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Abstract: IEEE oating-point arithmetic standards 754 and 854 reect the present
state of the art in designing and implementing oating-point arithmetic units. A for-
malism applied to a standard non-trapping mode oating-point system shows incor-
rectness of some numeric and non-numeric results. A software emulation of decimal
oating-point computer arithmetic supporting an enhanced set of exception symbols is
reported. Some implementation details, discussion of some open questions about utility
and consistency of the implemented arithmetic with the IEEE Standards are provided.
The potential bene�t for computations with in�nite symbolic elements is outlined.
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1 Introduction

At the beginning of the computer age arithmetic was de�ned and implemented
by computer manufacturers. The main interest at that time was to optimize the
speed of the operations and minimize the circuitry needed to implement them.
Accuracy was only considered as a side e�ect. Numerical scientists su�ered from
these de�ciencies and had to spend much e�ort to overcome the di�culties.
Furthermore many existing oating-point units exhibit machine-dependent ir-
regularities in behaviour which complicate the problem of writing oating-point
programs that are portable, in the sense of o�ering equivalent numerical be-
haviour on di�erent machines. Upcoming in the early eighties, the IEEE arith-
metic standard 754 [ANSI/IEEE 1985], further generalized by the IEEE Std.
854 [ANSI/IEEE 1987] to remove the dependencies on radix and wordlength,
changed the situation. The IEEE standards provide direct support of:

{ uniform oating-point formats including constrains on parameters de�ning
values of basic and extended oating-point numbers,

{ well-de�ned computer arithmetic operations performed with maximum ac-
curacy,

{ four di�erent rounding modes including directed roundings,
{ execution-time diagnostics of anomalies and smoother handling of exceptions.

The IEEE arithmetic standards enhance the capabilities and safety available
to programmers and facilitate the movement of programs between the diverse
computers adhering these standards. Between the main achievements of the
standards is the provision of arithmetic operations with directed roundings
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which allows implementation of numerical algorithms with automatic result ver-
i�cation (see e. g. [Kaucher et al. 1992], [Kulisch and Miranker 1983] for such
algorithms).

The IEEE standard has been widely adopted to most hardware platforms
(chips: Intel 8087, Motorola 6839, etc.) and software implementations
([Falc�o Korn et al. 1992], [Klatte et al. 1992], [Klatte et al. 1993],
[Metzger and Walter 1990], etc.). So the IEEE oating-point arithmetic, as in-
tended, is rapidly becoming a de facto computer industry standard for the design
of oating-point arithmetic units.

The IEEE standards reect the present state of the art and they are subject to
comments, revision, rea�rmation or change. A surprising number of details and
variety of di�erent reasons for their selection must be settled in the design of a
practical oating-point unit. Any proposal concerning the
Standard should be judged by its consistency, utility and ease of implemen-
tation. Amongst the other comments on the standards Lynch and Swartzlan-
der [Lynch and Swartzlander 1992] applied a formalism for specifying the num-
ber systems to the IEEE Std. 754 and showed that the standard conforming
systems exhibit an inconsistency. Having the opportunity to develop a soft-
ware emulation of decimal oating-point arithmetic according to IEEE Std. 854
[ANSI/IEEE 1987], which was intended to replace the binary arithmetic in the
programming language PASCAL-XSC [Klatte et al. 1992], we designed and im-
plemented another version of the decimal arithmetic routines which support an
enhanced set of exception symbols as proposed in [Lynch and Swartzlander 1992].

Section [2 IEEE Standard and its error algebra] outlines the formalization of
the IEEE non-trapping oating-point system considered in
[Lynch and Swartzlander 1992] and the proposed modi�ed system. In [Section 3]
we report some implementation details and discuss the cost and the consistency
with the IEEE oating-point Standards of this implementation. All considera-
tions below are valid for both standards 754 and 854, so we shall not refer to
the standard number except whenever it is especially necessary.

