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Abstract: A binary representation of the rationals derived from their continued frac-
tion expansions is described and analysed. The concepts \adjacency", \mediant" and
\convergent" from the literature on Farey fractions and continued fractions are suit-
ably extended to provide a foundation for this new binary representation system. Worst
case representation-induced precision loss for any real number by a �xed length rep-
resentable number of the system is shown to be at most 19% of bit word length, with
no precision loss whatsoever induced in the representation of any reasonably sized
rational number. The representation is supported by a computer arithmetic system
implementing exact rational and approximate real computations in an on-line fashion.

Category: G.1.0 [Numerical Analysis]: Computer Arithmetic. B.5.1 [Register Transfer
Level Implementation]: Arithmetic and logic units. E.2 [Data Storage Representations].

Key Words: Computer arithmetic, continued fractions, lexicographic, number sys-
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1 Introduction.

The foundations of a binary representation of the rationals are presented, and
many of the representation system's features are described. Evidence is pro-
vided indicating that a computer arithmetic system employing this representa-
tion would provide a facility for exact rational and approximate real arithmetic
not currently available in any single system.

Our proposed binary representation system derives from the continued frac-
tion representation of the rationals. A self delimiting bitstring encoding of the
integers is employed to represent each partial quotient. Particular features of the
integer encoding and the subsequent concatenation process allow us to obtain
bit string representations of the rationals, which are shown lexicographically or-
der preserving over real order. Our bitstring representation is thus termed the
lexicographic continued fraction (LCF) representation of a rational number.

The LCF representation can be considered an encoding of the individual
steps of the Euclidean algorithm performed in binary, where the determination
of the individual remainders are computed using a non-restoring division algo-
rithm. As such, it is derived from algorithms performing arithmetic operations
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upon rational operands in fraction form, i.e. a numerator/denominator repre-
sentation, [see Kornerup and Matula 83] where the LCF representation was �rst
described. However, as a number representation it naturally leads to a kind of
on-line arithmetic where operands are consumed bit-sequential, and the result is
produced bit-sequential, most signi�cant bit �rst. Such an on-line arithmetic unit
has been described in [Kornerup and Matula 88], capable of performing all the
basic arithmetic operations in a uni�ed manner as cases of the bihomographic
function

z(x; y) =
axy + bx+ cy + d

exy + fx+ gy + h

speci�ed by eight integer coe�cients a; b; � � � ; h. By factoring certain transforma-
tions (matrices corresponding to the individual partial quotients of a continued
fraction) into simple \binary" matrices, the algorithm can be realized by simple
shift-and-add operations. However, we shall not further pursue the arithmetic
here, but concentrate on properties of the LCF representation.

In [Section 2] we formally de�ne the LCF expansion as a bitstring. We intro-
duce background material from the theory of continued fractions to guide the
development of a theory for LCF expansions. In particular we extend the notion
of the sequence of convergents (often termed \best rational approximations")
of a real number to a super-sequence of biconvergents (binary convergents) de-
termined by the LCF expansion of x. The biconvergents are shown to form a
somewhat base dependent sequence of rational approximations to x. The bicon-
vergent sequence is shown to contain, on average, about 3.51 times the number
of terms of the subsequence of canonically de�ned convergents.

In [Section 3] we study the hierarchy of rational numbers as determined bit-
wise by their LCF expansions through the construct of the LCF binary tree. The
LCF tree provides for enumerating biconvergent sequences as paths down the
tree, and also provides for enumerating all �xed length LCF expansion values by
traversal across the LCF tree truncated at �xed depth. One can visualize in the
structure of the tree the order preserving property of LCF expansions, and the
fact that LCF representation is one-to-one between �nite bit strings and positive
rationals. We develop tools for investigating the set Qk of irreducible fractions
in [0,1] whose LCF expansions have order k (equivalently: length k + 1 bits or
depth at most k in the LCF tree). Our principal results are that the fundamental
properties from the theory of Farey fractions [Hardy and Wright 79] regarding
adjacency, mediant and recursive construction of the tree of Farey fractions, can
be extended to comparable concepts of bijacency, binary mediant and recur-
sive construction of the LCF tree. Properties of the LCF tree are then available
as tools for both the investigation of the rate of convergence of biconvergent
sequences, and for the study of the gap sizes between successive members of
the sets Qk. The latter result dictates the precision obtainable for arithmetic
employing such �xed length representations.

Utilizing these tools the extremes of gap size variability over Qk are then
discussed in [Section 4]. The main result is that the maximum gap size in Qk is
of the order 2�ak for a = 0:814 : : :. This implies at most a 19% precision loss
(storage space loss) in the worst case approximation error by �xed length LCF
bit strings, being the price to be able to accommodate the exact representation
of a set of simple rationals at a fairly regular spacing, and supporting a rational
arithmetic in an on-line fashion. More detailed results of exhaustive and sampled
distribution of gap sizes are available in [Kornerup and Matula 85].
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2 Continued Fraction and Lexicographic Continued Fraction

Expansions.

The lexicographic continued fraction expansion of a rational number is a bitstring
whose interpretation will be based on some fundamental properties of continued
fraction expansions of rationals. For these purposes our notation should make
explicit the particular numerator and denominator components of a fraction, as
well as the particular sequence of partial quotient values of a continued fraction
expansion, as these terms are not necessarily uniquely determined. For our pur-
poses it is su�cient to treat only representation of �nite nonnegative rational
numbers, as signs can be appended for the negative values.

Formally, a fraction, denoted p=q or p

q
, is herein an ordered pair composed

of a nonnegative integer numerator p, and a positive integer denominator q.
The quotient of p=q is the rational number determined by the ratio of p to q.
The numerator and denominator of an irreducible fraction must have a greatest
common divisor (gcd) of unity, other fractions being termed reducible.

