: Model elements have properties
that must be set as part of the modelling
activity. Forms can be used to display and
edit properties and their values.

RQ-3 Text: There are occasions that it is more
convenient to use a text-based approach to
modelling. Therefore, a basic requirement
is to provide languages for features includ-
ing, e.g., actions and constraints. Since
DSLs may be text-based it should be pos-
sible to define domain-specific textual lan-
guage features.

RQ-4 Trees: Key structuring aspects of tooling,
such as ownership, are conveniently repre-
sented using trees.

RQ-5 Abstraction: A meta-tool for DSL con-
struction should provide suitable abstrac-
tions that shield the language engineer
from implementation concerns. For exam-
ple, the details of handling events and the
management of graphics should be hidden
behind suitable meta-language constructs.
It should be possible to access implemen-
tation detail where necessary.

RQ-6 Notations: A key feature of DSL tools
is the compatibility between the notations
provided and the domain concepts. There-
fore a meta-tool should provide appropri-
ate features for defining notation and sym-
bols including configuration at run-time.

RQ-7 Semantics: A DSL-based tool should not
be limited to an editor: it should have se-

mantics. The semantics may be expressed
in terms of translation to another format
including source code, in terms of con-
straints that are checked during model
construction, or direct execution. A meta-
technology should support all of these.

RQ-8 Integration: All aspects of a DSL tool in-
cluding diagrams, forms, text, trees, and
semantics, should be fully integrated. This
implies that the use of different third-party
meta-technologies to configure aspects of a
tool are likely to be limiting.

RQ-9 Nesting: Recursion is a key abstraction
mechanism that should be supported by
meta-tool definition. If a DSL is natu-
rally recursive then the tooling should be
fully aware and support it through nest-
ing that can be provided in a number of
ways. Trees and text-based languages sup-
port nesting in a straightforward way. Di-
agrams can support nesting in several dif-
ferent ways, for example directly on a dia-
gram, or through separately selected sub-
diagrams.

RQ-10 Patterns: Abstraction is supported
through the definition of patterns. Since
any non-trivial DSL tool is likely to be
complex, it is important that the meta-
tooling supports abstraction through para-
metric patterns so that definitions can be
composed from separately verified compo-
nents.

RQ-11 Extension: The meta-language provided
to define DSLs should support extension
so that tools can reuse basic definitions.

Figure 1: Requirements for MDSE DSL Tooling

via a small bootstrap file and then the XModeler toolset is bootstrapped from

the basic XCore. An executable language called XOCL, based on standard OCL,

is implemented in XCore as a compiler and interpreter.

The language engineering features of XModeler are used to create a meta-

circular language called XTools that provides declarative mechanisms for dia-

grams, trees and forms. XTools languages are interpreted at run-time within the

XModeler environment and therefore fully integrate with all other XModeler

features.

This section describes the features of XTools and how the XTools architecture

achieves meta-circularity. Section 3.1 describes XCore the meta-circular language

that is the basis for XTools in XModeler. Section 3.2 provides an overview of

the XTools language as implemented in XCore and the general purpose event

mechanism that is used to support a Model View Controller architecture for

all tools generated by XTools. Section 3.3 provides an example of a basic tool

and section 3.4 provides an example of a meta-tool that shows how XTools can

generate a tool that supports part of the XTools functionality. By implication,

1152 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

*opera�ons
invoke(args)

Opera�on

name : String
mult : String

A�ribute

name : String

new(args)

Class

name : String

set(Object)

Slot

name : String

Object

Ac�on

body of

*a�ributes

type

 *slots

value

*parents

*daemons

Figure 2: XCore

the basic tool can then be generated from the meta-tool.

3.1 XCore

Figure 2 shows the essential features of XCore that are used as the basis of the

entire XModeler environment. Each of the classes shown in the XCore model are

sub-classes of Object and instances of Class. Each of the edges on the diagram

are instances of Attribute (associations are constructed in terms of combinations

of attributes and constraints).

Several important aspects of figure 2 contribute to XModeler’s ability to

describe, reflect, modify and execute itself as follows. State: since all classes

inherit from Object, all objects in the system reference slot objects that con-

tain the object’s storage. Operations for accessing and updating the fields of an

instance of Slot are provided. Therefore, XModeler can reflect upon, and up-

date, itself. Behaviour: the meta-model contains a class called Operation that

described behaviour. The details of the expression and action language refer-

enced by Operation has been elided, however each operation can be invoked on

arguments. Daemons: operations can be registered with a slot so that each

time the slot is updated the operations are called. Operations that monitor slots

in this way are called daemons and can be used to implement a model-view-

controller pattern and general purpose event handling. Types: objects have a

link of to their class which contains a complete description of the structure and

behaviour of the object. Note that since Class inherits from Object this property

also applies to classes (meta-classes, etc.). Also, since classes are themselves ob-

jects, reflection can be applied to all parts of any XCore implemented system.

MetaTypes: a class which inherits from Class is, by definition, a meta-class and

that can redefined the operation new which uses the structure and behaviour de-

1153Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

fined in a class to create an instance. MOP: the operation new is part of the

meta-object protocol (MOP) for XModeler that allows extensions of Class to af-

fect all structural and behavioural aspects of a new language. The XCore MOP

is implemented in terms of slot access and update, message passing, and object

creation. Basic definitions are provided by XCore, however each of these may be

redefined by sub-classes of Class making XCore arbitrarily extensible.

New tools can easily be added and integrated with all other tools in the

system since there is a minimal reflexive interface defined in terms of a common

representation for state and behaviour. New tools can be defined in XCore that

manipulate any new form of object since it is always possible to reflect on the

internal structure and behaviour of all objects. The MOP ensures that even if

structure and behaviour is radically changed in a new XCore based language, a

tool will always be able to send messages to objects, access the state of an object

as though it was a named slot that can be updated via its name.

Daemons are the basis for an implementation of the MVC pattern which

allows multiple tools to manipulate the same model elements: when one tool

updates an object all observing tools are informed.

Together, these XCore features ensure that XTools is a meta-circular MDSE

workbench. XTools uses XCore to define an executable tool model based on the

features defined in section 2. Since XCore supports both structure and behaviour,

the XTool meta-tool can build both the structure and behaviour of any tool. The

MVC mechanism allows such tools to manipulate any instance of an XCore

defined model. Since XTools is an XCore defined model, XTools can define a

tool that builds XTools as described in the next section.

3.2 The XTools Language

XTools is an XCore defined language with support for diagrams, trees, forms,

events and text. Figure 3 shows the classes of the XTools architecture for dia-

grams and forms (trees are implemented as sub-classes of FormElement)1.