2 IEEE Standard and its error algebra

The IEEE oating-point scheme uses its formats to represent valid oating-point
numbers (normalized or denormalized), called also representable numbers; some
specially distinguished values as zero and in�nity; and a set of special values
called NaNs (Not a Number). A formalism considered in
[Lynch and Swartzlander 1992] attaches a logical proposition to each element
in the operation domain which de�nes its meaning and speci�es the accuracy
of the numeric results and the scope of symbolic results. In accordance with
the supported oating-point formats the real numbers can be divided into six
categories: (1) zero; (2) numbers too small to represent, called underow num-
bers; (3) numbers which are too small to be approximated in the normalized
format, called denormalized numbers; (4) numbers which may be approximated
in the normalized format, called normal numbers; (5) numbers which are too
large to represent, called overow numbers; and (6) in�nity. An input real value
or the exact result of a oating-point arithmetic operation are approximated by
some oating-point number in the supported format. Addition, multiplication
and division are de�ned to include operation on numeric, non-numeric or mixed
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operands. Four rounding modes corresponding to di�erent type of approximation
are supplied by the Standard: rounding to the nearest representable oating-
point number as a default mode, rounding to zero, to minus in�nity and to plus
in�nity.

A number of exceptional situations such as Invalid Operation, Overow, Un-
derow, Division by Zero and Inexact Result may arise during numerical com-
putations in a oating-point environment conforming IEEE standards. Every
exception, when it occurs must raise a ag that a program may subsequently
sense and/or take a trap engineered to pass control to some code to handle the
detected exceptional condition. The set of special values called NaNs are used
for communicating results of Invalid Operation exceptions, attempt to extract
the square root of a negative number etc. There are two types of NaNs: quiet
NaN which propagate through the arithmetic operations without precipitating
exceptions and signaling NaN which precipitate an Invalid Operation exception
whenever an attempt is made to use one as arithmetic operand. The IEEE
standards require that the default response to the exceptional situations is not
to trap on them, but to compute and deliver to the destination a default re-
sult, speci�ed in a reasonable way if not universally acceptable, for each possible
exception. [Tab. 1] gives the error algebra de�ned by the IEEE standard for
calculations performed in non-trapping mode and positive sign of the operands
(valid oating-point numbers are denoted by R).

A B A+B A � B A=B
0 0 0 0 NaN
0 R R 0 0
0 1 1 NaN 0
R 0 R 0 1
R R 0;R or 1 0;R or 1 0;R or 1
R 1 1 1 0
1 0 1 NaN 1
1 R 1 1 1
1 1 1 1 NaN
1 �1 NaN �1 NaN
NaN 0 NaN NaN NaN
NaN R NaN NaN NaN
NaN 1 NaN NaN NaN

Table 1: The IEEE Std Non-Trapping Mode Substitutions.

As it was mentioned above a standard conforming computer can represent
the fact that a result is indeterminate or not real with the symbol NaN. But
there is no representation for prerounded results known to be in the underow
region (category 2) or the overow region (category 5). By the following example
Lynch and Swartzlander [Lynch and Swartzlander 1992] showed that the IEEE
standard conforming system exhibits an inconsistency. [Fig. 1] shows an exam-
ple program, the theoretically correct and the computed result in the default
rounding mode.
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1. A = LNN
2. B = A+A B = LNN + LNN = 2 LNN B = LNN + LNN = 1
3. C = B/A C = 2 LNN/LNN = 2 C = 1/LNN = 1
4. D = 1/C D = 1/2 = 0.5 D = 1/1 = 0
5. E = 1/(D�0.5) E = 1/(0.5 � 0.5) = 1 E = 1/(0 � 0.5) = �2

Figure 1: Example Program, its Theoretical and Computer Execution.
(LNN stands for the largest normalized number)

Execution of this example is according to the rules of IEEE Standard. Each
result satis�es the statement of the Standard "every operation is performed
as if it �rst produced an intermediate result correct to in�nite precision and
with unbounded range and then rounded accordingly". But incorrect results are
evident in lines 3 and 5. In line 3 the IEEE result is in�nity, which corresponds
to the proposition "the rounded theoretically correct value is greater than the
maximum representable, LNN", although the theoretically correct result is 2. In
line 5 the standard result is �2, but the theoretically correct result is in�nity.
This result is especially dangerous, because it appears to be reasonable.