Employing the equality symbol between various forms of rational represen-
tation will herein denote the weaker interpretation of equality between their
rational values with the following exception. Equality between fractions denoted
with the horizontal bar format shall imply equal numerator and denominator
values. Thus p

q
=

r

s
i� p = r and q = s;

whereas
p=q = r=s i� qr = ps:

Notationally, the symbol << is used to denote the simpler than relation be-
tween fractions, and is de�ned over all pairs of fractions by

p

q
<<
r

s
i�

p

q
6= r

s
and both p � r; q � s:

For example 0
1<<

1
1 , and

1
2<<

2
3<<

2
4 .

We utilize the notation [a0=a1=a2= � � �=an] for the n-th order (simple) con-
tinued fraction expansion

a0 +
1

a1 +
1

a2 +
1

. .. +
1

an

where the partial quotients ai are assumed to be integral with a0 � 0, ai � 1 for
1 � i � n. It is known from the theory of continued fractions [Khinchin 35, Hardy
and Wright 79] that any positive rational number, denoted by the irreducible
fraction p

q
, has exactly two �nite expansions herein termed the canonical and

long expansions, as given and related by:

p

q
=

(
[a0=a1= � � �=an�1=an] canonical

[a0=a1= � � �=an�1=an � 1=1] long
where an �

�
2 for n � 1
1 for n = 0
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with 0 having the unique and canonical expansion [0]. It follows that any positive
rational number has both a unique even order continued fraction expansion
[a0=a1= � � �=a2m] together with a unique odd order continued fraction expansion
[a0=a1= � � �=a2m+1]. It is the unique even order expansion [a0=a1= � � �=a2m] that
will later be employed for the de�nition of the lexicographic continued fraction
expansion.

The irreducible fractions pi
qi

= [a0=a1= � � �=ai] determined for 0 � i � n

by truncating the continued fraction [a0=a1= � � �=an] constitute a sequence of
irreducible fraction approximations to p

q
= pn

qn
= [a0=a1= � � �=an] termed con-

vergents to p

q
. The preconvergent shall denote the convergent pn�1

qn�1
immediately

preceding pn
qn

in the canonical expansion for p

q
. Note that the long expansion

of p

q
6= 0 includes one additional convergent termed the parent in addition to

those for the canonical expansion of p
q
. For example, the canonical expansion

277
642 =

p

q
= [0=2=3=6=1=3=3] has the convergents 0

1 ;
1
2 ;

3
7 ;

19
44 ;

22
51 ;

85
197;

277
642 with pre-

convergent 85
197 . The parent of

277
642 is then 192

445 = [0=2=3=6=1=3=2].
The convergents have many important properties, some of which are cited

here for reference from [Hardy and Wright 79, Khinchin 35]:

Theorem1. The convergents pi
qi

= [a0=a1= � � �=ai] of any (canonical or long)

continued fraction p
q
= [a1=a2= � � �=an] for i = 0; 1; � � � ; n satisfy the following

properties:

i) Recursive ancestry:
With p�2 = 0; p�1 = 1; q�2 = 1, and q�1 = 0,

pi = aipi�1 + pi�2;

qi = aiqi�1 + qi�2;

or in matrix form:�
pi�2 pi�1
qi�2 qi�1

��
0 1
1 ai

�
=

�
pi�1 pi
qi�1 qi

�
and

�
0 1
1 0

� iY
j=0

�
0 1
1 ai

�
=

�
pi�1 pi
qi�1 qi

�
;

ii) Irreducibility:

gcd(pi; qi) = 1;

iii) Adjacency:

qipi�1 � piqi�1 = (�1)i;
iv) Simplicity:

pi
qi
<<
pi+1
qi+1

for i � n� 1;

v) Alternating convergence:

p0
q0

<
p2
q2

< � � � p2i
q2i

< � � � � p

q
� � � � < p2i�1

q2i�1
< � � � < p1

q1
;
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vi) Best rational approximation:

r

s
<<
pi
qi

=)
����rs � p

q

���� > ����piqi � p

q

���� ;
vii) Quadratic convergence:

1

qi(qi+1 + qi)
<

����piqi � p

q

���� � 1

qiqi+1
for i � n � 1;

viii) Real approximation:���x� p

q

��� < 1
2q2 for irreducible p

q
implies that p

q
is a convergent of a (possibly

in�nite) continued fraction expansion of x.

From Theorem 1(v) we see that the even order convergents approach p
q
from

below and the odd order convergents approach from above, with the interval
between any two successive convergents containing p

q
.

[Tab. 1] illustrates the rate at which the sequence of convergent values for
277
642 = [0=2=3=6=1=3=3] give better approximations to 277/642. Note from the
table that the accuracy attained by successive convergents has a larger incre-
mental improvement when the next partial quotient is large, as anticipated by
Theorem 1 (vii).

Continued Fraction Decimal Relative
fraction representation error

[0] 0/1 0:0 � � � 1
[0/1] 1/2 0:50 � � � 0.15
[0/2/3] 3/7 0:428 � � � 0.0067
[0/2/3/6] 19/44 0:4318 � � � 0.00082
[0/2/3/6/1] 22/51 0:43137 � � � 0.00021
[0/2/3/6/1/3] 85/197 0:431472 � � � 0.000018
[0/2/3/6/1/3/3] 277/642 0:4314641 � � � 0

Table 1: The canonical convergents to 277

642
in continued fraction, fraction, and decimal

form, and the relative errors of these convergents as best rational approximations.