Two key tool types are defined: DiagramToolType and FormToolType, where

other types of tools including trees and text editors are defined as types of

FormElement. We show the structure of a diagram tool type in terms of node

types and edge types as an example: form elements follow the same pattern.

When a tool is created, it is registered with its element and appropriate

daemons are added to implement the MVC pattern. Event handlers may change

the state of the object by adding new sub-objects. It is the responsibility of

the handler to add daemons to the any newly added objects so that the MVC

pattern is correctly maintained.

1 Text-based language engineering is described in [Clark et al., 2015b,
Clark et al., 2015a]. Syntax classes are provided for all the concepts of XTools such
as diagram elements, tree elements and events.

1154 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

1155Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

Event Name Specification Description

New_T(t,o) A new node or edge of type T has been created. The event
contains the new edge or node o.

T_Removed(t,o) An existing node or edge o has been removed.

P_Changed(t,d,s,s’) Where P names a text element or an edge label that has been
edited by the user. The event contains the display element d,
the new text s and the old text s’.

E_Target_Changed(t,e,n,n’) Where E is the name of an edge type and the event contains
the edge e, the new target node n and the old target node n’.

E_Source_Changed(t,e,n,n’) Where E is the name of an edge type and the event contains
the edge e, the new source node n and the old source node n’.

Add_To_P(t,d) Where P is a path to a starred container and the event contains
the newly created display element d.

Delete_From_P(t,d) Where P is a path to a starred container and d is the display
element that has been removed.

P_Clicked(t,o,i) Where P names a node, edge, label or display type and o is the
element of that type that has been clicked, i is the number of
clicks.

P_Selected(t,o) Where P names a node, edge, label or display type and o is an
element of that type that has been selected.

P_Deselected(t,o) Where P names a node, edge, label or display type and o is an
element of that type that has been deselected.

N_Resized(t,n) Where N names a node type and n is a node of that type that
has been resized.

N_Moved(t,n) Where N names a node type and n is a node of that type that
has been resized.

P_ChangeTo(t,d) Where P names a disjunction of display element types and d
is the new element that has been created.

Table 1: Diagram Event Specifications

An algorithm that consists of a forward and backward pass is used to propagate

earliest and latest times for events based on the dependencies between actions

and their duration. The difference between the two event times represents the

slack in the project plan: a project with 0 slack is high-risk since a delay in any

activity will delay the completion date of the project.

The CPM can be supported by a tool that constructs a graph of events and

activities represented as nodes and edges respectively. Duration and times can be

added as labels on the graph and the earliest and latest times can be constructed

by functionality that is exposed via a menu. The model to be manipulated by

a diagram tool is shown in figure 4. The tool creates a graph whose nodes

are labelled with events and whose edges are labelled with activities. A graph

supports operations: roots() that returns a set of nodes that are not the target

of an edge; terminals() that returns a set of nodes that are not the source of

any edge; predecessors(n) that returns the set of all nodes that are the source

of an edge that has n as a target; successors(n) that returns the set of all nodes

that is the target of an edge that has n as the source; edgesBetween(n1,n2) that

returns the set of all edges with source n1 and target n2.

The CPM associates an event with the latest and earliest times that the event

can occur. These times are calculated based on the activities that terminate with

1156 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

1157Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

1158 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

1159Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

generated source code of the plugins can additionally be edited to implement

specific features not provided by the default editor.

Five separate model types are involved in the generation of a diagram editor

and are used to streamline the development of GMF’s internal diagram editor

code generation templates rather than to provide domain-specific abstractions

for the purpose of visual language design.

Despite its conceptual limitations, GMF has become one of the most wide-

spread diagram editor creation tooling environments and is freely available as a

standard set of open-source Eclipse plugins that integrate with the EMF frame-

work and auxiliary technologies such as model transformation engines and code

generator components.

Internally, GMF is implemented as a front-end for the Eclipse Graphical

Editing Framework (GEF) library, which is a non-model-based, traditional Java

API to supplement the implementation of diagram editors for Eclipse. GMF

translates central API concepts of GEF to model concepts in its five interrelated

modelling languages, and provides code generation functionality to assemble

their configurations. Close connection to the underlying GEF API ties GMF to

predominantly implementation-level abstractions.

Conceptually, the approach chosen in GMF to describe concrete syntax for

modelling languages suffers from another major shortcoming: Different types of

visual elements, such as line connectors and nesting containers, can only be used

in combination with fixed meta-model concepts.

The generative approach of GMF, which uses code generation during devel-

opment time to provide an editor plugin to be run in a separate Eclipse en-

vironment, supports flexible modification of the generated editor functionality.

Systematic extensions to the GMF generation process exist that re-apply source

code modifications after changes to the editor specification and subsequent re-

generation of the editor code [Gulden, 2009].

4.2 Graphiti

Graphiti [Brand et al., 2011] was originally developed as an alternative to GMF,

and later contributed as an open-source component to the set of openly available

Eclipse extensions. It also is based on EMF, but unlike GMF, the specification of

a visual language is not provided by specialised models, but purely by program-

ming against an API that implements a default diagram editor that makes use

of a standard “boxes-and-lines”-notation style for entities and relationships in a

model. The types of entities that are available, their attributes, and relationship

types are configured programmatically by defining a diagram type agent class

as a subclass of an abstract super-class provided by the Graphiti API.

Given the programmatic nature of Graphiti, no code generation is involved

when creating a diagram editor. However, the configuration mechanism remains

1160 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

on a very low level of abstraction and requires each bit of editor functionality to

be manually registered as a separate code fragment for each model element.

Although Graphiti claims to be “an alternative to GMF” [Brand et al., 2011],

the differences to GMF in use are significant. As the framework offers functional-

ity on a low level of syntactic diagram rendering and editing only, the burden is

on the language developer to find possible abstractions that reduce redundancies

and allow an efficient specification of visual languages.

4.3 Eugenia

Eugenia [Kolovos et al., 2017, Rose et al., 2012] is a wrapper around EMF

and GMF that integrates the Ecore, Genmodel, Graphmodel, Toolmodel and

GmfModel formats by offering a textual specification language that supports

concepts from the original GMF framework in one single language. A generator

is attached to it, which extracts information from the textual specification into

the separate model formats for further processing with the original EMF/GMF

infrastructure.

For developers who are already familiar with GMF, Eugenia provides an

efficient shortcut for creating the required models for that framework. However,

Eugenia misses the chance to improve the semantic expressivity of GMF, since

it does not provide means for simplifying the GMF specifications in conceptual

terms, i.e., no higher-level abstractions are offered.