In [Lynch and Swartzlander 1992] the following enhanced set of elements is
proposed to be used in IEEE oating-point computations to circumvent the
di�culties arising in the above example:

INF: the theoretically correct value is in�nite
OV: the theoretically correct value is greater than the maximum

representable
x2 representables: the theoretically correct value is approximately x
UN: the theoretically correct result is smaller than the minimum

representable
0: the theoretically correct result is zero
INDET: the theoretically correct result is indeterminable.

The repeated calculations of the example based on this alternative set of
exception symbols and the corresponding rules [Lynch and Swartzlander 1992]
give INDET as the most speci�c correct result (B = OV, C = INDET since an
OV divided by LNN may be an OV or normal number).

The point is how to implement a oating-point arithmetic system in order
to take the advantage of the above enhanced set of exception symbols.

3 Implementation and consistency

An unfortunate weakness of the Standard is that so far no common program-
ming language neither allows access to the IEEE oating-point operations with
directed roundings nor provide suitable interface for testing and handling the ex-
ceptions. Only a few prototype languages [Falc�o Korn et al. 1992], [Klatte et al. 1992],
[Klatte et al. 1993], [Metzger and Walter 1990] provide software emulated oating-
point arithmetic conforming IEEE Std 754.

For the developed oating-point arithmetic supporting an enhanced set of
exception symbols the compliance with the PASCAL-XSC design is determined
by the use of the following language features:
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{ Both PASCAL-XSC compiler [Alend�orfer and Shiriaev 1992] and the run-
time system [Cordes 1991] are written in ANSI C, which ensures running
PASCAL-XSC on nearly every computer.

{ The runtime routines simulate the decimal IEEE \double" format and the
IEEE operations in software and, thus, are independent of the actually used
hardware and the oating-point formats of the C compiler in use.

{ The PASCAL-XSC runtime system provides a set of routines which allow a
exible monitoring and handling of the exceptions. An individual condition
code and a default exception routine is de�ned for each exception. An unique
interface is given by the trap handler for all exception routines.

The IEEE Standard require for each format representation of "at least one
signaling NaN" and "at least one quiet NaN". The Standard "does not spec-
ify the ... interpretation of the sign and signi�cand �elds of NaNs". Repre-
sentation of a decimal IEEE "double" format number r is given on [Fig. 2]
[Bohlender et al. 1991]. According to this representation 253 � 2 encodings are
used for the NaNs. By default the PASCAL-XSC runtime system assumes that
a signaling NaN is identi�ed by bit 51 of this representation being set. A quiet
NaN is identi�ed by bit 51 of the representation of the oating-point number
being not set. We take advantage of the freedom given by the Standard and use
part of the encodings of the quiet NaNs for the representation of the additional
exception symbols UN and OV. The INDET value is carried by the qNaN itself.
Thus the structure of a quiet NaN in the corresponding oating-point system
supporting the extended set of exception symbols becomes as that presented on
[Fig. 3]. To be more speci�c an INDET value is represented by d = 7, OV by
d = 3 and UN by d = 1 [see Fig. 2].

