
Category: G.2

Lexical Analysis with a Simple
Finite-Fuzzy-Automaton Model 1

Alexandru Mateescu

Academy of Finland and the Mathematics Department, University of Turku,

20500 Turku, Finland.

Arto Salomaa

Academy of Finland and the Mathematics Department, University of Turku,

20500 Turku, Finland.

Kai Salomaa

Mathematics Department, University of Turku, 20500 Turku, Finland.

Sheng Yu

Department of Computer Science, The University of Western Ontario, London,

Ontario, Canada N6A 5B7

Abstract: Many fuzzy automaton models have been introduced in the past.

Here, we discuss two basic �nite fuzzy automaton models, the Mealy and Moore

types, for lexical analysis. We show that there is a remarkable di�erence between

the two types. We consider that the latter is a suitable model for implementing

lexical analysers. Various properties of fuzzy regular languages are reviewed and

studied. A fuzzy lexical analyzer generator (FLEX) is proposed.

1 Introduction

In most of the currently available compilers and operating systems, input strings

are treated as crisp tokens. A string is either a token or a non-token; there is

no middle ground. For example in UNIX, if you enter \yac", it does not mean

\yacc" to the system. If you type \spelll" (the key sticks), it will also not be

treated as \spell" although there is no confusion. Would it be more friendly if the

1The work reported here has been supported by the Natural Sciences and Engineering

Research Council of Canada grants OGP0041630 and the Project 11281 of the Academy of

Finland.

Journal of Universal Computer Science, vol. 1, no. 5 (1995), 292-311
submitted: 21/1/95, accepted: 14/5/95, appeared: 28/5/95, Springer Pub. Co.

292

system would ask you whether you meant \yacc" in the �rst case and \spell" in

the second case, or simply decide for you if there is no confusion ? Sure. There

are many di�erent ways available which can be used to implement the above

idea. Various models of fuzzy automata have been introduced in, e.g., [7], [10],

[6], [2], [11]. However, what is needed here is a model that is so simple, so easy

to implement, and so e�cient to run that it makes sense to be utilized.

Here we describe a very simple model for this purpose. The fuzzy automaton

model we describe in this article follows those described in [7], [4], [5], [10], [2],

[11], etc. in principle. Fuzzy languages and grammars were formally de�ned by

Lee and Zadeh in [4]. Maximin automata as a special class of pseudo automata

were studied by Santos [9, 10]. A more restricted, Mealy type model was also

studied by Mizumoto et al. [5]. Note that many concepts described in this paper

are not new. The main purpose of this article is to try to renew an interest in

fuzzy automata as language acceptors and, especially, their applications in lexical

analysis and parsing.

In the following, we �rst review the basic concept of fuzzy languages and

de�ne regular fuzzy languages. Then we describe two types of �nite fuzzy auto-

mata, the Mealy and Moore types. We compare them and argue that one is

better than the other for the purpose of lexical analysis. We also study other

properties of �nite fuzzy automata and their relation to fuzzy grammars [4].

2 Regular fuzzy languages

Many of the following basic de�nitions on fuzzy languages can be found in [4].

De�nition 2.1 Let � be a �nite alphabet and f : �� ! M a function, where

M is a set of real numbers in [0; 1]. Then we call the set

�

L= f(w; f(w)) j w 2 ��g

a fuzzy language over � and f the membership function of
�

L.

In the following, we often use f�
L
to denote the membership function of

�

L.

Let
�

L be a fuzzy language over � and f�
L
: �� !M the membership function

of
�

L. Then, for each m 2M , denote by S�
L
(m) the set

S�
L
(m) = fw 2 � j f�

L
(w) = mg:

Note that S�
L
as a function is just f�1�

L

.

293

De�nition 2.2 Let
�

L1 and
�

L2 be two fuzzy languages over �. Then the basic

operations on
�

L1 and
�

L2 are de�ne in the following:

(1) The membership function f�
L
of the union

�

L =
�

L1 [
�

L2 is de�ned by

f�
L
(w) = maxff�

L1

(w); f�
L2

(w)g; w 2 ��:

(2) The membership function f�
L
of the intersection

�

L =
�

L1 \
�

L2 is de�ned by

f�
L
(w) = minff�

L1

(w); f�
L2

(w)g; w 2 ��:

(3) The membership function f�
L
of the complement of

�

L1 is de�ned by

f�
L
(w) = 1� f�

L1

(w); w 2 ��:

(4) The membership function f�
L
of the concatenation

�

L =
�

L1 �
�

L2 is de�ned by

f�
L
(w) = maxfmin(f�

L1

(x); f�
L2

(y)) j w = xy; x; y 2 ��g; w 2 ��:

(5) The membership function f�
L
of the star operation

�

L=
�

L
�

1 is de�ned by

f�
L
(w) = maxfmin(f�

L1

(x1); : : : ; f�
L1

(xn)) j w = x1 � � �xn;

x1; : : : ; xn 2 ��; n � 0g; w 2 ��;

assuming that min; = 1.