4.4 Sirius

Sirius [Viyović et al., 2014] is the most recent member among EMF extensions

for specifying concrete model syntax. Like GMF and Graphiti, it integrates seam-

lessly with the Eclipse tooling environment and the Eclipse Modeling Framework.

Sirius also uses a model-based configuration approach, in which a developer ed-

its a tree-structured configuration model from which the diagram definition is

derived. There are two major differences between GMF and Sirius. Firstly, Sirius

does not use code-generation to transfer the configuration model to executable

code. The model rather is interpreted by a run-time component which makes

it easier to modify or extend the diagram description in an interactive process

without the need to re-generate the diagram editor code after each round of

changes.

A second and more significant difference to most other concrete syntax spec-

ification approaches is that Sirius supports visual examples in real-time during

language development, which gives an immediate visual feedback to the devel-

oper about how the specified visual syntax looks like.

Sirius also includes non-diagrammatic model representations: table views

(matrices) and tree views (comparable to EMF’s tree view representation) and

therefore can be seen as a tooling environment for domain specific workbenches.

1161Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

Overall, Sirius appears to be the most advanced Eclipse-based visual language

design approach. Its interpretative approach allows for fast development cycles,

and the simultaneous design of the language specification and a prototypical

model instance appears a fruitful approach for visual language design, as it gives

immediate visual feedback to the developer of how the specified visual language

looks like.

Sirius is available as an open-source solution via Eclipse update sites, and

bundled as a commercial integrated modelling tool environment under the name

Obeo Designer [Obeo, 2020].

4.5 Eclipse EEF

With the Eclipse Editing Framework (EEF) no diagram representations are de-

fined, but forms are specified which make model content visible and editable.

When EEF is used in combination with other diagram definition approaches,

this also supports the idea that multiple diagram and non-diagram views of a

model together make up a complete application.

EEF supports a mapping from attributes and associations to form patterns.

No higher conceptual abstractions about the purpose or process of using forms

are leveraged by the approach. As a consequence, any advanced functionality

with respect to the dynamic interaction with forms requires program code frag-

ments, e.g., for form field validation.

A more advanced conceptualisation of forms could support form states that

change while using the form, and that potentially influence its visual appearance.

In addition to state-based approaches [Harel, 1987], the use of declarative process

modelling languages [Marquard et al., 2016] appears to point into the direction

of a more elaborate way to conceptualize forms, which, however, goes beyond

the capabilities offered by EEF.

4.6 MetaEdit+

The meta-modelling environment MetaEdit+ [Tolvanen and Rossi, 2003, Tolva-

nen and Kelly, 2009] offers an integrated approach for domain-specific language

creation and application. The tool suite comes with a proprietary infrastructure

and is not based on the Eclipse Modeling Framework (EMF). Instead, all func-

tionality is realised by two interrelated desktop applications: MetaEdit Work-

bench for defining modelling languages, and MetaEdit Modeler for editing model

instances and running transformations. The first version of the tooling envi-

ronment dates back to 1995, which by today has made MetaEdit+ a matured

approach offered as a commercial product.

Languages in MetaEdit+ are defined by specifying the desired entity types,

attributes, and relationships through a form-based user interface. No explicit

1162 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

meta-model is created by default, instead, all characteristics of diagram graphs,

entity-types, properties, connectable ports, and relationships are entered non-

graphically in a traditional user interface. Consequently, this language specifi-

cation approach is called GOPPRR, which stands for Graph-Object-Property-

Port-Role-Relationship. Both language definitions as well as model instances are

stored in a central repository, not as files. This makes MetaEdit+ suitable for

large and distributed development projects.

The environment follows an interpretative approach, i.e., no code generation

is involved when creating model editors. Instead, the MetaEdit Modeler tool

interprets available language definitions at run-time to offer according editing

functionality. Changes that are made to the language definition in the MetaEdit

Workbench are directly reflected in the MetaEdit Modeler. Besides the built-in

behaviour of the modelling tools, there is little possibility for language designers

to customize the resulting editor.

4.7 Melanee

The research prototype Melanee [Atkinson and Gerbig, 2016] primarily aims

at providing a modelling environment for multi-level conceptual modelling

[Frank, 2014, Odell, 1994, Atkinson and Kühne, 2001]. The tool works on the

basis of an object-oriented modelling language that supports classes, objects,

attributes, and relationships. These basic language elements are enhanced with

additional features for multi-level conceptual modelling and visual representa-

tion of models. When creating multi-level models with Melanee, class diagrams

for each abstraction level are shown vertically stacked, one above the other,

on a diagram canvas. Each diagram represents one abstraction level, with the

highest level shown on the top. By default, the model elements in each lane are

displayed in a UML-like notation, i.e., classes and objects are represented as

rectangular boxes, with a name label in the top-middle of the box, and a com-

partment for attributes. Operations are not supported. Relationships appear as

line connectors by default. For displaying more details about a relationship, the

notation of a relationship can be switched to an entity-style mode, in which the

concept of the relationship appears as an entity symbol on the diagram canvas,

linked through line connectors to the connected entity types.

In addition to the UML-like notation of model elements, model elements

can be switched to a DSL syntax that can be specified for each model element

by assigning graphical primitives or images to the defining entity in a concep-

tual model on an abstraction level above the currently edited one. Models that

originate from a multi-level hierarchy of classes can also make use of an aspect-

oriented modification of the visual representation they inherit from a higher level

of class abstractions.

1163Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

Defining a visual notation like this can be considered a stereotyping of the

original UML notation, as the existing notation becomes adapted to a domain-

specific case. This is easy to specify, but provides little flexibility when other

visual metaphors apart from nodes and connectors are to be used in a visual

language.

The tool has specifically been designed for working with multi-level concep-

tual model hierarchies. As a consequence Melanee does not support creating

workbenches with multiple synchronised model views.

4.8 Xtext

A prominent representative of a textual modelling approach is Xtext [Grönniger

et al., 2014, Eclipse Foundation, c]. Based on Enhanced Backus-Naur-Form

(EBNF) grammar specifications [Nijholt, 1988], the framework supports textual

languages and can automatically generate parsers which transform textual model

instances into parsed object trees in the format of EMF [Steinberg et al., 2009]

instances. The resulting integration with the standard tooling environment of

Eclipse provides a powerful alternative to meta-modelling for efficiently creating

(small and medium sized) domain specific textual modelling languages. Xtext

exclusively focuses on textual model views and does not support other types of

representations.

