
Differential Ziv-Lempel Text Compression

Peter Fenwick,
Department of Computer Science, The University of Auckland,

Private Bag 92019, Auckland, New Zealand
p_fenwick@cs.auckland.ac.nz

Abstract We describe a novel text compressor which combines Ziv-Lempel compression and
arithmetic coding with a form of vector quantisation. The resulting compressor resembles an
LZ-77 compressor, but with no explicit phrase lengths or coding for literals. An examination
of the limitations on its performance leads to some predictions of the limits of LZ-77
compression in general, showing that the LZ-77 text compression technique is already very
close to the limits of its performance.

Keywords text compression, LZ-77, arithmetic coding, vector quantisation

Category H.3.3

1. Introduction

It is well known that there are two main approaches to text compression, or “lossless
compression”. On the one hand we have the dictionary compressors, generally of
the Ziv-Lempel type, which replace a later occurrence of a string or phrase by a
reference to an earlier occurrence of the same phrase. On the other hand we have
the statistical compressors, usually with Huffman or arithmetic coding, which
exploit the uneven frequency distribution of symbols and especially the dependence
of symbols upon their neighbouring contexts. More powerful compressors may use
an initial dictionary compressor and following statistical compressor in cascade.

There are also well-established techniques for “lossy compression”, where the
recovered information does not have to be an exact replica of the original. These
include discrete cosine transforms, wavelets, and vector quantisation. The present
work arose out of the question as to whether any of the lossy techniques might be
applicable to lossless compression. It is difficult to see the relevance of cosine
transforms or wavelets, which depend upon inherent regularities, or near-
regularities, in the input data (and are preprocessors rather than compressors).
Vector quantisation did however seem to be a useful possibility.

Journal of Universal Computer Science, vol. 1, no. 8 (1995), 591-602
submitted: 8/2/95, accepted: 9/8/95, appeared: 28/8/95Springer Pub. Co.

591

2. Text compression with vector quantisation; principles

In conventional vector quantisation we establish a pool of fixed length “vectors”
which resemble portions of the input. We examine the next portion of the input and
determine the best matching vector. The compressed output is simply the
identification of this vector, together with perhaps a highly compressible
approximation to the error. In text compression terms, it resembles LZ-78
compression, but with fixed-length vectors and near-matches, whereas LZ-78 uses
variable-length phrases and exact matches.

To combine dictionary compression and vector quantisation we start with a standard
LZ-77 scan (with the usual “sliding window”, etc) to determine the longest earlier
phrase which matches the text to come. This earlier phrase then becomes a
reference phrase for the phrase to be emitted. The current phrase is introduced with
the displacement to the reference phrase. Then, for each byte, we emit the difference
(exclusive-OR) between the known byte in the reference phrase and the
corresponding byte in the current phrase. This difference is of course zero for as
long as the two phrases match until the phrase is terminated by the non-zero code for
the first non-matching byte. The term “differential Ziv-Lempel” will be used to
describe the new technique.

A phrase then consists of the initial position code, a sequence of zero symbols and a
terminating non-zero symbol. The whole is processed through a set of arithmetic
coders, one or more for the displacement, and one for the data. The prevalence of
identical zero symbols in the data means that they are encoded very compactly and,
for reasonable phrase lengths, we can achieve good compression. The presence of
the terminal byte means that it resembles the original LZ-77 compressor, rather than
the later variants such as LZSS.

3. Implementation

From the above discussion it is clear that a phrase is defined only by its position and
requires no explicit length. Once started, coding for a phrase proceeds until an
unexpected character is encoded. Neither is there is any explicit coding for a literal.
As a single literal symbol can be based on any byte whatsoever, it is simplest to just
emit a displacement of 1. This bases the literal on the immediately preceding byte,
forcing some non-zero code and a phrase length of 1. As an optimisation detail, we

592

keep track of the last occurrence of each byte value and point to that occurrence if it
is sufficiently close (within 128 bytes), so defining a 2-byte phrase for a literal.

Displacement coding contributes the major part of the compressed output bit stream.
With arithmetic coding used for the phrase bodies, the displacements too must go
through the arithmetic coder. The displacement encoding finally chosen consists of
one or two components, each with its own coding model. The first component is the
least-significant 7 bits of the value. If the value exceeds 127, the first component
has its high-order bit set and is followed by the more-significant bits as the second
component.

The Ziv-Lempel parser is based on a recently-developed string matching algorithm
[Fenwick and Gutmann, 1994], a description of which is included in an Appendix to
this paper.