(6) The membership function f�
L
of the + operation

�

L=
�

L
+

1 is de�ned by

f�
L
(w) = maxfmin(f�

L1

(x1); : : : ; f�
L1

(xn)) j w = x1 � � �xn;

x1; : : : ; xn 2 ��; n � 1g; w 2 ��:

Since fuzzy languages are just a special class of fuzzy sets, the equivalence

and inclusion relations between two fuzzy languages are the equivalence and equi-

valence relations between two fuzzy sets. Let
�

L1 and
�

L2 be two fuzzy languages

over �. Then

�

L1 =
�

L2 i� f�
L1

(w) = f�
L2

(w) for all w 2 ��;

and
�

L1 �
�

L2 i� f�
L1

(w) � f�
L2

(w) for all w 2 ��:

294

De�nition 2.3 Let
�

L be a fuzzy language over � and f�
L
: �� ! M the mem-

bership function of
�

L. We call
�

L a regular fuzzy language if

(1) the set fm 2M j S�
L
(m) 6= ;g is �nite and

(2) for each m 2M;S�
L
(m) is regular.

It is obvious that the �rst condition can be replaced by

(1') M is �nite.

For convenience, when we write f�
L
: �� !M , we mean that M = ff�

L
(w) j w 2

��g, i.e., for each m 2 M;S�
L
(m) 6= ; . Also, the second condition in the above

de�nition can be replaced by

(2') for each m 2M , fw 2 �� j f�
L
(w) � m g is regular.

We choose (2) instead of (2') since it can be used more directly in the subsequent

proofs.

Example 2.1 Let
�

L1 be a fuzzy language over � = fa; bg and f�
L1

:

f�
L1

(x) =

8>><
>>:

1; if x 2 a�;

0:7; if x 2 a�ba�;

0:5; if x 2 a�ba�ba�;

0; otherwise:

Then
�

L1 is a regular fuzzy language.

Example 2.2 The membership function f�
L2

of
�

L2 over � = fa; bg is de�ned by

f�
L2

(x) = jxja=jxj;

where jxj denotes the length of x and jxja the number of appearances of a in x.

Then
�

L2 is not a regular fuzzy language.

The next theorem can be easily proved.

Theorem 2.1 Regular fuzzy languages are closed under union, intersection,

complement, concatenation, and star operations.

Proof. Let
�

L1 and
�

L2 be two regular fuzzy languages over � and f�
L1

: �� !

M1 and f�
L2

: �� ! M2. Let
�

L be the resulting language after an operation

(union, : : : , or star) and f�
L
: �� ! M . Then obviously, M � M1 [M2 (in

the case of a union, an intersection, a concatenation, or a star operation) or

M = f1 �m j m 2 M1g (in the case of a complementation) is �nite. Let m be

in M . Then S�
L
(m) is de�ned by:

295

(1) Union:

S�
L
(m) =

8><
>:
S�
L1

(m) �
S
m0>m S�

L2

(m0); if m 2M1 �M2;

S�
L2

(m) �
S
m0>m S�

L1

(m0); if m 2M2 �M1;

((S�
L1

(m)
S
S�
L2

(m)) �
S
m0>m S�

L1

(m0))�
S
m00>m S�

L2

(m00); if m 2M1 \M2;

(2) Intersection:

S�
L
(m) =

8><
>:
S�
L1

(m) �
S
m0<m S�

L2

(m0); if m 2M1 �M2;

S�
L2

(m) �
S
m0<m S�

L1

(m0); if m 2M2 �M1;

((S�
L1

(m)
S
S�
L2

(m)) �
S
m0<m S�

L1

(m0))�
S
m00<m S�

L2

(m00); if m 2M1 \M2;

(3) Complement: (M = f1�m j m 2M1g)

S�
L
(m) = S�

L1

(1 �m);

(4) Concatenation:

S�
L
(m) =

[
min(m1 ;m2) = m

m1 2M1
m2 2M2

S�
L1

(m1)S�
L2

(m2)�
[

min(m01 ;m
0
2) > m

m1 2M1
m2 2M2

S�
L1

(m0
1)S�

L2

(m0
2):

(5) Star: assuming that M1 = fm1; : : : ;mng and 1 � m1 > m2 > : : : > mn �

0,

S�
L
(m1) = (S�

L1

(m1))
� if m1 = 1;

S�
L
(1) = f�g and S�

L
(m1) = (S�

L1

(m1))
+ � f�g if m1 6= 1;

S�
L
(mi) = (

[
j�i

S�
L1

(mj))
+ �

[
k<i

S�
L
(mk)� f�g; 1 < i � n:

It is clear that all the sets de�ned above are regular. So, we have �nished this

proof. 2

3 Finite fuzzy automata

The reader may refer to [8, 3] for basic de�nitions in automata theory.