4.9 Meta Programming System MPS

The MPS meta programming system [Campagne, 2014, Voelter, 2013] provides

a projective approach to language engineering. This means, a modelling lan-

guage is not defined via a meta-model or a grammar to create a single model

editor that uses one consistent editing paradigm for the entire modelling lan-

guage. Instead, languages are composed of multiple partial editor definitions,

which each may associate different so-called “cells” in a graphical user inter-

face (GUI) with content of a model that is being edited. The GUI elements

and the model contents are synchronised using a model-view-controller (MVC)

[Reenskaug, 2007, Mahemoff and Johnston, 1999] pattern. This makes sure the

GUI elements are updated according to the contents of the object tree when-

ever changes to the objects occur, so the user of a model editor always sees the

current contents of the objects, and whenever the user edits contents using the

GUI elements, changes are propagated back into the object tree of the model.

Such a projective approach supports complex structured model editors, be-

cause the GUI elements that provide the editor interface can be chosen from

multiple kinds of interaction elements, comparable to the design of a traditional

application GUI. This includes structured text, tables, sliders, diagrams, and

other elements. The language definition associates element types in a tree model

1164 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

with suitable GUI representations, and the projective editor environment makes

sure that the MVC behaviour is applied to the individual elements. As a down-

side, working with such editors requires modellers to be more aware of the inter-

nal object tree structure than with single-paradigm model editors. For example,

when textually editing a model in a projective editor, the language elements are

individually addressed as sections of the text during editing, instead of letting

the user freely type text that is subsequently transformed into an object tree

structure using a parser.

5 Comparison and Evaluation of the Approaches

The general vision of a model-based approach to the definition of Software Engi-

neering tools is discussed in [Clark et al., 2013]. A fundamental understanding of

basic properties of modeling tool support with inherently multiple views means

is established in [Goldschmidt et al., 2012]. While not all concepts discussed in

that work are one-to-one reflected in XTools, it shares the notions of key terms

such as view, view type, and viewpoint.

In [Pfeiffer and Pichler, 2008], a text-based comparison framework is devel-

oped that is based on dimensions that are grouped into criteria concerning

the modelling language definition, the model transformation capabilities, and

tooling aspects of language workbench environments. The framework is sub-

sequently applied to the language environments openArchitectureWare (oAW)

[Efftinge et al., 2008], the Meta Programming System (MPS) [Campagne, 2014,

Voelter, 2013], MontiCore [Krahn et al., 2010], and four other approaches, each

in a version that was current when the examination was published in 2008.

The case study in [El Kouhen et al., 2012] evaluates different language engi-

neering workbenches along the example case of implementing a simplified version

of the Business Process Modelling and Notation (BPMN) language [Weske, 2012,

Dumas et al., 2013] and its visual diagram syntax.

With emphasis on conceptual language definition capabilities realised by

different meta-modelling approaches, [Kern et al., 2011] examines the expres-

sivity offered by meta-modelling approaches from 6 different tooling environ-

ments, among them ARIS [Scheer and Schneider, 2005], the Eclipse Modelling

Framework (EMF), and MetaEdit+. The comparison provides a comprehen-

sive overview of the differences between language specification approaches, but

operates with a narrow perspective by only focusing on conceptual language

specification selected from a few approaches.

Quantitative measures of language workbenches are compared in [Kelly, 2013]

including feature coverage, lines of code, user satisfaction, time, and cost.

The annual Language Workbench Challenge is described in [Erdweg et al.,

2013] and [Erdweg et al., 2015]. It involves the construction of domain-specific

1165Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

languages with different language workbenches provided by the participants.

However, many prominent contemporary approaches are not included.

In summary, existing pieces of work on comparing meta-modelling en-

vironments and language workbenches take different starting points com-

pared to that described in this article, such as means for conceptual lan-

guage definition [Kern et al., 2011], explicit restrictions toward non-visual us-

age paradigms [Pfeiffer and Pichler, 2008], or an emphasis on tooling aspects

[El Kouhen et al., 2012]. The support for the definition of visual representations

of models and subsequent user interaction seems not to have been in the focus

of existing comparative analyses.

When developing our framework we concentrate on capabilities offered by

different language engineering workbenches that contribute to the reflexive tool-

ing.

5.1 Comparison Criteria

Views provide access to the model and include Diagram view (see RQ-1) con-

sisting of nodes and line-connectors. Form views display model instance content

using elements such as text-fields, lists, check-boxes, and radio-buttons. A spe-

cial kind of form view is a tree view, which extends the notion of a list by the

additional concept of a hierarchy. Language engineering workbenches may offer

form views individually or in combination with diagram views, since diagrams

typically do not offer capabilities for editing a complete set of object properties.

A Matrix view can be used to visualize and edit relationships. A matrix view

consists of a square area with two axes, along which object instances are listed.

The objects are represented as textual labels, potentially in combination with

graphical icons to indicate an object’s type and / or status. These criteria are

reflected second in the comparison (Table 2) and corresponds to requirements

RQ-2 and RQ-4 .

A Textual view may also be offered by language engineering workbenches to

represent model instances. Whether such a view type is provided by a language

engineering workbench, is indicated with a marker at the respective position in

the comparison table (Table 2). The availability of a textual view directly fulfils

requirement RQ-3 .

Approaches differ in terms of view integration and synchronization. The crite-

rion Integration of views expresses this ability (see RQ-8). We consider a tool to

support view integration if it is able to display several views in parallel showing

different synchronized perspectives on the model content.

Approaches which make use of editor domain abstractions are indicated in

the row labelled “Editor domain abstractions above implementation level” in Ta-

ble 2. The comparison criteria related to editor domain abstractions contributes

to requirement RQ-5 and requirement RQ-10 .

1166 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

We also consider whether language engineering workbenches provide model

based notation specification or text based notation specification options for defin-

ing representation and interaction features. In the evaluation framework, a

marker is set for the first criterion, if any non-textual specification mechanism

is made available by a language engineering workbench, and accordingly for the

second criterion, if a text-only specification is possible.

If run-time notation editing is available a marker is set for the according lan-

guage engineering workbench approach. If no run-time editing is made available,

the development of model instance editors implies the editor to be re-initialised

each time a change to the configuration is made. Availability of run-time notation

editing capabilities contributes to satisfying requirement RQ-6 .

We consider three criteria regarding the way a visual concrete syntax is spec-

ified. Many approaches support symbol definition via code or model. Language

engineering workbenches which offer such a specification mechanism are indi-

cated with a marker in the row that corresponds to this criterion. In contrast,

some language engineering workbenches import graphics from external sources

where a marker is set in the row External symbol definition. Some approaches

also provide tool support for visual editing of symbols inside the language engi-

neering workbench. A tool that offers such functionality is assigned a marker in

the corresponding row and is satisfying requirement RQ-6 .

