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mayerian series generating systems. On the other hand, if nonzero axioms are allowed,
nonterminals do not, provided that only quasiregular series are considered.
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1 Introduction

To de�ne formal power series generated by L systems, Lindenmayerian series
generating systems were introduced in [Honkala 95]. There four classes of mor-
phically generated series were de�ned. The smallest class S(LS0) consists of LS
series with the zero axiom. The larger class S(LS) is obtained if arbitrary ax-
ioms are allowed. From these classes the classes S(ELS0) and S(ELS) of ELS
series with the zero axiom and ELS series, respectively, are obtained by allowing
the use of Hadamard products. In an obvious way this corresponds to the use of
nonterminals in language theory.

The inclusions S(LS0) � S(LS) and S(ELS0) � S(ELS) are clear by the
de�nitions. It was shown in [Honkala 95] that S(LS0) is properly contained in
S(ELS0). Hence, in the case of the zero axiom nonterminals do add to the gen-
erative capacity. The purpose of this note is to prove that S(ELS0) is properly
contained in S(ELS) and, furthermore, that the classes S(LS) and S(ELS) are
equivalent, if only quasiregular power series are considered. Hence, nonzero ax-
ioms do add to the generative capacity whereas, if nonzero axioms are allowed,
nonterminals do not. However, it will be seen below that in the framework of
Lindenmayerian series with nonzero axioms some terminals play the role of non-
terminals.

Another approach to de�ne a power series generalization of L systems is given
in [Kuich 94]. For the relationship between the two approaches see [Honkala and
Kuich 95]. In the case of a complete semiring, power series generalizations of L
systems are also discussed in [Honkala 94a] and [Honkala and Kuich 00].

2 De�nitions

It is assumed that the reader is familiar with the basics of the theories of semi-
rings and formal power series as developed in [Kuich and Salomaa (86)]. In this
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paper A will always be a commutative semiring and � is a �nite alphabet. Sup-
pose h : �� �! A < �� > is a monoid morphism. (Here A < �� > is regarded
as a multiplicative monoid.) Then we extend h to a semiring morphism

h : A < �� >�! A < �� >

by
h(P ) =

X
(P;w)h(w); P 2 A < �� > :

Notice that the assumption of commutativeness is needed in the veri�cation
that indeed h(r1r2) = h(r1)h(r2) for r1; r2 2 A < �� >. In the sequel we always
tacitly extend a morphism h 2 Hom(��; A < �� >) to a semiring morphism h :
A < �� >�! A < �� > as explained above. Notice that Hom(��; A < �� >),
the set of all these semiring morphisms, can be identi�ed with the set

fh : A < �� >�! A < �� > j h is a semiring morphism and

h(a � �) = a � � for any a 2 Ag:

In what follows X is a denumerably in�nite alphabet of variables. An in-
terpretation ' over (A;�) is a mapping from X to Hom(��; A < �� >). A
Lindenmayerian series generating system, shortly, an LS system, is a 5-tuple
G = (A<<�� >>;D; P; '; !) where A is a commutative semiring, � is a �nite
alphabet,D is a convergence inA<<��>>, P is a polynomial inA < (X[�)� >,
' is an interpretation over (A;�) and ! is a polynomial in A < �� >.

The series generated by an LS system is obtained by iteration. Suppose G =
(A<<��>>;D; P (x1; : : : ; xn); '; !) is an LS system and denote hi = '(xi) for
1 � i � n. De�ne the sequence (r(j)) (j = 0; 1; : : :) recursively by

r(0) = !;

r(j+1) = P (h1(r
(j)); : : : ; hn(r

(j))); j � 0:

If limr(j) exists we denote
S(G) = limr(j)

and say that S(G) is the series generated by G. The sequence (r(j)) is the
approximation sequence associated to G. A series r is called an LS series if there
exists an LS system G such that r = S(G). A series r is an LS series with the
zero axiom if there exists an LS system G = (A<<�� >>;D; P; '; 0) such that
r = S(G). ELS series are obtained from LS series by considering only terms over
a terminal alphabet. Formally, an ELS system is a construct G = (A<<��>>;
D; P; '; !;�) consisting of the LS system U (G) = (A<<��>>;D; P; '; !) called
the underlying system of G and a subset � of �. If S(U (G)) exists, G generates
the series

S(G) = S(U (G)) � char(��):

A series r is called an ELS series if there exists an ELS system G such that
r = S(G). A series r is called an ELS series with the zero axiom if there exists
an ELS system G = (A<<��>>;D; P; '; 0;�) such that r = S(G).

If A and D are understood, the class of LS series with the zero axiom (resp.
LS series, ELS series with the zero axiom, ELS series) is denoted by S(LS0)
(resp. S(LS), S(ELS0), S(ELS)).

In the sequel we will always use the convergence Dd obtained by transferring
the discrete convergence in A to A<<��>>as explained in [Kuich and Salomaa
(86)].
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3 Results

The purpose of this section is to prove the following result.

Theorem1. (i) If A is a commutative semiring and r 2 A<<�� >> is quasi-
regular, then r 2 S(LS) if and only if r 2 S(ELS).

(ii) If A = N , then S(LS0) is properly included in S(ELS0) and S(ELS0)
is properly included in S(ELS).

