
Journal of Universal Computer Science, vol. 1, no. 3 (1995), 195-200
submitted: 1/3/95, accepted: 13/3/95, appeared: 28/3/95, Springer Pub. Co.

Bringing ITS to the Marketplace:
A Successful Experiment in Minimalist Design

Carl Gutwin and Marlene Jones
Alberta Research Council, Calgary, Canada

E-Mail: marlene@arc.ab.ca

Patrick Brackett and Kim Massie Adolphe
Gemini Learning Systems Inc., Calgary, Canada

E-Mail: kadolphe@gemini.com

Abstract: Intelligent Tutoring Systems (ITS) have proven to be effective tools for teaching
and training. However, ITSs have not become common in industrial and organisational
settings, in part because their complexity has proven difficult to manage outside of the
research lab. Minimalist ITSs are an attempt to bridge the gap between research and
practical application; they simplify research techniques while striving to maintain as
much pedagogic intelligence as possible. This paper describes one such system, SWIFT,
that is an example of how a minimalist ITS can be delivered as a commercial product. We
outline some of the issues facing designers of a minimalist system, and describe the ways
that research techniques have been incorporated into four modules of SWIFT: adaptive
testing, course planning, guidance, and diagnosis.

1 Introduction

Despite their many successes [see Shute, 1990], intelligent tutoring systems are underemployed in the worldÕs
industries and organisations. Complexity, size, and lack of tools to assist course authors have all prevented
systems developed in research labs from moving to the commercial world. These limitations point to the need for
techniques and strategies that can adapt research results to industrial and commercial systems. The idea of
minimalist ITS (e.g. [Brusilovsky et al., 1994], [Winne et al., 1992]) has evolved to fill that need, and SWIFT
is an example of a successful attempt to bring a minimalist ITS to the marketplace.

SWIFT, shown in FigureÊ1, is an adaptive learning environment [Jones, 1992] that has been developed in a joint
research venture between the Alberta Research Council and Gemini Learning Systems. Several of SWIFTÕs

Figure 1. The SWIFT interface.

195

elements incorporate techniques from ITS research, including an adaptive testing facility, a situation guide, a
course planner, and a diagnosis module. SWIFT shows that innovative techniques from research can be
successfully modified for use in the real world. The following sections examine more closely what it means to
minimise an ITS, and then discuss the design of SWIFT as a minimal system.

2 Minimalist ITS

Many intelligent tutoring systems require computational power that is rare in real-world training situations. The
desire to produce training systems that behave intelligently, but that are also feasible on a smaller scale, has led
researchers to the idea of minimalist ITS. This area has grown from work on training shells (e.g. [Major &
Reichgelt, 1992], [van Marcke, 1990]) and on discovery learning environments (e.g. [Shute & Glaser, 1990],
[Elsom-Cook, 1990]). Minimalist ITSs attempt to bridge the gap between research and practical application by
simplifying ITS techniques for use in computing environments with limited memory, external storage, and
processing speed. Any of the common elements of a typical ITS, such as the domain representation, the learner
model, the pedagogic and domain expertise, the instructional and delivery planners, or the diagnosis engines, can
be minimised. In addition, minimalist systems often attempt to reduce demands on course designers, since
teachers and industrial trainers often do not have the time nor the specialised knowledge necessary to build the
knowledge structures used by existing ITSs.

Meeting these needs presents a minimalist designer with several tradeoffs, the most obvious of which is the
balance between power and feasibility. To manage this tradeoff effectively, a designer must understand what is
lost with each simplification of a technique, and must look for other ways to bolster the systemÕs pedagogic
capabilities. In most cases, the minimalist approach implies that a system will gather less information about the
student, will have a less-sophisticated domain representation, and will be able to make only relatively
straightforward inferences from that information. Additional means must be found to ensure that what is left of the
ITS techniques can still be used to advantage, which often means combining the technique with other more
robust mechanisms that can make up for reduced intelligence. Our experiences suggest that the minimalist goal
involves more than just linear scaling of the techniquesÐa simplistic approach will result only in a bad
approximation of an ITS, not a minimalist one.

One approach that we have taken in SWIFT is to involve the learner in the decision-making processes. Even
novices have considerable knowledge about their own learning needs, and they can monitor and alter the
systemÕs decisions if given the appropriate support. Other minimalist approaches take strategies from traditional
computer-based training (CBT) and enhance them with ITS techniques. For example, CBT is often based upon
learning by presentation and questioning. By providing individualised feedback on a learnerÕs answers, an
instructional system can add the individualisation of ITS to the simplicity of CBT.

Course designers also play an important part in the successful application of minimalist ITS. Authoring must be
made accessible so that domain experts can readily construct new training materials; they must also be able to
understand the strengths of the tutoring system in order to maximise its capabilities. KAFITS [Murray & Woolf,
1992] and COCA [Major, 1994] are two examples of systems that concentrate on providing tools for authors;
SWIFT also provides extensive support for course design [Massie, 1994].