1 2 9 4 48 bit count
(r) s r e d m

63 62 61 60 52 51 48 47 0 bit number
s = sign
r = reserved d = leading BCD digit left of decimal point
e = biased exponent m = BCD encoded fraction part of mantissa

r =

8>><
>>:

(�1)s � d:m � 10e�255 0 � e � 510 normalized
(�1)s � 0:m � 10�255 e = 0; d = 0;m 6= 0 denormalized
(�1)s � 0 e = 0; d = m = 0 signed zero
(�1)s � 1 e = 511; d =m = 0 signed in�nity
NaN e = 511; d 6= 0 or m 6= 0 not a number

Figure 2: Representation of a double precision decimal number

In [Tab. 2] we give the detailed non-trapping mode substitutions for addition
according to the sign of the operands and according to the rounding modes.

The Standard does not interpret the sign of a NaN but says that \an imple-
mentation may �nd it helpful to provide additional information about a variable
that is a NaN through an algebraic sign". For the realization of a correct addition
operation involving UN or/and OV arguments their signs have to be properly
determined. So the rules of the Standard concerning the algebraic sign of a result
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have to be applied even when operands or results are zero, in�nite, UN or OV.
The signs of the other NaNs remain not interpretable.

s = 0 or 1 (sign)
e = 511 (all bits are set)

bit 51 = 0 (identi�es quiet NaN)
bits 48� 50 (identify an UN, OV or INDET)
bits 32� 48 = 0 (reserved)
bits 0� 31 (exception code)

Figure 3: Structure of a quiet NaN

+ �1 {OV {R {UN 0 UN R OV +1

�1 �1 �1 �1 �1 �1 �1 �1 �1 qNaN

{OV �1 {OV {OV {OV {OV qNaN qNaN qNaN +1

{R �1 {OV {R, {OV �A, {OV {R {UN, �B �R qNaN +1

{UN �1 {OV {OV, �A qNaN {UN qNaN UN, B qNaN +1

0 �1 {OV {R {UN 0 UN R OV +1

UN �1 qNaN {UN, �B qNaN UN qNaN A, OV OV +1

R �1 qNaN 0, �R UN, B R A, OV R, OV OV +1

OV �1 qNaN qNaN qNaN OV OV OV OV +1

1 qNaN 1 1 1 1 1 1 1 1

Table 2: Non-Trapping Mode Substitutions for Addition where
A : R + UN 2 [R, R + ulp(R)] and B : R { UN 2 [R { ulp(R), R].

The followingProposition shows that a valid oating-point number results an
addition/subtraction operation on any representable number and an underow
value in any rounding mode.
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Proposition For any nonzero normal or subnormal number R of the sup-
ported oating-point format and a positive underow value UN, [R;R+ ulp(R)]
is the smallest machine interval containing R + UN and [R� ulp(R); R] is the
smallest machine interval containing R� UN .

Proof follows from the inequalities 0 < UN < ulp(R) valid for any positive
representable number R.

A result R+ulp(R) will signal an Overow oating-point exception when R
is the largest normal number and a result R � ulp(R) will signal an Underow
oating-point exception when R is the smallest denormalized number of the
supported oating-point format.

[Tab. 3] and [Tab. 4] give the non-trapping mode substitutions for multipli-
cation and division operations of positive operands. For negative or mixed sign
operands the corresponding IEEE Standard rules for the algebraic sign of the
result have to be additionally applied.

� 1 OV R UN 0

1 1 1 1 1 qNaN

OV 1 OV
OV if exp(R)� 0

else qNaN
qNaN 0

R 1
OV if exp(R)� 0

else qNaN
R

UN , OV
UN if exp(R)� 0

else qNaN 0

UN 1 qNaN
UN if exp(R)� 0

else qNaN UN 0

0 qNaN 0 0 0 0

Table 3: Non-Trapping Mode Substitutions for Multiplication

All operations involving UN or OV argument will signal no exceptions, except
for the special cases of addition mentioned above after the Proposition. Trapped
overow on decimal string to oating-point conversion when the result lies too far
outside the range of the exponent to be adjusted will deliver to the trap handler
an appropriately signed OV. Similar rule is applied to the trapped underow.