Consider from Theorem 1 and the example of [Tab. 1] that the notion of an
i'th order best rational approximation by itself is not useful in �nite precision
computational practice as the resulting accuracy depends without bound on
the size of the particular partial quotients involved. The lexicographic continued
fraction expansion we now introduce will be shown quite analogously to identify a
sequence of rational approximations termed "biconvergents". The biconvergents
contain and supplement the sequence of convergents of the canonical continued
fraction suitably granularized at the bit level to allow a measure of accuracy in
terms of bit length.

For the purpose of de�ning a binary based lexicographic continued fraction
expansion, we will employ a binary representation of the positive integers which
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is both "self delimiting", i.e. which implicitly contains an end-marker when read
from left to right, and lexicographically order preserving over the integers.

Formally, if the integer p � 1 has the (n+ 1)-bit binary radix representation
1bn�1 � � �b1b0, with n � 0 and � denoting string concatenation, the (2n+ 1)-bit
bitstring

`(p) � 1n � 0 � bn�1bn�2 � � � b1b0 (1)

will be termed the lexibinary form of p. `(p) is thus composed on a (possibly
vacuous) unary part 1n delimited by the switch-bit 0, followed by the (possi-
bly vacuous) binary part bn�1bn�2 � � �b0. The value of the lexibinary integer

1n0bn�1bn�2 � � � b0 is then 2n +
Pn�1

i=0 bi2i. This representation is order preserv-
ing in that the lexicographic ordering (leftmost bit �rst) of lexibinary bitstrings
is seen to correspond to the numeric ordering of their values. [Tab. 2] illustrates
the lexibinary form of several integers. For a discussion of alternative lexico-
graphic order preserving binary encodings of the integers [see Knuth 82], where
similar representations are analysed.

Integer Binary Lexibinary

1 1. 0
2 10. 100
3 11. 101
4 100. 11000
5 101. 11001
6 110. 11010
7 111. 11011
8 1000. 1110000
16 10000. 111100000
32 100000. 11111000000
100 1100100. 1111110100100
200 11001000. 111111101001000
1000 1111101000. 1111111110111101000

Table 2: Right-adjusted standard binary representation and left-adjusted lexibinary
bitstring representation of certain integers.

Note from the de�nition of a continued fraction expansion that [a0=a1= � � �=an]
is an increasing function of any even order partial quotient, and a decreasing
function of any odd order partial quotient. Thus to obtain an order preserving
representation of the rationals we simply represent the odd order quotients in
complemented lexibinary integer form before concatenation. To be able to com-
pare bit strings lexicographically from left to right it is assumed that any (�nite
length) representation is extended to the right with an arbitrary number of ex-
tra zeroes. This corresponds with the observation that, suitably interpreted and
extending the even order continued fraction expansion

p=q = [a0=a1= � � �=a2m] = [a0=a1= � � �=a2m=1]: (2)
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If we de�ne `(1) to be an in�nite string of ones, then since 1 occurs in
an odd order position in (2), `(1) will always appear in complemented form
yielding `(1) = 00 � � �. This provides a terminal in�nite string of zeroes, which
may either be denoted by 01 or taken as assumed.

Formally, implicitly handling the case a0 = 0 (0 � p=q < 1) by a leading zero
bit and a0 � 1 (1 � p

q
) by a leading unit bit, the lexicographic continued fraction

(LCF) expansion of p

q
� 0 is the (in�nite) bitstring determined employing (1)

and (2) by:

LCF
�
p

q

�
=

(
1 � `(a0) � `(a1) � � � � � `(a2m) � `(1) for 1 � p

q

0 � `(a1) � � � � � `(a2m�1) � `(a2m) � `(1) for 0 � p

q
< 1

(3)

The positive valued LCF expansion b0b1 � � � bk�1101 is said to have order k
(the index of the least signi�cant unit), with 0

1 = 01 having order zero. The
LCF expansion denoted with the concatenation symbol � at each corresponding
partial quotient boundary as in (3) is said to be in parsed form. The leading bit
b0 of the LCF expansion b0b1 � � �bk�1101 is termed the reciprocal bit. Note that
all subsequent bits may uniquely be identi�ed as members of the unary, switch,
or binary portions of the i'th order partial quotient in the even order continued
fraction expansion in (3).

The �nite bit string b0b1 � � �bn, with or without trailing zeros, is taken as
an alternative �nite LCF expansion equivalent to b0b1 � � � bn01. The minimal
LCF expansion b0b1 � � � bk�11 of p

q
> 0 is truncated at the last unit bit, and thus

including the reciprocal bit has length one greater than the order of the LCF
expansion. Zero is taken to have its minimal LCF expansion composed of the
single 0 reciprocal bit.

Example 1.

22
7 = 22

7 irreducible fraction form

= [3=6=1] even order continued fraction form

= [3=6=1=1] in�nite extension

= 1 � `(3) � `(6) � `(1) � `(1)

= 1 � 101 � 11010 � 0 � 11
9=; equivalent parsed LCF expansions

= 1 � 101 � 00101 � 0 � 01
= 110100101 minimal LCF expansion (order 8)

The irreducible fraction rk
sk

= b0b1 � � �bk�11 for 0 � k � n determined by
truncating the lexicographic continued fraction r

s
= rn

sn
= b0b1 � � �bn�11 at index

k � 1 and appending a unit bit, is termed the k'th order biconvergent (binary
convergent) of r

s
. Each biconvergent r0

s0
; r1
s1
� � � rn

sn
in sequence provides then either

an improved upper or lower bound on r
s
determined by

rk
sk

= b0b1 � � �bk�11
(
� r

s
if bk = 0;

� r
s
if bk = 1:

To compare biconvergent approximation with the k-bit binary radix approx-
imation, we can compute the \precision" of the k'th order biconvergent approx-
imation in bits by the negative base two logarithm of the bounding intervals,
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as illustrated by the following table of biconvergents of 277
642 through order 12:

k 0 1 2 3 4 5 6 7 8 9 10 11 12
rk=sk 1/1 1/2 1/4 1/3 2/5 4/9 3/7 7/16 13/30 25/58 19/44 22/51 41/95

� log2(gap) 0.00 1.00 2.00 2.58 3.32 4.49 5.97 6.80 7.71 8.76 10.31 11.13 12.24

Some useful facts about biconvergents follow from the de�nition and certain
properties of convergents, and we will summarize these in some observations.
Noting that the reciprocal of p

q
= [a0=a1= � � �=an] � 1 is q

p
= [0=a0=a1= � � �=an],

so then the convergents to p
q
are 0

1 and the reciprocals of the convergents to p
q
.