A fundamental distinction in the way model instance editor specifications

are processed lies in the way an executable model editor artifact is created. Two

mutually exclusive modes arise: code generation or run-time interpretation of

model instances.

Dynamic adaptation to model content, e.g. adapting a symbol’s context menu

according to underlying model elements’ states is a relatively advanced feature

that has a marker set in the dynamic symbols depending on model state row

satisfying the requirement RQ-6 .

The use of form elements in diagrams in the concrete model syntax can

be considered as one of the most advanced concrete syntax features of model

instance editors. Language engineering workbenches which are able to provide

these capabilities are assigned a marker in the corresponding row and satisfy

requirement RQ-6 .

The semantics requirement RQ-7 is an inherent part of the underlying con-

ceptual model and any model instance editor that does not respect semantic

rules is considered faulty. Therefore, these aspects intentionally are not part

of the comparison in this article, and the reader is referred to other sources

[Kern et al., 2011, Erdweg et al., 2015, Vujović et al., 2014]. In addition, re-

quirement RQ-11 – Extension is not reflected by any of our comparison criteria.

1167Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

GMF Graphiti Sirius Eugenia EEF MetaEdit+ Melanee XText MPS XTools

Diagram view X X X X – X X – X 9

Form view 8
2

X
2

8
3

X
2

8 X
2

X
2 – 8 8

Matrix view – – X – – X – – X X4

Textual view – – – – – – X 8 X 8

Integration of diagram / form / matrix / textual views – – X – – – X – X 9

Editor domain abstractions above implementation level – – X – – – – – – 8
4

Model based notation specification X – 8 – X – X X5
8 8

Text based notation specification – X6 – X7 – – – 8 – 8

Run-time notation editing – – X – – X X – – X

Symbol definition via code or model X X X X – – X – X X

External symbol definition X – X – – X X – X X

Visual editing of symbols – – – – – X – – – –

Code generation X – – X – – – X X –

Run-time interpretation – – X – X8 X X9 – – X

Dynamic symbols depending on model state X10 – – – – X X – X11 X12

Form elements in diagrams – – – – – – – – X X

Symbol legend:

X available

8 available and self-reflexively used for language specification

9 available and self-reflexively usable for language specification

– not available

Table 2: Comparison of the Examined Approaches

5.2 Comparison of Language Engineering Workbenches

Table 2 contains an evaluation of each of the language engineering workbenches

that have been introduced in Sect. 4. Each criterion is marked with a “X” if

it is covered by the approach in question, or with a “–” if not. A “8” symbol

indicates that the language engineering workbench offers a feature and at the

same time uses it as part of its language specification mechanism, i.e., the crite-

rion is reflexively applicable and can be used to model the language engineering

workbench itself. A “9” indicates that a workbench has the capability of using

a feature reflexively, but does not use it in its own definition.

Most candidates offer only a limited set of model representation and inter-

action views. Approaches that fall into this category are GMF, Graphiti, and

Eugenia. EEF and Xtext also provide one view only, which are a form view and

a text view, respectively.

2 Default properties view.
3 By integration of EEF.
4 By domain-specific language extensions using syntax classes.
5 By import of Ecore meta-model.
6 By Java program code.
7 Uses Emfatic (.emf) text representation of the GMF model family.
8 Code generation until version 1.6, since version 1.7 run-time interpretation.
9 Run-time interpretation by external tools only.

10 By modification of generated code.
11 By manual implementation of javax.swing.Icon.
12 By attaching listeners (“daemons”) to model elements and changing visual appear-

ance accordingly.

1168 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

The largest number of criteria are addressed by Sirius, MetaEdit+, MPS,

and XTools. These representatives can be distinguished according to their pri-

mary purposes. MetaEdit+ and MPS originate from model-driven software en-

gineering (MDSE) approaches. Although following entirely different realisation

paradigms, both approaches have initially been created to ease programming

and to allow gaining a higher level of abstraction in the specification of software

systems. MetaEdit+ uses, among others, visual diagram elements to provide

such abstractions. MPS has extended the notion of a graphical user interface

to a projective modelling approach [Voelter and Lisson, 2014]. Both of these

approaches focus on abstracting over software structures for code generation

[Kelly and Tolvanen, 2008, Voelter, 2013], rather than the meaning of concepts.

XTools provides capabilities for a systematic integration of multiple mod-

elling perspectives on the language definition level. Sirius and MPS offer this,

too, by a variety of model representation and interaction views both during lan-

guage specification and when using languages. As a consequence, Sirius, MPS

and XTools primarily follow the idea of using composed model editors like ap-

plication workbenches, and while MPS is oriented toward model-based software

development, Sirius and XTools offer facilities to model language workbenches.

Sirius makes use of the standard meta-modelling capabilities offered by Ecore,

which is the central meta-modelling language of the Eclipse Modelling Frame-

work (EMF) for expressing the abstract syntax and semantics of conceptual mod-

els although operations are limited to their signatures. XModeler meta-models do

not require code generation (the meta-model elements are represented internally

like any other programming language constructs). Models can be interpreted by

the XOCL language framework or can be compiled in-situ to the XModeler VM

(both the interpreter and compiler are written in XOCL). Therefore, the specifi-

cation of business logic with behavioural language constructs is integrated with

XCore meta-models.

The advanced meta-model specification capabilities and full integration with

XModeler makes XTools compare favourably with Sirius in terms of realising

the overall vision of creating domain-specific modelling tools in a model-driven

way.

XTools offers three different types of built-in views on models. The set of

model view types offered by Sirius covers four basic types of views: graph dia-

grams, tree-views, forms, and a matrix view. Matrix views display relationships

among model content in a 2-dimensional structure. For specifying form-based

views on models, Sirius integrates the features of the EEF framework, which

also is available as a separate component for the Eclipse Modelling Framework

to specify form-based property views for conceptual models (Sect. 4.5). The set

of basic view types has been enhanced by additional components such as a se-

quence diagram view, which corresponds to a UML sequence diagram type for

1169Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

showing procedural model content. The specification of model views is performed

in Sirius by editing a tree model structure. This provides an abstraction from

writing code, at the price of lesser flexible editing operations.

Both XTools and Sirius support model editor specification at run-time, with-

out an intermediate step of code generation and / or compilation.