In order to preserve the main purpose of the directed roundings to provide
an enclosure of the theoretically correct result we have implemented the non-
trapping substitutions given in [Tab. 2]{[Tab. 4] only for the arithmetic opera-
tions in round to nearest mode. The enhanced exception set requires the follow-
ing modi�cation of the IEEE de�nition of default result on Overow/Underow.
Round to nearest carries all overows to OV with the sign of the intermediate
result. The delivered default result in round to nearest mode when Underow
have been detected and the corresponding trap is not enabled shall be UN with
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b
a

1 OV R UN 0

1 qNaN 1 1 1 1

OV 0 qNaN
OV if exp(R)� 0

else qNaN
OV 1

R 0
UN if exp(R)� 0

else qNaN
R

UN , OV
OV if exp(R)� 0

else qNaN
1

UN 0 UN
UN if exp(R)� 0

else qNaN
qNaN 1

0 0 0 0 0 qNaN

Table 4: Non-Trapping Mode Substitutions for Division

the sign of the intermediate result.
Remarkably, the proposed implementation scheme for a oating-point arith-

metic supporting an enhanced set of exception symbols �ts quite well in the
frames prescribed by the IEEE oating-point Standard. This is ensured by the
decision UN and OV elements to be implemented as belonging to the set of
quiet NaNs and except for the substitutions from [Tab. 2]{[Tab. 4] to apply the
corresponding rules for quiet NaNs prescribed by the Standard. Non-trapping
substitutions from [Tab. 2]{[Tab. 4] do not contradict the Standard. Some minor
inconsistencies of no practical importance can be met. The new implementation
does not conform the IEEE requirement \Every operation involving one or two
input NaNs, none of them signaling, shall signal no exception but, if a oating-
point result is to be delivered, shall deliver as its result a quiet NaN, which should

be one of the inputs NaNs". For example, R=UN =

�
OV; if exp(R) � 0;
qNaN otherwise and

neither OV nor qNaN is \one of the input NaNs" (UN). According to the substi-
tution tables the result of the example of [Fig. 1] will be qNaN and the execution
of line 3: C=OV/LNN=qNaN will show the same inconsistency.

It should be mentioned that the di�culties connected with overowed results
in IEEE non-trapping mode computations, as those of the example of [Fig. 1],
can be overcomed also at an user level by the following substitutions:

� (1�R) = qNaN

� 1 �R =

�
�1; if exp(R) � 0
qNaN; otherwise

(1)

� 1=R =

�
�1; if exp(R) � 0
qNaN; otherwise

In order to ensure correct behaviour of the non-trapping oating-point com-
putations, always when Overow exception arises one can switch to prede�ned
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arithmetic operations which will check for the special cases (1) and will provide
more correct results. This can be done for all roundingmodes. Of course, checking
special cases (1) will be much more time consuming than using a oating-point
arithmetic supporting the enhanced exception set.

The major advantage of the enhanced set of exception symbols proposed in
[Lynch and Swartzlander 1992] concerns those applications dealing with in�nite
input elements. According to the proposed substitutions in�nity as a result of a
oating-point operation can be obtained only when at least one of the operands
is in�nity or when a nonzero number is divided by zero. Thus in�nite large
or in�nite small in magnitude values obtained as a result of roundo� errors
can be clearly distinguished from the operations involving in�nities. Thus the
implemented oating-point system provides more functionality and safety for
only a small additional implementation cost.

4 Conclusion

A considerable amount of manpower is required for the practical implementation
of any proposal concerning IEEE oating-point arithmetic. The presented imple-
mentation of oating-point arithmetic supporting an enhanced set of exception
symbols comes to answer some open questions about its utility and consistency
with the IEEE oating-point Standards. The new expanded computational ca-
pability is gained at no additional cost. This implementation does not implicate
performance penalty. Moreover, with the enhanced capability, the computer can
be used to appraise the quality and the reliability of the computed results over
a wide range of applications.
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