3 Minimalist Design in SWIFT

The following sections describe the approaches that we have used to make the most of the resources available to
our system. In general, our strategies have taken three paths: first, we have found ways to minimise ITS
techniques without compromising too much of their power; second, we have found additional mechanisms to
make our solutions more robust; and third, we have taken advantage of the abilities of learners and our knowledge
of the eventual user population.

3.1 Knowledge Representation

A defining feature of an ITS is a semantic representation of the instructional domain, where concepts are encoded
in data structures that allow the system to reason about the course. A minimalist ITS must also employ semantic
representation, for an understanding of the concepts in the domain is the basis of much of a systemÕs intelligent
behaviour. However, the detail and sophistication of the representation can vary. In SWIFT, we have
implemented a representation scheme that allows us to reason about the domain, but does not contain as much

196

detail about specific concepts as might be found in a full ITS. SWIFT courses are stored in a hierarchical
structure that divides the instructional material into smaller and smaller pieces, much as a book does with
chapters, sections, and subsections. A course has three levels: the first contains a set of topics, which are divided
at the second level into sets of modules, which are divided at the third level into concepts. A semantic
representation of the course also allows the specification of dependencies between concepts. The current version of
SWIFT allows for prerequisite and sequence links between individual concept objects.

3.2 Adaptive Testing

ITSs gather information about a learnerÕs progress by observing them as they interact with the learning
environment. Many minimalist systems use exercises, quizzes, and exams as the setting for these observations,
since the range of possible inference about the learner can be more easily constrained. Since many organisations
(corporate and otherwise) also require that a training system provide concrete records of progress, we have chosen
to use formative and summative testing as our means for observing the learner in SWIFT.

One of the problems with traditional exams is that they are of fixed length; a learner must complete a long series
of questions in order for the system to determine how well they know a subject. This characteristic can cause
frustration for both novices and experts, who may know after a few questions that the subject matter is either
bewildering or trivial. Aside from giving the learner greater control over examsÐin that they are never forced to
take a testÐour primary strategy for tackling the problem of fixed-length exams is adaptive testing. Adaptive
testing allows exams to be significantly shorter than traditional tests, without losing any predictive power about
a learnerÕs mastery of the material. The approach that is implemented in SWIFT is based on the work of [Welch
& Frick, 1993]. The algorithm uses BayesÕ theorem to estimate the probability that the learner is a master or
non-master of the material after each test question is answered. In SWIFT, novices (non-masters) and experts
(masters) can be determined in as few as five questions.

3.3 Instructional Planning

Instructional planning in SWIFT is based on two information sources: the results of an adaptive pretest, and the
learnerÕs own choice of one or more instructional goals. Each goal specifies which topics and modules of the
course are to be included in the learnerÕs path; performance on the pretest then indicates whether concepts within
those sections are already known and need not be included. Our approach to instructional planning is effective,
but is relatively simple compared to some ITSs (e.g. [Brecht, 1990]) because of SWIFTÕs less-sophisticated
domain representation. Since our simpler approach weakens SWIFTÕs planning to a degree, we have found other
ways of ensuring that appropriate instruction is always available to the learner.

Since we knew that the target population for SWIFT is composed largely of learners that are cooperative and
motivated, we were able to view instructional planning as a human-computer problem rather than just a
computational one. One of the ways we involve the learner is by providing tools that allow them to monitor their
path through the course, and to take control if desired. FigureÊ2 shows a concept map in SWIFT, one of several
displays that explicitly lay out the content and dependencies of a course, and allow the learner to make informed
decisions about what to learn next. This approach improves instructional planning by making use of the

Figure 2. A SWIFT Concept Map.

197

knowledge of both parties: learners can improve upon or customise the systemÕs course plan if they wish; the
recommended path, which is adequate in most cases, provides support for learners who do not wish to venture
out on their own.

3.4 Diagnosis

Diagnosis modules attempt to understand problems and misconceptions in a studentÕs knowledge of the domain
(e.g. [Johnson & Soloway, 1985], [McCalla & Greer, 1990]). Although any student action may be considered,
diagnosis is commonly applied to a learnerÕs answers to test or exercise questions. Diagnosis entails drawing
conclusions about the learnerÕs knowledge based on features in their answers; good diagnosis allows systems to
provide appropriate feedback and remediation as well as simple indications of whether an answer is right or
wrong.

Diagnosis can require significant inferencing power and domain knowledge, which are not the strengths of
minimalist systems. An alternative to a fully knowledge-based approach is to detail a number of categories, or
cases, of typical errors and misconceptions. Using a case-based approach transforms the inference problem to one
of classification, but effective classification can also be difficult to achieve. One problem occurs in specifying the
answers that belong to a particular class. The obvious method is to encode every answer. However, this
technique implies that any variation of an answer, even those that do not change its essential parts, must also be
included. This can be a daunting task for any but the most trivial of exercises.