Sirius uses standard EMF notification mechanisms that manually implement

view synchronization based on typical event listener mechanisms similar to those

used throughout Java APIs. Architectural support for integrating views, how-

ever, rarely is available in existing language engineering workbenches perhaps

because it requires subtle adjustments of transaction handling and consistency

management [Brun and Köhnlein, 2017]. XModeler makes use of the listener

mechanisms of the underlying XOCL language called daemons (Sect. 3).

By introducing syntax classes for describing view interrelationships with a

domain-specific language, XModeler gets closer than Sirius to the idea of a lan-

guage engineering workbench which serves to specify entire (business) applica-

tions such as MDSE tooling environments as a combination of conceptual models

and a set of interrelated model views.

The range of generalised functionality that XTools uses through the XMod-

eler infrastructure comes with the drawback of many detailed configuration tasks

that in general have to be performed on the program code level. The XTools

meta-tool (Sect. 3.4) addresses this by making the construction of modelling

views easier.

5.3 Comparison of Reflexive Capabilities

MDSE language workbenches offer features that allow the user to create and

deploy languages and tools that target specific domains. Since MDSE tooling

is itself a domain, it makes sense to analyze the workbenches with respect to

reflexive features, i.e., the ability to define language features that would enable

the workbenches to build variations of themselves and thus make use of a meta-

circular architecture (Sect. 3.4). In many cases, established workbenches were

not designed to build themselves or the capability to reflect and build meta-

variations is undocumented.

When a language engineering workbench makes use of form views for entering

the configuration of a language workbench, and these form views are defined by

means of the language engineering approach itself, a “8” marker has been set in

the comparison matrix in Table 2.

GMF makes use of tree-based EMF model editors to assemble its config-

uration for visual modeling languages. As GMF is an extension to EMF and

implicitly includes all its features, this way of specifying language definitions

constitutes a self-reflexive use of GMF’s modeling workbench specification mech-

anisms.

1170 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

Sirius makes use of self-reflexively defined tree editors in an explicit way, so

that its workbench definition language explicitly contains constructs which allow

to define their own configuration tool in a reflexive way.

EEF also uses EMF-based tree editors for defining its property form con-

figurations that offer known EEF features and the EEF look-and-feel, thereby

providing a way for EEF to define itself.

The interface of the MPS modeling workbench for defining languages makes

use of a projection-oriented approach that supports a combination of a text-

based specification and configuration options via user interface widgets that can

be used to configure MPS itself.

The tree editor widget of the model-based language specification approach

offered by XTools realizes a reflexive use of the language specification mechanism

since the model-based XTools specification environment has been specified using

XTools itself (see Sect. 3).

XText is based on a reflexive use of its textual language specification mech-

anism, since the grammar specification for XText-based languages is internally

handled as a model, and it is entered with an Xtext-generated textual model

editor. A comparable approach is taken by XTools, which with the help of syn-

tax classes defines individual grammar fragments for parts of a textual model

instance. The format for textual XTools configurations makes explicit use of

syntax class definitions providing a reflexive specification mechanism.

To our knowledge, the only language engineering workbench that provides a

model-based approach to engineering workbenches is XTools. All concepts for

describing language engineering workbenches can be expressed and be combined

with the existing set of conceptual abstractions for model editor design. However,

while XTools provides high level reflexive meta-concepts it does not come with

a library of workbench elements. The use of XModeler and XTools to define

reusable reflexive workbench features is an area for further work.

A “8” in the “Model based notation specification” row in Table 2 coincides

with one in the “Form views” row, because in all examined approaches the

self-reflexive use of model based notation specification happens with tree-based

model editors that have associated property forms.

Some approaches provide a textual specification mechanism for language en-

gineering workbenches. A “8” in the row “Text based notation specification” in

Table 2 coincides with one in the row “Textual views”, because a self-reflexive

use of a textual specification mechanism implies that textual views are made

available by the approach.

6 Conclusion and Future Perspectives

This article has contributed to the field of meta-circular MDSE workbenches

by reviewing established technologies in this area, identifying a collection of

1171Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

requirements that should be provided in order to be both MDSE and reflexive,

and comparing the technologies against the requirements.

Unlike other tools, The tool XModeler was designed to be meta-circular and

has achieved this by bootstrapping modelling languages and tools from a small

core. XModeler validates the claim that it is an MDSE meta-circular workbench

by providing a sub-framework called XTools and then using parts of XTools to

define a model-based XTools meta-tool. The comparison of MDSE frameworks

with respect to meta-circular criteria is shown in Table 2. This table can be

viewed in two ways: features required for modelling and features required to

model an MDSE workbench. In the first case, the table shows that established

workbenches offer a variety of features for modelling, but, as shown in the second

case, often these features cannot be used in a reflexive way.

Given the design motivation of XModeler, it is perhaps not surprising that

XTools offers the greatest number of modelling features that can be applied to

itself. However, XTools is not complete with respect to meta-circular features

and is a research prototype with proprietary technological approaches. As a con-

sequence, it cannot be considered an optimal platform for industry-standard

model-driven software engineering development projects. Other tools can indi-

vidually be identified as best-of-breed for tasks such as conceptual language

definition or graphical visualization of models. In contrast, XModeler serves as

an example for an architectural style which hopefully will influence the future

development of language engineering workbenches in general.

Our claim in this article is that MDSE workbenches should aim for meta-

circularity since this achieves several desirable benefits. However, there are a

number of disadvantages to meta-circularity that can be viewed as outstanding

research challenges in this area: static type-checking is difficult; execution of a

meta-circular core may jeopardise performance; the maintenance of tools written

using a meta-modelling approach can be a problem; there are no standards for

meta-circular tool interoperability.

Although XModeler and XTools is not complete with respect to the require-

ments for MDSE meta-tooling described in this article, we claim that it provides

a contribution to the field in terms of its design aspirations. We propose that

next generation MDSE should be designed to be reflexive and meta-circular in

the sense that the modelling features of the tool can at least be used to build

itself and variations thereof.

Although XTools provides unrestricted access to executable meta-levels

through the facilities of XModeler, there is significant scope for adding struc-

ture and semantics to the definition of DSL tools in this way. For exam-

ple, several meta-levels can co-exist in order to link meta-classes, classes,

and their instances. Such multi-level modelling [Frank, 2014, Odell, 1994,

Atkinson and Kühne, 2001] is necessary to represent tool-types, tools, and

1172 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

their instances. However, from an engineering perspective, it becomes difficult

to manage the levels without tool support for enforcing type distinctions, and

this is an area for further language development.