De�nition 3.1 A nondeterministic �nite automaton with fuzzy transitions (FT-

NFA)
�

A is a 5-tuple
�

A= (Q;�; ~�; s; F), where

Q is the �nite set of states;

� is the �nite set of input symbols;

296

~� : Q� �� Q! [0; 1] is the degree function of state transitions;

s is the initial state; and

F � Q is the set of �nal states.

For x 2 �� and p; q 2 Q, de�ne

~��(p; x; q) =

8<
:
0; if x = � and p 6= q;

1; if x = � and p = q;

maxr2Qfminf~��(p; x0; r); ~�(r; a; q)g j x = x0a; x0 2 ��; a 2 �g; otherwise:

Then we say that x 2 �� is accepted by
�

A with degree d�
A
(x), where

d�
A
(x) = maxf~��(s; x; q) j q 2 Fg:

We denote by
�

L (
�

A) the set:

�

L (
�

A) = f(x; d�
A
(x)) j x 2 ��g:

Note that by the above de�nition, the value of d�
A
(�) only can be either 1 or

0 for any FT-NFA
�

A. In many discussions, this restriction is easily understood

but can be cumbersome to describe. So, if there is no special mentioning when

considering problems related to FT-NFA in the sequel, the reader should assume

that � and its degree are not considered.

Example 3.1 Let � = fa; bg and an FT-NFA
�

A1 be de�ned in the following:

��
��
��a/1

?

�
6
b/1

- ��
��� �a/1

� �
b/0.6

?

6 ��
��

-a/1
s p q&%

'$

Figure 1

297

Obviously,

�

L (
�

A1) = f(x; 1) j x 2 fa; bg�aag [f(y; 0:6) j y 2 fa; bg�bag:

We omit the pairs whose second components are 0.

FT-NFA are a special type of Mealy machines, where the output has a special

meaning. They are also a special class of the maximin automata introduced by

Santos in [9]. In an FT-NFA, the set of �nal states is a crisp set (which, of

course, is a special case of fuzzy sets) and the initial state is crisp, too.

De�nition 3.2 A deterministic �nite automaton with fuzzy transitions (FT-

DFA)
�

A = (Q;�; ~�; s; F) is an FT-NFA with the condition that for each p 2 Q

and a 2 �, if ~�(p; a; q) > 0 and ~�(p; a; q0) > 0, then q = q0.

Theorem 3.1
�

L is a regular fuzzy language i�
�

L is accepted by an FT-NFA
�

A

with the exception of �.

Proof. Let
�

L be a regular fuzzy language and f�
L
: �� !M be the membership

function. Then M = fm1; : : : ;mng for some n � 1 and S�
L
(mi) is regular for

each mi 2M . Note that S�
L
(mi) \ S�

L
(mj) = ; for i 6= j since f�

L
is a function.

Let Ai = (Qi;�; �i; si; Fi) be a DFA (or an NFA) such that S�
L
(mi) = L(Ai),

1 � i � n. We construct
�

Ai= (Qi;�;
�

� i; si; Fi) where

~�i(p; a; q) =

�
mi; if (p; a; q) 2 �i;

0; otherwise:

We assume that Qi \Qj = ; for i 6= j. De�ne
�

A= (Q;�; ~�; s; F) such that

Q = Q1 [: : :[Qn [fsg and s =2 Q1 [: : :[Qn;

F = F1 [: : :[Fn;

~�(p; a; q) =

8><
>:

~�i(p; a; q) if p; q 2 Qi for some i 2 f1; : : : ; ng;
~�i(si; a; q) ifp = s and q 2 Qi for some i 2 f1; : : : ; ng;

0 otherwise:

Clearly,
�

A accepts
�

L with the possible exception of � .

Let
�

A= (Q;�; ~�; s; F) be an FT-NFA. De�ne a fuzzy language
�

L with f�
L
(w) =

d�
A
(w) for each w 2 ��; (f�

L
(�) = 0). We now show that

�

L is a regular fuzzy

language.