Our approach to this problem allows a course designer to concentrate on the qualitative differences in the possible
answers to a question, rather than on syntactic variations. Our case-based diagnosis subsystem uses regular
expressions, constructs that allow a designer to specify a large number of possible variations with a single answer
pattern. The system can examine and evaluate any short textual answers for which cases have been designed. The
course designer specifies patterns for classes of correct and incorrect answers, and can annotate each class with
appropriate feedback and remediation information.

This strategy still requires that the course designer understand the kinds of difficulties that learners can have in a
particular area, and how each problem can be manifested in answers to questions. However, we have provided a
framework for structuring and using that pedagogic knowledge that is both powerful and efficient enough to be
used in a minimal system.

3.5 Situation Recognition and Guidance

SWIFT has more and more become a learner-controlled system, both by design and by necessity. In a self-
directed environment, the task of the intelligent tutoring system shifts from tutoring and control to guidance and
support. We have been forced to find and implement mechanisms for supporting learners as they explore the
system on their own.

We have developed a subsystem within SWIFT that can provide guidance on pedagogic issues according to the
specific situation that the learner is in, and can also encourage the learner to initiate certain learning behaviours.
Many strategies exist for assisting self-directed learning that promote metacognition and more effective learning
behaviour (e.g. [Derry & Murphy, 1986], [Derry, 1992], [Pressley et al., 1989], [Shuell, 1992], [Winne, 1992]).
Examples of effective learning behaviour include positive self-talk, note-taking or highlighting, summation,
imagery, question-generation, and review of learning objectives.

SWIFTÕs guide watches system events and monitors a learnerÕs location, history, and current knowledge. When
particular kinds of situations occur, the guide can decide to deliver advice to the learner. For example, if a student
turned their attention to a new section of course material, the guide might suggest that they test their knowledge
of the current section before going on. The guide is implemented as a rule-based system, and the above example
would involve a rule such as: Òif the learner has not demonstrated mastery in the concepts of the current module,
and the learner requests a move to a new module, the system will suggest that the learner take a module test for
the current module.Ó The guideÕs advice is presented in a popup dialogue box, such as the one shown in
FigureÊ3.

The rule-based guidance system provides SWIFT with a generalised architecture for presenting useful
information. We are able to give the learner pedagogic guidance in a wide variety of situations, but the

198

architecture can also be used to give information about any situation, such as tips on using SWIFT to its full
capacity.

4 Current Success and Plans for Further Work

SWIFT has now been released as a commercial product, and a number of organisations are producing courses in
domains as varied as air traffic control, Canadian history, high school physics, and football. Designers have so far
found course development to be straightforward, but we are planning for a graphical authoring environment to
further support the authoring process. SWIFT has been evaluated through formal usability studies involving
representative users from industrial settings and from secondary and post-secondary education institutions. The
usability testing has validated many of our design decisions, but has also caused us to refine some parts of the
system. For example, some users felt that the guide offered advice in too many situations; we have since tuned
the guideÕs rules to reduce repetitive or spurious advice.

We are currently investigating other techniques from ITS research that may be appropriate for implementation in
a minimalist system, as well as planning commercial improvements such as more sophisticated multimedia and
hypertext support. Some of the possibilities for the next version of SWIFT are:

¥ Granularity-based diagnosis [McCalla and Greer, 1994];
¥ Collaborative learning tools, such as support for awareness of other learners (e.g. [Ayala and Yano, 1994]);
¥ Improved student modeling based on recent techniques of modeling learners based on test results [Shute,

1994].

Our experiences have shown us that minimalist thinking involves more than taking existing techniques and
scaling them down, and that additional mechanisms must often be found to ensure robust and rewarding
interaction with a minimalist ITS. The examples of our design efforts in SWIFT suggest that minimalist ITS
can be successfully constructed within the constraints of the commercial world.

SWIFT is available from Gemini Learning Systems, Inc. and from its distributors.

5 References

[Ayala & Yano, 1994] Ayala, G. and Yano, Y. (1994) Design Issues in a Collaborative Learning Environment for
Japanese Language Patterns. Educational Multimedia and Hypermedia, AACE, 67-72.

[Brecht, 1990] Brecht (Wasson), B. (1990) Determining the Focus of Instruction: Content Planning for Intelligent
Tutoring Systems. Unpublished doctoral dissertation, University of Saskatchewan.

[Brusilovsky et al., 1994] Brusilovsky, P., van Marcke, K., Murray, T., Major, N. and Vassileva, J. (1994) Minimalist
ITS. Panel Discussion, Educational Multimedia and Hypermedia, AACE.