From (3) then

Observation2. The LCF expansion of the reciprocal of p

q
= b0b1 � � �bk�11 is

the 2's complement, q

p
= b0b1 � � �bk�11. Thus the reciprocal of a k'th order LCF

number is also of k'th order.

Observation3. The biconvergents to the reciprocal q

p
= b0b1 � � �bk�11 of p

q
=

b0b1bk�11 are the reciprocals of the biconvergents to p

q
.

It is immediate from (3) that the even order convergents of the canonical con-
tinued fraction for p

q
are also biconvergents to p

q
. The odd order convergents to p

q

have reciprocals that are even order convergents to q

p
and thus are biconvergents

to q

p
. Using [Observations 2,3] it follows that

Observation4. Every convergent of the canonical continued fraction expansion
of p

q
is also a biconvergent to p

q
.

Although the order of the lexicographic continued fraction can be arbitrar-
ily large compared to the order of the ordinary continued fraction for a given
rational, on the average the orders can be related. From classical material on
continued fractions it is known that the partial quotients in the continued frac-
tion expansion of a randomly chosen r

s
2 [0; 1] (see [Knuth 81] or [Blachman 84]

for details) will have value i with probability essentially given by

pi = log2

�
1 +

1

i(i + 2)

�
; (4)

where then

p1 = 0:415; p2 = 0:170; p3 = 0:093; p4 = 0:059; � � � :
With the distribution of partial quotient size given by (4), we note that

41.5% of all partial quotients are unity and are encoded by a single bit in the
LCF expansion. Another 26.3% of the partial quotients have values two or three
and contribute 3 bits each to the LCF expansion, and an average partial quotient
from (4) has expected lengthX

i

(2blog2 ic + 1) log2

�
1 +

1

i(i + 2)

�
= 3:51 � � �:
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Thus in summary,

Observation5. From the known distribution (4) of partial quotient size, it fol-
lows that the canonical continued fraction expansion and LCF expansion of a
rational p

q
= [a1=a2= � � �=an] = b0b1 � � �bk�11 yield an expected biconvergent to

convergent ratio of Exp( k
n
) = 3:51 � � �.

Observation6. From the known distribution (4) of partial quotient size, it fol-
lows that 1=3:51 � � �= 28:5% of the biconvergents to p

q
will also be convergents to

p

q
, i.e. the so-called best rational approximations which are characterized without

any dependence on the binary representation employed for the LCF expansion.

LCF expansions and biconvergent approximations have many properties of
theoretical interest and/or which �nd use in employing LCF representation as
a basis of computer arithmetic unit design. We shall particularly pursue herein
issues related to assessing the accuracy of �nite precision computation employing
�xed length LCF expansions. A summary of related topics [see Kornerup and
Matula 83, 88] that will not be further pursued in this paper are listed here for
reference:

Regarding uniqueness of LCF representation of the nonnegative rationals:

{ There is a one-to-one correspondence between all minimal LCF expansions
and the nonnegative rational numbers.

Regarding arithmetic with LCF represented numbers:

{ LCF expansions may be used bit-by-bit in a left-to-right scan as input to
on-line algorithms for the direct computation of arithmetic expressions upon
LCF operands yielding LCF results [Kornerup and Matula 88]. In this con-
text the LCF bitstring may be interpreted as an encoding of the individual
steps (transitions) in a �nite automaton performing the Euclidean gcd algo-
rithm (in binary) on p and q.

Regarding the e�ciency in bit-length of LCF expansions:

{ The minimumredundancy encoding, Hu�man encoding, and LCF expansion
average bit-length per partial quotient can be computed employing classical
results [Knuth 81] on the distribution of the size (4) of partial quotients,
yielding:

Average Bits per Partial Quotient
Minimum redundancy encoding 3.43... ,
Hu�man encoding 3.47... ,
LCF expansion 3.51... .

Thus the computationally useful format of the LCF expansion is achieved
with an encoding length only about 2% greater than that which could be
obtained by any minimal redundancy encoding, and only about 1% greater
than that achievable by a Hu�man encoding, where the latter two encodings
would most likely be of no practical value for arithmetic computation.
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Regarding multiplicative and additive inverses:

{ LCF representation may be extended with a sign as follows:

SLCF

�
p

q

�
=

(
1 � LCF (p

q
) for p

q
� 0;

0 � gLCF (p
q
) for p

q
< 0:

where gLCF denotes the 2's complement of any minimal �nite LCF bitstring,
and the 1's complement of any in�nite bitstring. SLCF representation is then
order preserving over the reals. Note then that SLCF representation has lead-
ing sign and reciprocal bits that treat both the additive and multiplicative
inverses of real numbers in an analogous manner.