298

Let M = fm j ~�(p; a; q) = m for some p; q 2 Q; a 2 �g. Obviously, M is

�nite. Assume that M = fm1; : : : ;mng with m1 > m2 > : : : > mn; n � 1. For

each i, 1 � i � n, de�ne an NFA

Ai = (Q;�; �i; s; F)

where �i = f(p; a; q) j ~�(p; a; q) � mig. De�ne the languages Li, 1 � i � n, in

the increasing sequence of i as follows:

L1 = L(A1);

Li = L(Ai)�
i�1[
j=1

Lj :

Then S�
L
(mi) = Li and Li is a regular language, for each i, 1 � i � n. Therefore,

�

L is a regular fuzzy language. 2

Theorem 3.2 Let
�

L be a regular fuzzy language. Then
�

L is accepted by an

FT-DFA i� it satis�es the following condition: For x; y 2 �+; u 2 ��

(�) x = yu and f�
L
(y) > 0 implies that f�

L
(x) � f�

L
(y):

Proof. Let
�

L be accepted by an FT-DFA
�

A= (Q;�; ~�; s; F). We show that
�

L

satis�es (�). Let x = yu, x; y 2 �+ and a 2 ��. If d�
A
(x) = 0, then f�

L
(x) � f�

L
(y)

is true trivially. Otherwise,

f�
L
(x) = d�

A
(x) = minf~��(s; y; q); ~��(q; u; f)g � ~��(s; y; q) = d�

A
(y) = f�

L
(y)

where q; f 2 F .

For the other direction of the proof, let
�

L, with f�
L
: �� ! M , satisfy the

condition (�). Assume that M = fm1; : : : ;mng. It is clear that we can construct

a DFA Ai = (Qi;�; �i; si; Fi) such that L(Ai) = S�
L
(mi) for each i, 1 � i � n.

Note that for 1 � i; j � n and i 6= j,

L(Ai) \ L(Aj) = S�
L
(mi) \ S�

L
(mj) = ;

Now we construct a DFA A = (Q;�; �; s; F) where Q = Q1 � : : : � Qn, s =

(s1; : : : ; sn), � : Q��! Q is de�ned by �((q1; : : : ; qn); a) = (�1(q1; a); : : : ; �n(qn; a)),

and F = F 0
1[� � �[F

0
n where F 0

i = f(q1; : : : ; qn) 2 Q j qi 2 Fi and qj 62 Fj for j 6=

ig, 1 � i � n. It is clear that F 0
i \ F 0

j = ;, for i 6= j, and

S�
L
(mi) = fw 2 �� j ��(s; w) 2 F 0

ig:

299

Based on the above DFA A, we de�ne an FT-DFA
�

A= (Q;�; ~�; s; F) such that

~�(p; a; q) =

8><
>:

mi if �(p; a) = q 2 F 0
i ;

1 if �(p; a) = q =2 F;

0 otherwise:

It remains to show that d�
A
(w) = f�

L
(w), for each w 2 �+. But �rst we show that

�

A has the following property: For each w 2 �+ with w = xa, x 2 �� and a 2 �,

(��) d�
A
(w) = mi > 0 i� ��(s; x; p) � mi and �(p; a; q) = mi for some q 2 Fi; 1 � i � n:

The if part holds obviously. For the only if part, it holds triviallywhen x = �. For

x 6= �, we assume the contrary, i.e., ��(s; x; p) = mi and �(p; a; q) = mj > mi.

Then there exists a decomposition of x = ybz, y; z 2 �� and b 2 �, such

that ��(s; y; r) � mi, �(r; b; t) = mi, and �(t; z; p) � mi. By the de�nition

of
�

A, we know that t 2 Fi and q 2 Fj. Thus, we have f�
L
(yb) = mi and

f�
L
(w) = mj . Since we assume that mj > mi, this is a contradiction to (�). So,

(��) holds. Furthermore, the righthand side of (��) implies that xa 2 S�
L
(mi),

i.e., f�
L
(w) = mi. Therefore, we have �nished the proof. 2

Indeed, the condition (*) can be interpreted as follows. We have n regular

languages R1; : : : ; Rn, associated with the decreasing sequence m1 > m2 > : : : >

mn. Whenever a word y 2 Rj is a pre�x of a word x 2 Ri, then i � j. This

makes the construction possible. The construction does not work, for instance,

for the two regular languages fa; abag and fabg.

The condition (�) can be used to show that some regular fuzzy languages are

not accepted by any FT-DFA.

Corollary 3.1 The family of fuzzy languages accepted by FT-DFA is properly

included in the family of fuzzy languages accepted by FT-NFA.

Proof. The inclusion is obvious. We only need to show that the inclusion is

proper. Consider
�

L= fa=0:5; ab=1g:

Obviously,
�

L is accepted by an FT-NFA but not by any FT-DFA by Theorem

3.2.

Finite automata with fuzzy transitions are apparently a natural model for

regular fuzzy languages. Many similar models have been studied in the past.

However, the di�erence in accepting power between its deterministic and non-

deterministic version and the fact that many very simple regular fuzzy languages

are not accepted by its deterministic version make it unfavorable to be used in

300

practice. An FT-NFA can be represented in a matrix form. However, it may be

feasible only for FT-NFA with a small number of states.