Lemma2. Suppose G = (A<<�� >>;Dd; P (x1; : : : ; xn); '; !) is an LS system
such that S(G) exists and is quasiregular. If � � �, then there exists an LS
system G1 such that

S(G1) = S(G) � char(��):

Proof.We assume without loss of generality that each term of the approximation
sequence (r(i)) of G is quasiregular.

Choose new letters #; $ 62 � and new variables z1 and z2. Let �(1) =
f�(1)j� 2 �g be an isomorphic copy of � and let copy1 : � �! �(1) be the
mapping de�ned by copy1(�) = �(1). Denote P = P0+P1 where P0 2 A < �� >
and each term of P1 contains a variable. De�ne R = #P1 + #z1 + z2. If
x 2 fx1; : : : ; xng, de�ne '1(x) by

'1(x)(�) =

(
'(x)(�) if � 2 �
# if � = #
0 otherwise

and '1(z1) by

'1(z1)(�) =

(
$ + P0 if � = $
# if � = #
0 otherwise

and '1(z2) by

'1(z2)(�) =

(
copy1(�) if � 2 �
� if � = #
0 otherwise

:

De�ne the LS system G1 by G1 = (A<< (�[�(1)[#[$)�>>;Dd; R(x1; : : : ; xn;
z1; z2); '1; !+$). Denote the approximation sequence associated to G1 by (s(i)).
It follows inductively that there exists a sequence (t(i)) such that

s(i) = t(i) + copy1(r
(i�1) � char(��))

and
proj

�[$(t
(i)) = r(i) + $

for i � 1. Furthermore, each word in supp(t(i)) contains at least i occurrences of
#. (Here the morphism proj

�[$ is de�ned by proj
�[$(�) = � if � 2 � [ $, and

proj
�[$(�) = � if � 62 � [ $.) This implies lim t(i) = 0. Therefore lims(i) exists

and
lims(i) = copy1(S(G) � char(��)):

Now the claim follows by renaming the letters. 2
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In the proof of Lemma 2 the letters of �[#[$ play the role of nonterminals.
However, because lims(i) does not contain any letters of � [# [ $, we do not
need the Hadamard product.

Next we recall some earlier results.

Lemma3. Let A = N and denote r =
P

n�1(a
nbn + bnan) 2 N <<fa; bg�>>.

Then r 62 S(LS0) and r 2 S(ELS0).

Proof. The claim is shown in Examples 3.6 and 4.3 of [Honkala 95]. 2

Lemma4. Let A = N . Then the series
P

n�1(a
nb)n does not belong to S(ELS0).

Proof. See [Honkala 94b]. 2

For the next lemmawe need a de�nition. A vector of LS systems of dimension
k � 1 is a k-tuple G = ((A<<�� >>;D; Pi(x11; : : : ; x1k; : : : ; xn1; : : : ; xnk); 'i;
!i))1�i�k of LS systems. The approximation sequence ((rj;1; : : : ; rj;k))j�0 asso-
ciated to G is de�ned recursively by

r0;s = !s;

rj+1;s = Ps('s(x11)(rj;1); : : : ; 's(x1k)(rj;k); : : : ; 's(xn1)(rj;1); : : : ;

's(xnk)(rj;k)); 1 � s � k:

If limj!1 rj;s exists for every 1 � s � k, then we denote

S(G) = (limrj;1; : : : ; limrj;k)

and say that S(G) is the (vector of) series generated by G.
The next lemma is stated and proved as Theorem 4.5 in [Honkala 95].

Lemma5. Suppose G = ((A << �� >>;Dd; Pi(x11; : : : ; x1k; : : : ; xn1; : : : ; xnk);
'i; !i))1�i�k is a vector of LS systems such that S(G) = (r(1); : : : ; r(k)) exists

and r(1); : : : ; r(k) are quasiregular. Then r(s) is an ELS series for any s.

Lemma6. Let A = N . Then the series
P

n�1(a
nb)n belongs to S(ELS).

Proof. Denote � = fa; bg and de�ne the LS systems G1; G2; G3 by

G1 = (N <<��>>;Dd; x11x12; '1; ab);

G2 = (N<<��>>;Dd; x22; '2; ab);

G3 = (N <<��>>;Dd; x31 + x33; '3; 0)

where '3(x31) = '3(x33) is the identity morphism and '1(x11) = '1(x12) =
'2(x22) = h is de�ned by h(a) = a; h(b) = ab. Furthermore, de�ne the 3-
dimensional vector G of LS systems by G = (G1; G2; G3). Denote by ((rj;1; rj;2;

rj;3))j�0 the approximation sequence of G. Then

r0;1 = ab; r0;2 = ab; r0;3 = 0;
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rj+1;1 = h(rj;1)h(rj;2);

rj+1;2 = h(rj;2);

rj+1;3 = rj;1 + rj;3

for j � 0. It follows inductively that

rj;1 = (aj+1b)j+1;

rj;2 = aj+1b;

rj;3 =
X

1�n�j

(anb)n

for j � 0. Therefore limrj;1 = limrj;2 = 0 and limrj;3 =
P

n�1(a
nb)n. Hence

S(G) exists and each component of S(G) is quasiregular. Therefore the claim
follows by Lemma 5. 2

Proof of Theorem 1. Claim (i) follows by Lemma 2. Claim (ii) is a conse-
quence of Lemmas 3,4 and 6. 2
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