3 The LCF Rational Number Hierarchy

A hierarchy is imposed on the rationals by the order (length) of their LCF expan-
sions. The enumeration of this rational hierarchy is conveniently illustrated by
associating the positive irreducible fractions with the nodes of an in�nite binary
tree, termed the LCF tree, where the LCF bitstring denotes the path to the node
containing the associated irreducible fraction. The fraction p

q
= b0b1 � � �bk�11 of

order k is assigned to the node at depth k reached by proceeding to the left child
when bi = 0 and to the right child when bi = 1 for i = 0; 1; 2; � � �; k � 1.

The left half of the LCF tree truncated at depth 5 is illustrated in [Fig. 1],
where we note that the values in the nodes of the right half of the LCF tree
are simply the reciprocals of those in the left half reached by the complemented
bitstring.
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Figure 1: The left half of the LCF tree through depth �ve.

The LCF tree provides a convenient reference for interpreting the accuracy
of �nite precision LCF representation both "vertically" and "horizontally":
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Vertically: The path from the root down to any node enumerates the bicon-
vergents to the irreducible fraction at that node, e.g. 1

1 ;
1
2 ;

1
4 ;

1
3 ;

2
5 ;

4
9 is the

sequence of biconvergents to 4
9 .

Horizontally: The (nonzero) elements of the set Qk of irreducible fractions of
[0; 1] whose LCF expansions have order at most k can be enumerated by an
inorder traversal of the left half of the LCF tree truncated at depth k, e.g.
including 0

1 ;
1
1 :

Q2 =

�
0

1
;
1

4
;
1

2
;
2

3
;
1

1

�
;

and

Q4 =

�
0

1
;
1

16
;
1

8
;
1

6
;
1

4
;
2

7
;
1

3
;
2

5
;
1

2
;
5

9
;
3

5
;
5

8
;
2

3
;
3

4
;
4

5
;
8

9
;
1

1
;

�
:

There are then 2k+1 members of Qk in the interval [0; 1] yielding an average
gap size of 2�k. The de�nition of LCF representation provides no immediate clue
as to the extent of variation of these gap sizes for �xed k, knowledge of which is
essential to assess the precision obtainable by k-bit LCF approximation. In this
section we develop tools for investigating gap sizes in Qk and their relation to
gap sizes in Qk+1. For purposes of analysis we shall be particularly concerned
with characterizing relations between LCF represented numbers in terms of their
more familiar irreducible fraction and continued fraction representations.

For the fractions p=q < r=s, the size of the interval [p=q; r=s] is given by
the expression (rq � ps)=qs and will be a minimum relative to the size of the
denominator qs when jrq � psj = 1. We say the fractions p

q
and r

s
are adjacent

whenever jrq � psj = 1. For p

q
adjacent to r

s
it follows immediately that both p

q

and r
s
are irreducible, and that either p

q<<
r
s
or r

s<<
p

q
. Note that some, but not all,

successive pairs of fractions of Qk are adjacent.
The notion of adjacency also identi�es an important relation among contin-

ued fractions that will form a bridge to understanding the neighbor relations for
members of Qk. The following theorem provides alternative characterizations.

Theorem7. For the fractions p
q<<

r
s
(i.e. p

q
6= r

s
and p � r, q � s) each of

the following four properties implies the other three and serves as an equivalent
de�nition of adjacency.

i) Determinant form: jrq � psj = 1,
ii) Interval form: p

q
, r

s
are both irreducible and both simpler than any other

fraction within the interval bounded by p

q
and r

s

iii) Continued fraction form: p

q
and r

s
are both irreducible and related by

r

s
= [a0=a1= � � �=an�1=an] (canonical form of r

s
)

and

p

q
=

(
[a0=a1= � � �=an�1] (preconvergent of r

s
for n � 1)

or
[a0=a1= � � �=an�1=an � 1] (parent of r

s
for any n):

iv) Convergent form: r
s
is irreducible and p

q
is either its preconvergent or parent.
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Proof. The equivalence of (i) and (ii) is known from the classical theory of Farey
Fractions, e.g. [Hardy and Wright 79]. The fact that (iii) implies (i) follows from
Theorem 1. (iv) is essentially a restatement of (iii). To complete the proof we
need only show that the two alternatives given for p

q
in (iii) yield the only

fractions simpler than and adjacent to r
s
.

Let ri
si

= [a0=a1= � � �=ai] for i = 0; 1; � � � ; n denote the convergents to the
canonical continued fraction for r

s
. The set of linear equations

xr + yp = rn�1

xs + yq = sn�1

will have a unique solution (x; y) since jps�qrj = 1. Note that jyj = jyjjps�qrj =
jrn�1s � sn�1rj = 1. So y = �1, and x must be integral since r

s
is irreducible.

For y = 1, 0 � p = rn�1 � xr, with rn�1 < r, implies x = 0, hence

p

q
=

rn�1
sn�1

= [a0=a1= � � �=an�1]:

For the case y = �1 then p = xr � rn�1 implies x = 1 since p � r. Hence
p = x(anrn�1 + rn�2) � rn�1 = (an � 1)rn�1 + rn�2 and similarly we �nd
q = (an � 1)sn�1 + sn�2, thus

p

q
= [a0=a1= � � �=an � 1]:

2

From the LCF tree it is clear that membership of a fraction in Qk depends
in some manner on a truncated binary representation of the �nal partial quo-
tient of a continued fraction representation of the fraction. This introduces a
base dependence phenomenon similar to that obtained in �nite length binary
radix representation. We seek both to model and understand the rami�cations
of this base dependency in LCF representation. Importantly, the adjacency rela-
tion itself as interpreted on fractions and/or continued fractions su�ers no base
dependence on the representation of the individual partial quotients. The follow-
ing extension of adjacency introduces a dependency on the binary representation
only in the last partial quotient. This "binary adjacency" relation will be shown
su�cient to characterize all neighbor pairs in Qk.