[Derry & Murphy, 1986] Derry, S., and Murphy, D.A., (1986), Designing Systems that Train Learning Ability: From
Theory to Practice. Review of Educational Research, 56(1), 1-39.

[Derry, 1992] Derry, S. (1992) Metacognitive Models of Learning and Instructional System Design. In Adaptive
Learning Environments: Foundations and Frontiers, M. Jones and P. Winne ed. Springer-Verlag. 257-286.

[Elsom-Cook, 1990] Elsom-Cook, M. (1990) Guided Discovery Tutoring. London: Paul Chapman Publishing.
[Johnson & Soloway, 1985] Johnson, W. L. and Soloway, E. (1985) PROUST: An Automatic Debugger for Pascal

Programs. Byte, 10 (4), 179-190.
[Jones, 1992] Jones, M. (1992) Introduction. In Adaptive Learning Environments: Foundations and Frontiers, M. Jones

and P. Winne ed., Springer-Verlag, 1-10.

Figure 3: A SWIFT Guidance Window

199

 [Major, 1994] Major, N. (1994) Evaluating COCA - What do teachers think? Educational Multimedia and
Hypermedia, AACE, 361-366.

[Major & Reichgelt, 1992] Major, N. and Reichgelt, H. (1992) COCA: A Shell for Intelligent Tutoring Systems.
Intelligent Tutoring Systems, Springer-Verlag, 523-530.

[Massie, 1994] Massie Adolphe, K. (1994) AI and Education. Canadian AI Magazine, 34 (1), 4-8.
[McCalla & Greer, 1990] McCalla, G. I. and Greer, J. E. (1990) SCENT-3: An architecture for intelligent advising in

problem-solving domains. In Intelligent Tutoring Systems: At the Crossroads of Artificial Intelligence and
Education, C. Frasson and G. Gauthier eds. Norwood, NJ:Ablex, 140-161

[McCalla & Greer 1994] McCalla, G.I, and Greer, J.E. (1994), Granularity-Based Reasoning and Belief Revision in
Student Models, In Student Modelling: The Key to Individualized Knowledge-Based Instruction, J. Greer and
G. McCalla eds, Springer-Verlag, 39-62.

[Murray & Woolf, 1992] Murray, T. and Woolf, B. (1992) Tools for Teacher Participation in ITS Design. Intelligent
Tutoring Systems, Springer-Verlag, 593-600.

[Pressley et al., 1989] Pressley, M., Johnson, C., Symons, S., McGoldrick, J., Kurita, J., (1989), Strategies That Improve
ChildrenÕs Memory and Comprehension of Text. The Elementary School Journal, 90(1), 3-32.

[Shuell, 1992] Shuell, T. J. (1992) Designing Instructional Computing Systems for Meaningful Learning. In Adaptive
Learning Environments: Foundations and Frontiers, M. Jones and P. Winne ed., Berlin:Springer-Verlag, 19-
54.

[Shute, 1990] Shute, V. (1990) Rose Garden Promises of Intelligent Tutoring Systems: Blossom or Thorn?, Space
Operations, Applications and Research (SOAR) Symposium, June 1990, Albuquerque, NM.

[Shute, 1994] Shute, V. (1994) Regarding the I in ITS: Student Modelling. In Educational Multimedia and Hypermedia,
AACE, 50-57.

[Shute & Glaser 1994] Shute, V. J. and Glaser, R. (1990) A Large-scale Evaluation of an Intelligent Discovery World:
Smithtown. Interactive Learning Environments, 1(1), 51-77.

[van Marcke, 1990] van Marcke, K. (1990) ÒA Generic Tutoring Environment.Ó The European Conference on Artifical
Intelligence, 655-660.

[Welch & Frick 1993] Welch, R.E., and Frick, T.W. (1993), Computerized-Adaptive Testing in Instructional Settings.
Educational Technology Research and Development, 41(3), 47-62.

[Winne, 1992] Winne, P. (1992) State-of-the-Art Instructional Computing Systems that Afford Instruction and
Bootstrap Research. In Adaptive Learning Environments: Foundations and Frontiers, M. Jones and P. Winne
ed., Berlin:Springer-Verlag, 349-380.

[Winne et al., 1992] Winne, P., Butler, D., McGinn, M., Sugarman, J., Jones, M., Mark, M., and Field, D. (1992) STUDY:
A Tool for Authoring Adaptive Learning Environments and for Advancing Instructional Research. In
Appendix to Proceedings of ITSÕ92.

Acknowledgments

Several people have contributed to the design of SWIFT and played a part in the ideas presented here. Thanks to
Stuart Williams, Ruby Loo, Joseph Poon, Julia Driver, and Jim Tubman. Special thanks to Jim Tubman and
Pam Hirtle for assistance in long-distance preparation of the final draft.

200