Naturally, another �nite-fuzzy-automaton model is a special class of Mooore

machines. This model also characterizes the family of regular fuzzy languages.

But unlike the fuzzy transition model, its deterministic and nondeterministic

versions are equivalent in accepting power. This model is also simpler and easier

to implement than the previous model.

De�nition 3.3 A nondeterministic �nite automaton with fuzzy (�nal) states

(FS-NFA or FS-FA)
�

A is a 5-tuple
�

A= (Q;�; �; s;
�

F ~A) where Q, �, �, and s are

the same as in an NFA, and
�

F ~A : Q! [0; 1] is the degree function for the fuzzy

�nal-state set.

De�ne

d�
A
(x) = maxf

�

F ~A(q) j (s; x; q) 2 ��g:

Note that �� is the transitive and re
exive closure of � de�ned as for a normal

NFA. Then we say that x is accepted by
�

A with degree d�
A
(x). The fuzzy language

accepted by
�

A, denoted
�

L(
�

A), is the set f(x; d�
A
(x)) j x 2 ��g:

Example 3.2 Let � = fa; bg. An FS-NFA
�

A is the following:

-��
��
s

0 @
@
@R

s

s -��
��
q1 ��
��

p

0

- q2
e

0
��
��

- q3

0
��
��

- q4
l

0:6

-��
��
q5

l

1
��
��

- q6
l

0:8

��
?

l

��
��
q7

l

0

-��
��
q8

e

0

-��
��

q9
e

0
��
��

@
@
@R

p

- q10
p

0
��
��
q11

1

-

��
��
q12

0:8

Figure 2

301

Then d�
A
(sleep) = 1, d�

A
(spelllll) = 0:8, and d�

A
(sle) = 0.

De�nition 3.4 A deterministic �nite automaton with fuzzy states (FS-DFA)
�

A = (Q;�; �; s;
�

F �

A
) is an FS-NFA with � being a function Q � � ! Q instead

of a relation. Hence, for each x 2 ��, d�
A
(x) =

�

F �

A
(q) where q = ��(s; x).

De�ne d�
A
(x) = 0 if ��(s; x) is not de�ned.

Theorem 3.3 Let
�

L be a fuzzy language. Then
�

L is a regular fuzzy language i�

it is accepted by an FS-DFA.

Proof. Let f�
L
: �� ! M be the membership function of

�

L. Assume that
�

L

is a regular fuzzy language. Then M is �nite and, for each m 2 M , S�
L
(m)

is a regular set. Assume that M = fm1; : : : ;mng. We construct a DFA Ai =

(Qi;�; �i; si; Fi) for each i, 1 � i � n, such that L(Ai) = S�
L
(mi). De�ne an

FS-DFA
�

A= (Q;�; �; s;
�

F�

A
) to be the cross product of A1; : : : ; An with

�

F�

A
((q(1); : : : ; q(n))) =

�
mi; q(i) 2 Fi for some i; 1 � i � n; and q(j) =2 Fj; for all j 6= i

0; otherwise:

Note that if (q(1); : : : ; q(n)) is reachable from (s1; : : : ; sn) in
�

A, then it is im-

possible to have q(i) 2 Fi and q(j) 2 Fj for i 6= j since L(Ai) \ L(Aj) = ; for

i 6= j, 1 � i; j � n. Obviously,
�

A accepts
�

L.

For the other direction of the proof, let
�

A= (Q;�; �; s;
�

F �

A
) be an FS-DFA.

De�ne

M = fm j
�

F�

A
(q) = m for some q 2 Qg:

M is a �nite set. For each m 2M , de�ne

Am = (Q;�; �; s; Fm)

where Fm = fq j
�

F�

A
(q) = mg. Let

�

L =
�

L(
�

A), i.e. f�
L
= d�

A
. Then clearly, for

each m 2M , S�
L
(m) = L(Am) is regular.

�

L is a regular fuzzy language. 2

Theorem 3.4 A fuzzy language is accepted by an FS-NFA i� it is accepted by

an FS-DFA.

Proof. It su�ces to show that if
�

L=
�

L (
�

A) for an FS-NFA
�

A then
�

L=
�

L (
�

A
0

) for some FS-DFA
�

A
0

. Let
�

A= (Q;�; �; s;
�

F �

A
). The construction of

�

A
0

=

302

(Q0;�; �0; s0;
�

F
0
�

A) is straightforward. We can just use the standard subset-construction

method and, for each P 2 Q0 (P � Q), de�ne

�

F
0
�

A (P) = maxfm j m =
�

F �

A
(q); q 2 Pg:

It is clear that
�

L =
�

L(
�

A
0

). 2

Example 3.3 Let an FS-NFA be de�ned by:

-��
��
s

0 @
@
@R

a

a-��
��
p1

��
?