We �rst note that two �nite bitstrings �; � are termed lexicographically ad-
jacent (with � lexicographically preceding �) if

� = � � 0 � 1j

� = � � 1 � 0j
for some pre�x � and some j � 0. Lexicographically adjacent bitstrings thus
may equivalently be said to di�er by a unit in the last place (ulp). This is
precisely the relation between neighbors in Qk we want to express in terms
of equivalent relations among rationals in fraction or continued fraction form.
However, it turns out to be most convenient to de�ne the relation wanted in
terms of continued fraction expansions.
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The fractions p

q<<
r
s
are bijacent (of positive, zero or negative degree i) i� p

q

and r
s
are both irreducible, and

p

q
= [a0=a1= � � �=an]

r

s
= [a0=a1= � � �=an + 2i]; (5)

where an = k2i � 2 when i � 1.
The de�nition includes situations corresponding to i being positive, zero, or

negative which may be separately interpreted as follows:

i � 0: p

q
and r

s
have canonical expansions di�ering only in the last partial quo-

tient

p

q
= [a0=a1= � � �=an�1=k2i]

r

s
= [a0=a1= � � �=an�1=(k + 1)2i]:

i � 0: In this case we interpret an + 2i as two partial quotients

r

s
= [a0=a1= � � �=an + 2i] = [a0=a1= � � �=an=2�i];

and further for i negative, r
s
must have a canonical expansion with last

partial quotient a positive power of two, i.e. 2�i � 2.

Note that for i being zero both interpretations apply and p

q
is the parent of

r
s
. For i being negative, p

q
is its preconvergent. When i is positive, p

q
is not a

convergent to r
s
, but is a biconvergent to r

s
.

The notion of bijacency may be equivalently characterized in terms of either
LCF bitstrings or irreducible fractions as summarized in the following theorem.

Theorem8. Each of the following three properties implies the other two and
serves as an equivalent de�nition of bijacency.

i) Continued fraction form: p

q<<
r
s
are bijacent of degree i as speci�ed in (5),

ii) LCF form: The irreducible fractions p

q
and r

s
have lexicographically adjacent

LCF expansions (and thus are neighbors in Qk for some k),
iii) Fraction form: p

q<<
r
s
are bijacent of degree i i� for

i � 0: jps� qrj = 2i = gcd(r � p; s� q) and r
s<<

2p
2q ,

i � 0: jps� qrj = 1 and 2�ip
2�iq<<

r
s<<

(2�i+1)p
(2�i+1)q when p

q
6= 0

1 ,

and r
s
= 1

2�i when p

q
= 0

1 .

Proof. It is straightforward to prove ii) and iii) from i). We �rst prove i) given
iii). Let us start with the case where i � �1 for p 6= 0, then there exists a

b<<
p

q

such that r = 2�ip + a and s = 2�iq + b. Since jp
q
� r

s
j = 1

qs
< 1

2q2 it follows

from Theorem 1 (viii) that p

q
is a convergent of r

s
. Since r � 2p, p

q
cannot be

the parent of r
s
, so r

s
= [a0=a1= � � �=an=2�i] and p

q
= [a0=a1= � � �=an]. For i = 0
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the same argument applies, except that now p

q
= [a0=a1= � � �=an] is the parent

of r
s
= [a0=a1= � � �=an + 20].
Now, assume i � 1. Then there exists a and b such that r � p = 2ia and

s� q = 2ib. From

2ijaq � bpj = j(r � p)q � (s � q)pj = jrq � spj = 2i

we obtain jaq � bpj = 1 and similarly jas � brj = 1. Hence a
b
is irreducible

and adjacent to p

q
as well as to r

s
. Now r

s<<
2p
2q implies r�p

s�q = 2ia
2ib<<

p

q
hence

a
b<<

p

q
and as above we �nd that a

b
is a convergent of p

q
as well as of r

s
. With

p

q
= [a0=a1= � � �=an], an � 2, either a

b
is the preconvergent or the parent of p

q
.

Assume a
b
is the parent, then

p

q
=

1 � a+ pn�2
1 � b+ qn�2

where pn�2
qn�2

is the preconvergent of p

q
, hence p

q<<
2a
2b which contradicts 2ia

2ib<<
p

q
.

Thus we obtain both

a

b
= [a0=a1= � � �=an�1];

r

s
=

2ia+ p

2ib+ q
= [a0=a1= � � �=an�1=an + 2i];

which completes the proof of (iii) ) (i).
Finally we have to prove that (ii) implies (i), hence assume for some j � 0

that r
s
= � � 0 � 1j and p

q
= � � 1 � 0j. Two automatons decoding the bitstrings

�01j and �10j after reading the string �, will both be in the same state, having
parsed and decoded an initial sequence of partial quotients fa0; a1; � � � ; an�1g,
being in the state of decoding the n'th partial quotient an, when encountering
the 0 or 1 following �. The automatons will be in one of four possible states,
depending on n being even or odd (reading in true or complemented form), and
either reading the initial (unary including switch bit) part or the trailing (binary)
part of `(an).

We will start with n being even, and let us �rst assume the automatons are
reading the unary part of an, having already seen k ones of the unary part. The
10 in the LCF expansion of p

q
thus implies that the unary part is completed, and

p

q
= [a0=a1= � � �=an�1=2k+1];

since a suitable amount of zeroes just completes an = 2k+1 as the �nal partial
quotient (n is even). The interpretation of LCF( r

s
), however, depends on the

relation between k and j, since the zero brings the automaton into the state of
decoding the binary part.

If j � k we �nd

r

s
= [a0=a1= � � �=an�1=(2j+1 � 1)2k�j];
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whereas when j > k there are more ones than needed to complete the binary part,
and the remaining ones then are interpreted as two additional partial quotients:

r

s
= [a0=a1= � � �=an�1=2k+1 � 1=1=2j�k]:

so that in both cases, p
q
and r

s
are found to be bijacent of degree k � j.