References

[Atkinson and Gerbig, 2016] Atkinson, C. and Gerbig, R. (2016). Flexible deep mod-
eling with Melanee. In Reimer, S. B. U., editor, Modellierung 2016, 2.-4. März 2016,
Karlsruhe - Workshopband, volume 255, pages 117–122, Bonn. Gesellschaft für Infor-
matik.

[Atkinson and Kühne, 2001] Atkinson, C. and Kühne, T. (2001). The essence of mul-
tilevel metamodeling. In Gogolla, M. and Kobryn, C., editors, UML ’01 Proceedings
of the 4th International Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, pages 19–33, London. Springer UK.

[Bershadsky et al., 2018] Bershadsky, A. M., Bozhday, A. S., Evseeva, Y. I., and Gud-
kov, A. A. (2018). The mathematical model of reflection for self-adaptive software.
In 2018 9th International Conference on Information, Intelligence, Systems and Ap-
plications (IISA), pages 1–5. IEEE.

[Beydeda et al., 2005] Beydeda, S., Book, M., and Gruhn, V., editors (2005). Model-
Driven Software Development. Springer, Berlin Heidelberg.

[Brand et al., 2011] Brand, C., Gorning, M., Kaiser, T., Pasch, J., and Wenz, M.
(2011). Development of high-quality graphical model editors. Eclipse Magazine,
(1).

[Brun and Köhnlein, 2017] Brun, C. and Köhnlein, J. (2017). Integrating Xtext and
Sirius: Strategies and pitfalls.

[Campagne, 2014] Campagne, F. (2014). The MPS Language Workbench: Volume I.
The MPS Language Workbench. CreateSpace Independent Publishing Platform.

[Clark et al., 2013] Clark, T., France, R. B., Gogolla, M., and Selic, B. V. (2013).
Meta-Modeling Model-Based Engineering Tools (Dagstuhl Seminar 13182). Dagstuhl
Reports, 3(4):188–226.

[Clark et al., 2015a] Clark, T., Sammut, P., and Willans, J. S. (2015a). Applied meta-
modelling: A foundation for language driven development (third edition). CoRR,
abs/1505.00149.

[Clark et al., 2015b] Clark, T., Sammut, P., and Willans, J. S. (2015b). Super-
languages: Developing languages and applications with XMF (second edition).
CoRR, abs/1506.03363.

[Clark and Willans, 2013] Clark, T. and Willans, J. (2013). Software language engi-
neering with XMF and XModeler. In Mernik, M., editor, Formal and practical aspects
of domain-specific languages: recent developments, pages 311–340. IGI Global.

[da Silva, 2015] da Silva, A. R. (2015). Model-driven engineering: A survey supported
by the unified conceptual model. Computer Languages, Systems & Structures,
43:139–155.

[Dumas et al., 2013] Dumas, M., Rosa, M. L., Mendling, J., and Reijers, H. A. (2013).
Fundamentals of Business Process Management. Springer, Berlin Heidelberg.

[Eclipse Foundation, a] Eclipse Foundation. Eclipse Modeling Framework (EMF).
http://www.eclipse.org/modeling/emf/.

[Eclipse Foundation, b] Eclipse Foundation. Graphical modeling framework (gmf).
http://www.eclipse.org/modeling/gmf/.

[Eclipse Foundation, c] Eclipse Foundation. Xtext - language development framework.
http://www.eclipse.org/Xtext/.

[Efftinge et al., 2008] Efftinge, S., Friese, P., Haase, A., et al. (2008). ope-
nArchitectureWare User Guide. http://www.openarchitectureware.org/pub/
documentation/4.3.1/html/contents/index.html.

1173Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

[El Kouhen et al., 2012] El Kouhen, A., Dumoulin, C., Gerard, S., and Boulet, P.
(2012). Evaluation of Modeling Tools Adaptation. Technical report.

[Erdweg et al., 2013] Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman,
R., Cook, W. R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G. D. P.,
Molina, P. J., Palatnik, M., Pohjonen, R., Schindler, E., Schindler, K., Solmi, R.,
Vergu, V. A., Visser, E., van der Vlist, K., Wachsmuth, G. H., and van der Woning,
J. (2013). The State of the Art in Language Workbenches, pages 197–217. Springer
International Publishing, Cham.

[Erdweg et al., 2015] Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman,
R., Cook, W. R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G. D. P.,
Molina, P. J., Palatnik, M., Pohjonen, R., Schindler, E., Schindler, K., Solmi, R.,
Vergu, V. A., Visser, E., van der Vlist, K., Wachsmuth, G., and van der Woning,
J. (2015). Evaluating and comparing language workbenches: Existing results and
benchmarks for the future. Computer Languages, Systems & Structures, 44:24–47.

[Frank, 2014] Frank, U. (2014). Multi-level modeling - toward a new paradigm of con-
ceptual modeling and information systems design. Business & Information Systems
Engineering (BISE), 6(3).

[Goldschmidt et al., 2012] Goldschmidt, T., Becker, S., and Burger, E. (2012). To-
wards a tool-oriented taxonomy of view-based modelling. In Sinz, E. J. and Schürr,
A., editors, Modellierung 2012, pages 59–74, Bonn. Gesellschaft für Informatik e.V.

[Gronback, 2009] Gronback, R. C. (2009). Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. Addison-Wesley Longman, Amsterdam.

[Grönniger et al., 2014] Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., and
Völkel, S. (2014). Textbased modeling. CoRR, abs/1409.6623.

[Gulden, 2009] Gulden, J. (2009). Minimal invasive generative Entwicklung von Mod-
ellierungswerkzeugen (minimal invasive generative development of modeling tools).
In Fischer, S., Maehle, E., and Reischuk, R., editors, Tagungsband der Konferenz
INFORMATIK 2009, Lübeck, 28.9.2009 – 2.10.2009.

[Gulden, 2016] Gulden, J. (2016). Recommendations for data visualizations based on
gestalt patterns. In Proceedings of the Enterprise System (ES) 2016 conference in
Melbourne, 2016-11-02 – 2016-11-03. IEEE.

[Gulden and Reijers, 2015] Gulden, J. and Reijers, H. A. (2015). Toward advanced
visualization techniques for conceptual modeling. In Grabis, J. and Sandkuhl, K.,
editors, Proceedings of the CAiSE Forum 2015 Stockholm, Sweden, June 8-12, 2015,
CEUR Workshop Proceedings. CEUR.

[Gulden et al., 2016] Gulden, J., van der Linden, D., and Aysolmaz, B. (2016). Re-
quirements for research on visualizations in information systems engineering. In
Proceedings of the ENASE Conference 2016, April 27-28 2016, Rome.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Sci. Comput. Program., 8(3):231–274.