a

��
��
��
?

a

b

1

- p2
b

0:8
��
��

-��
��

p3

0:7

��
?

a

��
��
q1

�
6
b

a

1

-��
��
q2

�
6
b

a

0:7

-��
��

q3

�
6
b

0:6

Figure 3

De�ne r1 = fp1; q1g, r2 = fp1; q2g, r3 = fp2; q1g, r4 = fp1; q3g, r5 =

fp2; q2g, r6 = fp3; q1g, r7 = fp2; q3g, r8 = fp3; q2g, and r9 = fp3; q3g . Then an

FS-DFA that is equivalent to the above FS-NFA is given in the following:

303

-��
��
fsg

0

a-��
��

1

r1

a

b

�
�
��

@
@
@R

��
��
r2

a

1 b

�
�
��

@
@
@R

��
��
r3

1

a

b

�
�
��

@
@
@R

��
��a

b

r4

1

�
�
��

@
@
@R

��
��
r5

0:8

a

b

�
�
��

@
@
@R

��
��
r6

1

a

b

�
�
��

@
@
@R

��
��

b

fp1g

1 @
@
@R

��a

?

��
��a
r7

0:8 b

�
�
��

@
@
@R

��
��
r8

0:7

a

b

�
�
��

@
@
@R

��
��a
fq1g

1

�
�
��

��
b

6

��
��

b

fp2g

0:8 @
@
@R

��a

?

��
��
r9

0:7

a

b

�
�
��

@
@
@R

��
��a
fq2g

0:7

�
�
��

��
b

6

��
��
fp3g

0:7

��a

?

��
��
fq3g

0:6��
b

6

Figure 4

304

An extension of the Myhill-Nerode Theorem is given below, which can be

easily proved.

Theorem 3.5 (The extended Myhill-Nerode theorem) The following three state-

ments are equivalent:

(i)
�

L is a regular fuzzy language over � .

(ii)
�

L is the union of some of the equivalence classes of a right invariant equi-

valence relation of �nite index.

(iii) Let the relation R�

L
� ����� be de�ned by xR�

L
y i� for all z 2 ��; f�

L
(xz) =

f�
L
(yz). Then R�

L
is an equivalence relation of �nite index.

The minimization algorithm for DFA described in [3] can also be extended

for FS-DFA as follows:

ALGORITHM 3.1

Let
�

A= (Q;�; �; q0;
�

F�

A
) be an FS-DFA. Assume that Q = fq0; : : : ; qng, n � 0,

and let P = f(qi; qj) j qi; qj 2 Q and 0 � i < j � ng.

begin

1) for each pair (qi; qj) 2 P , and
�

F �

A
(qi) 6=

�

F �

A
(qj) do mark

(qi; qj);

2) for each unmarked pair (p; q) 2 P do

if for some a 2 �; (�(p; a); �(q; a)) is marked then

begin

mark (p; q);

recursively mark all unmarked pairs on the list of

(p; q) and

on the lists of other pairs that are marked at this step.

end

else

for all input symbols a 2 � do

put (p; q) on the list for (�(p; a); �(q; a)) unless �(p; a) =

�(q; a)

end

We omit the proof that the FS-DFA constructed with the above algorithm is

minimal in terms of the number of states.

305

4 Fuzzy regular expressions (FRE)

For each regular fuzzy language, there is a �nite number of degrees and the set of

all words that are associated with each degree is a regular language. Therefore, we

can naturally represent a regular fuzzy language by a modi�ed regular expression

like the following:

ab�=0:6 + ab�a=1 + (bab� + bbab�)=0:8

The semantics of the expression is clear. We give a formal de�nition for fuzzy

regular expressions (FREs) in the following:

De�nition 4.1 Let � be a �nite alphabet and M a �nite set of real numbers in

[0; 1].

1) Let e be a regular expression over � and m 2 M . Then (e)=m is a fuzzy

regular expression.

2) Let
�
e1 and

�
e2 be fuzzy regular expressions. Then

�
e1 +

�
e2, (

�
e1) � (

�
e2), and

(
�
e1)� are all fuzzy regular expressions.

3) A fuzzy regular expression is formed by applying 1) and 2) a �nite number

of times.

De�nition 4.2 A fuzzy regular expression over � is normalized if it is of the

following form

e1=m1 + e2=m2 + : : :+ en=mn

where e1; e2; : : : ; en are regular expressions over � and m1;m2; : : : ;mn are num-

bers in [0; 1], n � 1.

Note that if m = 1 then e=m can simply be written as e. We assume that \�"

and \�" have higher priorities than \=". So, certain pairs of parentheses can be

omitted.