Now assume the automatons are reading the binary part, still having to read
k � 1 bits to complete an, when � has been read. If k � j + 1, then for some a
we obtain

r

s
= [a0=a1= � � �=an�1=a � 2k�j�1] and p

q
= [a0=a1= � � �=an�1=(a+ 1)2k�j�1]:

If 1 � k � j, for some an we obtain

p

q
= [a0=a1= � � �=an + 1] and

r

s
= [a0=a1= � � �=an=1=2j�k];

thus in both cases p

q
and r

s
are bijacent.

For n odd, the bits have to be inverted when reading an, and the continued
fractions have to be written in even order expansion form, i.e. an (n+1)' partial
quotient has to be considered. The results then follow similarly. 2

By Theorem 8, the bijacency relation is precisely the relation that holds
among neighbors in the inorder traversal of the LCF tree given to any depth k,
speci�cally between consecutive fractions of Qk. For the purpose of determining
the members of Qk+1 given Qk, again intuitively what we want is to characterize,
in fraction or continued fraction form, is the rational number from Qk+1 whose
LCF representation is obtained by one-bit extensions of the LCF representations
of members of Qk. Speci�cally, given two bijacent neighbors from Qk with LCF
representations ��0�1j and ��1�0j, we want to characterize the unique rational
� � 0 � 1j+1 from Qk+1, falling between these.

Let us then for a moment digress to the classical concept of Farey fractions.
Recall (e.g. from [Hardy and Wright 79]) that given the Farey-set

Fn =
n
p

q
j 0 � p � n; 1 � q � n; qcd(p; q) = 1

o
a member of F2n can be constructed as the mediant p+r

q+s of two successive ratio-

nals p

q
< r

s
already in Fn, which can always be shown to be adjacent as de�ned

previously. We further obtain p

q
< p+r

q+s < r
s
. However, when say p

q
is a \very sim-

ple fraction", whereas r
s
is not (e.g. p� r and q � s), their mediant will be of

numeric value very close to r
s
, and rather distant from p

q
. In general, the spacing

between consecutive members of Fn is quite erratic, varying between n�1 and
n�2 [Matula and Kornerup 80]. Now if p and q above both were multiplied by
some common factor c, chosen such that cp and cq were both of the same order
of magnitude as r and s respectively, then the rational value of the expression
cp+r
cq+s would split the interval between p=q and r=s in two intervals of more nearly

equal widths.
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This observation leads us to the introduction of an alternative form of medi-
ant, more nearly bisecting each gap between consecutive members of Qk, which
turns out to be precisely the way we can generate members of Qk+1 from Qk.

The binary mediant of the bijacent fractions p

q<<
r
s
is the irreducible fraction

u
v
with value

u=v = (2jp+ r)=(2jq + s);

where j is the largest integer such that 2jp
2jq<<

r
s
. The binary mediant u

v
is de�ned

to be in reduced form, however gcd(2jp + r; 2jq + s) can only have value one
or two. The following alternative characterizations and properties of the binary
mediant are readily obtained by extending the proof of Theorem 8.

Theorem9. The binary mediant of two bijacent fractions p
q
; r
s
is the irreducible

fraction u
v
equivalently determined by either of the following three conditions:

i) Continued fraction form: If

p

q
= [a0=a1= � � �=an�1=an]

r

s
= [a0=a1= � � �=an�1=an + 2i]

with an = k2i � 2 when i � 1; then
u

v
= [a0=a1= � � �=an� 1=an + 2i�1]:

ii) LCF expansion form: If p
q
< r

s
and for some bit string � and integer j � 0,

p

q
= � � 0 � 1j ;

r

s
= � � 1 � 0j ;

then
u

v
= � � 0 � 1j+1:

iii) Fraction form: If p

q<<
r
s
are bijacent of degree i, then

u

v
=

8>><>>:
2�ip+ r

2�iq + s
for i � 0;

(p+ r)=2

(q + s)=2
for i > 0:

Lemma10. The binary mediant u
v
of the bijacent fractions p

q
; r
s
is bijacent to

both p

q
and r

s
.

Theorems 8, 9 and Lemma 10 provide us the computational means of genera-
ting sets of bijacent fractions partitioning any interval speci�ed by two bijacent
fractions given in either the fraction, continued fraction or lexicographic contin-
ued fraction form of representation.

Regarding the LCF tree we then immediately obtain the following \LCF Tree
Labelling Lemma", here employing in an obvious way the \in�nite" fraction 1

0 .
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Lemma11. In the LCF tree, the fraction 1
1 is assigned to the root, and the frac-

tion assigned to any other node is the binary mediant of the fraction assigned to
the nearest left ancestor node (or 0

1 if none exists) and the fraction assigned to

the nearest right ancestor node (or 1
0 if none exists) in the LCF tree. Further-

more, with edges labelled 0 for left branch and 1 for right branch, the bitstring
composed from the labels on the edges of the path from the root to a particular
node, with a terminal unit appended, provides the minimal LCF expansion of the
fraction assigned to that node.

4 Extremes and Distribution of Gap Sizes over Qk

Traditional �xed point binary representation with k bits to the right of the radix
point 0:b1b2 � � � bk allows for the representation of 2k + 1 values over the unit
interval [0; 1], with all gaps of uniform size 2�k. The LCF expansion 0b1b2 � � �bk
with k bits beyond the reciprocal zero bit, determine an equal sized 2k + 1
membered set Qk of representable values over the unit interval. The gap sizes over
Qk necessarily vary about the mean 2�k to accommodate exact representations
of the \simple" rational fractions. In this section we shall discuss bounds on the
variations on the size of gaps over Qk for large k. We �rst con�rm the existence
of certain relatively large and small gaps in Qk, that we contend are indicative
asymptotically of the maximum and minimum gap sizes in Qk.