[Karsai et al., 2014] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M.,
and Völkel, S. (2014). Design guidelines for domain specific languages. arXiv preprint
arXiv:1409.2378.

[Karsai et al., 2003] Karsai, G., Sztipanovits, J., Ledeczi, A., and Bapty, T. (2003).
Model-integrated development of embedded software. Proceedings of the IEEE,
91(1):145–164.

[Kelly, 2013] Kelly, S. (2013). Empirical comparison of language workbenches. In
Proceedings of the 2013 ACM Workshop on Domain-specific Modeling, DSM ’13,
pages 33–38, New York, NY, USA. ACM.

[Kelly and Tolvanen, 2008] Kelly, S. and Tolvanen, J.-P. (2008). Domain Specific Mod-
eling: enabling full code-generation. Wiley.

[Kern et al., 2011] Kern, H., Hummel, A., and Kühne, S. (2011). Towards a compara-
tive analysis of meta-metamodels. In Proceedings of the Compilation of the Co-located
Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, VMIL’11,
SPLASH ’11 Workshops, pages 7–12, New York, NY, USA. ACM.

1174 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

[Kolovos et al., 2017] Kolovos, D. S., Garćıa-Domı́nguez, A., Rose, L. M., and Paige,
R. F. (2017). Eugenia: towards disciplined and automated development of GMF-
based graphical model editors. Software & Systems Modeling, 16(1):229–255.

[Krahn et al., 2010] Krahn, H., Rumpe, B., and Völkel, S. (2010). Monticore: a frame-
work for compositional development of domain specific languages. International
Journal on Software Tools for Technology Transfer, 12(5):353–372.

[Mahemoff and Johnston, 1999] Mahemoff, M. J. and Johnston, L. J. (1999). Han-
dling multiple domain objects with model-view-controller. In Proceedings Technology
of Object-Oriented Languages and Systems. TOOLS 32, pages 28–39.

[Marquard et al., 2016] Marquard, M., Debois, S., Slaats, T., and Hildebrandt, T.
(2016). Forms are declarative processes! In Rosa, M. L., Loos, P., and Pastor,
O., editors, Proceedings of the Business Process Management Forum 2016, Rio de
Janeiro, Brazil, September 18-22, 2016. Springer.

[Moody, 2009] Moody, D. L. (2009). The “physics” of notations: Toward a scientific
basis for constructing visual notations in software engineering. IEEE Transactions
on Software Engineering, 35(6):756–779.

[Nijholt, 1988] Nijholt, A. (1988). Computers and languages: theory and practice.
Studies in computer science and artificial intelligence. North-Holland.

[Obeo, 2020] Obeo (2020). Obeo designer. https://www.obeodesigner.com/.
[Odell, 1994] Odell, J. J. (1994). Power types. Journal of Object Oriented Program-
ming, 7(2):8–12.

[OMG, 2015] OMG (2015). OMG Unified Modeling Language (OMG UML) version
2.5. http://www.omg.org/spec/UML/2.5.

[Paige et al., 2017] Paige, R. F., Kokaly, S., Cheng, B., Bordeleau, F., Storrle, H.,
Whittle, J., and Abrahao, S. (2017). User experience for model-driven engineer-
ing: Challenges and future directions. In ACM/IEEE 20th International Conference
on Model Driven Engineering Languages and Systems. Institute of Electrical and
Electronics Engineers Inc.

[Pfeiffer and Pichler, 2008] Pfeiffer, M. and Pichler, J. (2008). A comparison of tool
support for textual domain-specific languages. In Proceedings of the 8th OOPSLA
Workshop on Domain-Specific Modeling, pages 1–7.

[Reenskaug, 2007] Reenskaug, T. (2007). The original MVC reports. Technical report,
University of Oslo, Oslo.

[Rose et al., 2012] Rose, L. M., Kolovos, D. S., and Paige, R. F. (2012). Eugenia live:
a flexible graphical modelling tool. In Proceedings of the 2012 Extreme Modeling
Workshop, pages 15–20. ACM.

[Scheer and Schneider, 2005] Scheer, A.-W. and Schneider, K. (2005). Aris – architec-
ture of integrated information systems. In Bernus, P., Mertins, K., and Schmidt, G.,
editors, Handbook on Architectures of Information Systems, pages 605–623. Springer,
Berlin, Heidelberg.

[Stahl and Voelter, 2006] Stahl, T. and Voelter, M. (2006). Model-Driven Software
Development – Technology, Engineering, Management. Wiley, Chichester.

[Steinberg et al., 2009] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E.
(2009). Eclipse Modeling Framework. Addison Wesley, Amsterdam, 2nd edition.

[Tolvanen and Kelly, 2009] Tolvanen, J.-P. and Kelly, S. (2009). Metaedit+: Defining
and using integrated domain-specific modeling languages. In Proceedings of the 24th
ACM SIGPLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 819–820, New York, NY, USA.
ACM.

[Tolvanen and Rossi, 2003] Tolvanen, J.-P. and Rossi, M. (2003). Metaedit+: Defining
and using domain-specific modeling languages and code generators. In Companion
of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’03, pages 92–93, New York, NY,
USA. ACM.

1175Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

[Viyović et al., 2014] Viyović, V., Maksimović, M., and Perisić, B. (2014). Sirius: A
rapid development of dsm graphical editor. In IEEE 18th International Conference
on Intelligent Engineering Systems INES 2014, pages 233–238.

[Voelter, 2013] Voelter, M. (2013). Language and IDE Modularization and Composi-
tion with MPS, pages 383–430. Springer, Berlin, Heidelberg.

[Voelter et al., 2013] Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M.,
Kats, L. C., Visser, E., and Wachsmuth, G. (2013). DSL engineering: Designing,
implementing and using domain-specific languages. dslbook. org.

[Voelter and Lisson, 2014] Voelter, M. and Lisson, S. (2014). Supporting diverse no-
tations in MPS’ projectional editor. In GEMOC@ MoDELS, pages 7–16.

[Vujović et al., 2014] Vujović, V., Maksimović, M., and Perǐsić, B. (2014). Compar-
ative analysis of DSM graphical editor frameworks: Graphiti vs. Sirius. In 23nd
International Electrotechnical and Computer Science Conference ERK, Portorož, B,
pages 7–10.

[Weske, 2012] Weske, M. (2012). Business Process Management: Concepts, Languages,
Architectures. Springer, Berlin Heidelberg, 2nd edition.

[White, 1969] White, A. T. A. (1969). Critical Path Method. Prentice Hall Press.

1176 Clark T., Gulden J.: Model Driven Software Engineering Meta-Workbenches ...