Example 4.1 The following are all valid FRE's:

(1) a�=1 + a�ba�=0:8 + a�ba�ba�=0:5,

(2) (b�ab�=0:7) � (a�ba�=0:5) + b�,

(3) abba+ baab+ (a+ b)�a(a+ b)�b(a + b)�,

where both (1) and (3) are normalized. The following are not valid FRE's:

306

(4) (a�=0:5)=0:7+ a�ba�=1,

(5) (ba�b=0:2)(a�)=0:5 + (ab+ a)�=1,

(6) (ab=0:9 + b=0:5)�=0:9 + (aba)�=1.

De�nition 4.3 An FRE
�
e is called a strictly normalized FRE if it is normal-

ized, i.e.,
�
e= e1=m1 + e2=m2 + : : :+ en=mn;

and for any mi 6= mj , L(ei) \ L(ej) = ;.

De�nition 4.4 Let
�
e be an FRE. Then

�

L(
�
e) is de�ned by:

(1) if
�
e= e=m where e is a regular expression, then

�

L (
�
e) = f(x;m) j x 2

L(e)g;

(2) if
�
e=

�
e1 +

�
e2,

�
e= (

�
e1) � (

�
e2), or

�
e= (

�
e1)�, then

�

L (
�
e) =

�

L (
�
e1)[

�

L (
�
e2),

�

L (
�
e) =

�

L (
�
e1)�

�

L (
�
e2), or

�

L (
�
e) = (

�

L (
�
e1))

�, respectively.

It is easy to show that the families of languages represented by FREs, nor-

malized FREs, and strictly normalized FRE's, respectively, are equivalent, and

they all coincide with the family of fuzzy regular languages.

Example 4.2 The following FREs are equivalent:

(1) (b�=1)(b=0:5)+((a+ b)�a(a+ b)�=0:5)(b=1)+((a+ b)�aa(a+ b)�=0:8)(b=1),

(2) b�b=0:5 + (a+ b)�a(a + b)�b=0:5 + (a+ b)�aa(a + b)�b=0:8,

(3) (a + �)(b + ba)�b=0:5 + (a+ b)�aa(a + b)�b=0:8,

The reader can verify that (2) and (3) are normalized and (3) is strictly nor-

malized.

5 Marked regular fuzzy languages

In lexical analysis, it is a common practice to construct one automaton for ac-

cepting several or many di�erent tokens (i.e., regular languages). In order to

distinguish strings belonging to di�erent tokens, �nal states are marked with

token names. Often, there is a linear order of priorities associated with the token

names. Strings belonging to two or more tokens are marked with the name that

has the highest priority among them. This idea appears to be especially use-

ful when it is applied to fuzzy languages. We formulate this with the following

de�nitions.

307

De�nition 5.1 Let
�

L be a fuzzy language, T a �nite set of names with a linear

order <, and � : �� ! T a function. Then we call the set

f(w; f�
L
(w); �(w)) j w 2 ��g

a marked fuzzy language, denoted (
�

L; �), and � the marking function of the

language.

De�nition 5.2 Let (
�

L; �) with � : �� ! T be a marked fuzzy language. Then

(
�

L; �) is called a marked regular fuzzy language if the following two conditions

hold:

1)
�

L is a regular fuzzy language.

2) For each t 2 T , ��1(t) = fw 2 �� j �(w) = tg is a regular language.

Note that if f�
L
(w) = 0 for some w 2 ��, then the value of �(w) is unimport-

ant.

De�nition 5.3 Let (
�

L1; �1) and (
�

L2; �2) be two marked fuzzy languages over

an alphabet �. We say that (
�

L1; �1) and (
�

L2; �2) are equivalent, denoted (
�

L1

; �1) = (
�

L2; �2), if

1)
�

L1 =
�

L2, and

2) �1(w) = �2(w) for all w 2 �� such that f�
L1

(w) = f�
L2

(w) 6= 0.

Similarly, we say that (
�

L1; �1) is included in (
�

L2; �2) if

1)
�

L1 �
�

L2, and

2) �1(w) = �2(w) for all w 2 �� such that f�
L1

(w) 6= 0.

Marked union, i.e. union of marked fuzzy languages, is a useful tool in lexical

analysis. For example, a string x belongs to token t1 with 0.9 degree and also

to token t2 with 0.6 degree. Then in the marked union of the two tokens, x

is considered to be marked with t1. If the two degrees are equal, then x is

marked with the token that has a higher priority. Formally, we give the following

de�nition.

De�nition 5.4 (Marked union) Let (
�

L1; �1) and (
�

L2; �2) be two marked fuzzy

languages where �1; �2 : �� ! T . A marked fuzzy language (
�

L; �) is called the

marked union of (
�

L1; �1) and (
�

L2; �2) if
�

L=
�

L1 [
�

L2 and � : �� ! T is de�ned

by

�(w) =

�
�1(w); if f�

L1

(w) > f�
L2

(w) or f�
L1

(w) = f�
L2

(w) and �2(w) < �1(w);

�2(w); otherwise

for each w 2 ��.