Lemma12. Given � > 0, then for su�ciently large k, the maximum gap size in
Qk will be at least 2�(a+�)k for

a =
1

4
log2(5 + 2

p
6) = 0:82682 � � � ;

and the minimum gap size will be no bigger that 2�(b��)k for

b = log2

 
3 +

p
5

2

!
= 1:38848 � � �:

Proof. For the minimum gap result, consider that z =
p
5�1
2 = [0=1=1= � � �] =

010101 � � � = 0:618033 � � � has the sequence of convergents 0
1 ;

1
1 ;

1
2 ;

2
3 ;

3
5 ;

5
8 ; � � �

which (deleting 0
1) are also seen to be the sequence of biconvergents to z. The

numerators (and denominators) are the well known Fibonacci numbers and grow
asymptotically at the rate (1 +

p
5)=2. The bounding intervals on z determined

by the sequence of biconvergents are then 1
1�2 ;

1
2�3 ;

1
3�5 ;

1
5�8 ; � � �, and decrease

at a rate approaching 4=(1+
p
5)2 = 2=(3+

p
5), verifying the minimumgap size

bound.
For the maximum gap size result note that y =

p
6� 2 = [0=2=4=2=4= � � �] =

001111000011110000 � � �= 0:449489 � � � has a sequence of convergents, where the
rate of increase of numerators (and denominators) in two steps,

pi+2

pi
, approaches

5 + 2
p
6 = 9:898979 � � �. Note then that after eight bits in the LCF expansion

corresponding to encoding another pair of partial quotients 2; 4, the bounding
interval only determined by the biconvergents will decrease at a rate approaching
1=(5 + 2

p
6)2, from which the lower bound on the maximum bound follows. 2
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For the purpose of bounding the approximation error in rounding to a bi-
convergent in Qk, we are concerned with determining an upper bound on the
maximal gap size in Qk. By direct computation we �rst obtain the maximum
gap size in Qk for moderate orders, given in terms of

ak = �1

k
log2(max gap in Qk);

the values of which are listed for k = 1; 2; � � �; 20 in the following table:

k ak k ak
1 1.000 11 0.812
2 0.792 12 0.816
3 0.774 13 0.819
4 0.792 14 0.820
5 0.817 15 0.816
6 0.812 16 0.819
7 0.804 17 0.821
8 0.810 18 0.822
9 0.815 19 0.818
10 0.818 20 0.821

In these computations we found for the larger k that the maximum size
gaps in Qk always had a boundary point p

q
2 Qk whose LCF representation

contains replications of the bit pattern 00001111, consistent with the example of
Lemma 12. This lemma further gives us an upper bound on any limiting value
for ak, and we suggest in the following that this is indeed the correct value.

Conjecture13. limk!1 ak =
1
4 log2(5+2

p
6) = 0:82682 � � �, where furthermore

the gaps in Qk containing the real number
p
6�2 = [0=2=4=2=4= � � �] decrease in

size asymptotically in k as fast as the maximum size gaps in Qk.

The proof of the conjecture at this point appears quite tedious. We quote
here without proof from [Kornerup and Matula 85] a somewhat weaker result,
which in conjunction with Lemma 12 provides reasonable tight bounds on ak.

Theorem14. Given � > 0, then for su�ciently large k, the maximum gap size
in Qk is no greater than 2�(a��)k for a = 1

4
log2(16=153) = 0:814347 � � �:

Also from [Kornerup and Matula 85] we quote �ndings on some computations
and simulations on the gap size distribution. For values of k up through 24 the
distributions were computed exhaustively. In each case it was also found that

the minimum gap in Qk fell between two consecutive rationals of the form fn�2
fn�1

and fn�1
fn

, where fn denotes the nth Fibonacci number, in correspondence with

the observation about the LCF expansion of [0=1=1= � � �=1].
The main purpose of the computations was, however, to obtain graphs of the

distribution of gap sizes. Exhaustive computations up to k = 24 and simulations
for k = 32; 64; 128 showed the distribution of the negative base 2 logarithm of
gaps in Qk to be bell-shaped between approximately 0.8 and 1.3, and centered
around 1.0, the bell-shape getting narrower and higher peaked for increasing
values of k.
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Overall our study shows that the gaps between LCF representable values are
subject to a variation in size corresponding to a worst case 19% precision loss (or
equivalently a 19% storage capacity loss), and a best case 38% precision gain,
in comparison with an equivalent �xed point binary system with uniform gap
size over the unit interval. This appears to be a small price to pay for achieving
exact representation of all simple rationals.

5 Conclusions

A binary representation of the rationals has been described and analyzed. It is
capable of representing in �nite precision a set of rationals fairly regularly spaced
on the unit interval. It supports an online arithmetic unit for rational arithmetic,
which can alternatively be considered an approximative real arithmetic with
embedded exact computations on simple rationals.

The LCF representation is non-redundant, which for an on-line (digit serial,
most signi�cant digit �rst) arithmetic has the implication that the delay be-
tween input and output can vary unboundedly. To be able to bound and reduce
such delays, it is necessary to introduce redundancy in the representation. It is
straightforward to introduce redundancy in the continued fraction representation
of rationals (allowing partial quotients suitably restricted to become negative),
and furthermore to introduce redundancy in the binary encoding of the indi-
vidual partial quotients. Arithmetic units supporting such redundant continued
fraction representations have also been investigated and reported [see Kornerup
and Matula 90], however an analysis of these representations has never been
conducted and deserves a similar study.
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