308

Example 5.1 Let T = fID; INTg with INT < ID, �l = fa; : : : ; zg, �d =

f0; : : : ; 9g, and � = �l [�d.
�

L1 is de�ned, informally, by

�l�
�=1 + �d�

��l�
��l�

�=0:9 + �d�
��l�

�=0:5

and
�

L2 by

�d�
�
d=1 + �d�

�
d�l�

�
d=0:7:

Let �1; �2 : �
� ! T be de�ned by

�1(x) = ID and �2(x) = INT

for all x 2 ��. Let (
�

L; �) be the marked union of (
�

L1; �1) and (
�

L2; �2). Then

�(32h01) = INT and �(132n4p) = ID.

6 A fuzzy lexical analyser

The lexical analyser LEX is available in almost all versions of UNIX. Here we

propose a \fuzzy" extension of LEX, named FLEX, in the following.

FLEX is a fuzzy lexical analyser generator. All features of LEX work in

FLEX except that the symbol \/" in the expressions should be written as \n="

now.

FLEX has the following two additional features:

(1) Any LEX expression can be followed by a \/" and a number between 0

and 1. For example,

[0� 9a� zA� Z] + =0:75+ [: ; ?!]=1:

The \/n" part, where n is a number between 0 and 1, is called the degree of

the expression. Degrees cannot be nested, i.e., if an expression is speci�ed

with a degree, then none of its subexpressions is allowed to be speci�ed with

a degree. For example, fa=0:6gbc=0:7 is an invalid expression. Degrees

cannot be speci�ed within a pair of \[" and \]".

(2) Besides the three parts in a LEX program, a fourth part can be used to

de�ne actions for di�erent ranges of degrees. For example,

[0:8; 1] : ACCEPT ;

[0:6; 0:8) : QUESTION ;

[0; 0:6) : REJECT ;

where ACCEPT, QUESTION, and REJECT are all key words for FLEX

denoting, respectively, that

309

(a) the string is accepted as the token;

(b) an on-line question is given to the user; the string is accepted if the

user answers \yes", rejected if the user answers \no";

(c) the string is rejected,

If the fourth part is not given, the following rules are assumed by default:

[1; 1] : ACCEPT;

[0:9; 1) : fWARNING; ACCEPTg;

[0:5; 0:9) : QUESTION;

[0; 0:5) : REJECT;

Example 6.1 An FLEX �le for a student-mark handling program is the follow-

ing:

%%

%{

#include "type.h"

#include "yy.tab.h"

%}

%%

list+lis/0.9+(lst+ls)/0.8 { }

enter+(ente+ent)/0.9+(nter+entr)/0.8 { }

print+(prt+prnt)/0.9+rint/0.6 { }

calc+(cal+comp)/0.9+(ca+com)/0.6 { }

./0.0

%%

[0.9 , 1] : ACCEPT;

[0.8 , 0.9) : {WARNING; ACCEPT};

[0.6 , 0.8) : QUESTION;

[0 , 0.6) : REJECT;

References

[1] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applica-

tions, Academic Press, 1980, San Diego.

310

[2] N. Honda, M. Nasu and S. Hirose, \F-Recognition of Fuzzy Languages",

Fuzzy Automata and Decision Processes, edited by M.M. Gupta, G.N. Sar-

idis and B.R. Gaines, North-Holland, 1977, 149-168.

[3] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, 1979.

[4] E.T. Lee and L.A. Zadeh, \Note on Fuzzy Languages ", Information Sci-

ences, 1 (1969) 421-434.

[5] M. Mizumoto, J. Toyoda, and K. Tanaka, \Fuzzy Languages", Systems,

Computers, Controls 1 (1970) 36-43.

[6] M. Mizumoto, J. Toyoda, and K. Tanaka, \Various Kinds of Automata with

Weights", Journal of Computer and System Sciences 10 (1975) 219-236.

[7] M. Nasu and N. Honda, \Fuzzy events realized by �nite probabilistic auto-

mata", Information and Control 12 (1968) 284-303.

[8] A. Salomaa, Theory of Automata, Pergamon Press, New York, 1969.

[9] E.S. Santos, \Maximin Automata", Information and Control 13 (1968)

363-377.

[10] E.S. Santos, \Realization of Fuzzy Languages by Probabilistic, Max-

Product, and Maximin Automata", Information Sciences 8 (1975) 39-53.

[11] E.S. Santos, \Regular Fuzzy Expressions Fuzzy Automata", Fuzzy Auto-

mata and Decision Processes, edited by M.M. Gupta, G.N. Saridis and

B.R. Gaines, North-Holland, 1977, 169-175.

311