For some files it is better to omit the “over-run” byte and allow the non-zero byte of
the next displacement to terminate the current phrase. Literals are handled by
allowing the first byte of a phrase to be non-zero. This version actually resembles a
conventional LZ-77 compressor with {displacement , length} coding, but
transmitting the length as a unary code. As we will see later the length coding
requires only about 0.2 bits per byte and most lengths can be represented in less than
1.5 bits. The two versions will be compared later, but for now it should be noted
that they are used independently, with no attempt to combine in a single compressor.

4. Performance

The actual performance on the files of the “Calgary Corpus” [Bell, Cleary and
Witten, 1990] is shown [Table 1], and compared with two of the better LZ-77 style
compressors, LZB[Bell, Cleary and Witten, 1990] and LZ3VL[Fenwick, 1993]. The
second version, without the phrase over-runs, compares quite well with the reference
LZ-77 compressors, while the first version, with over-runs, is particularly good on
the binary files.

The “over-run” coding is especially useful if the phrase terminates with a quite
unusual byte, which would otherwise have to be emitted as a literal; many of the
literals are just absorbed into the phrases and are emitted quite efficiently. GEO in
particular benefits from this effect. Interestingly, PIC also benefits for the same
reason. Although much of PIC is highly compressible runs of zeros, it contains
some much less-compressible regions where phrases terminate on almost random

593

bytes and the over-runs are of considerable benefit. Text files on the other hand tend
to have sequences of phrases with few intervening literals and for these the more
efficient phrase termination of the “no-overrun” coding is better. PIC also gains
considerable benefit from its very long phrases (7 phrases for the first 50,000 bytes,
and one of over 36,000 bytes at the end). Several other files (NEWS, OBJ1,
PROGP, TRANS) also have phrases exceeding 1000 bytes.

File diffLZ diffLZ LZB LZ3VL
overrun n-ovrn

BIB 3.22 3.22 3.17 3.00
BOOK1 4.13 3.88 3.86 3.65
BOOK2 3.47 3.27 3.28 3.07
GEO 5.34 6.36 6.17 5.93
NEWS 3.83 3.78 3.55 3.47
OBJ1 4.48 4.83 4.26 4.08
OBJ2 2.92 3.17 3.14 2.96
PAPER1 3.47 3.29 3.22 3.08
PAPER2 3.67 3.42 3.43 3.23
PIC 1.02 1.16 1.01 1.04
PROGC 3.34 3.19 3.08 2.97
PROGL 2.23 2.15 2.11 2.03
PROGP 2.31 2.15 2.08 2.01
TRANS 2.14 2.13 2.12 1.96
A v e r a g e 3 . 2 6 3 . 2 6 3 . 1 8 3 . 0 3

Table 1. Performance, compared with other good LZ-77 compressors

Attempts to combine the two versions, switching according to data statistics, were
totally unsuccessful. It is easy to separate GEO as a special case, but much much
harder to detect that PIC needs the overrun coding. The two sets of results are
therefore just presented separately, with no attempt at a combined version.

The version described so far was only an initial attempt at incorporating vector
quantisation techniques; full quantisation allows for longer strings with continuation
after mismatches. A “fuller VQ” version was attempted, allowing multiple
mismatches and with phrases stopping on a sequence of fewer than about 5 matched
bytes. It gave an improvement of about 3% on the file GEO, but was 3–20% worse
for other files and will not be considered further. It is useful only where long
phrases differ only in one or two internal bytes, and few real files are like that.

594

5. Analysis of the differential LZ compression performance

Analysis of the performance of the differential Ziv-Lempel compressor, and in
particular the reasons for its slightly inferior performance compared with standard
compressors, led to some useful insights concerning the basic limits of LZ-77
compression. Initially we deal only with the new technique, and specifically the
version with phrase overruns, but the analysis is later extended to more-conventional
LZ-77 compression.

We start with [Table 2] containing some general statistics from the compression of
the file PAPER1 of the Calgary Corpus, using the diffLZ compressor. (The “output
bits” includes the End-of-File coding, which are not included in the displacement
and data values.)

Input bytes 53,161
Output bits 184,527
Displacement bits 98,590
Data bits 85,921
Total phrases 8,224
Avg. phrase length 6.46
Longest phrase 91

Frequencies of displacement lengths —
Length 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Frequ. 429 161 278 341 430 407 512 464 579 701 856 990 1061 1015

Table 2. Compression statistics, PAPER1

The average phrase length is 6.46 bytes, consisting of 1 terminal byte and 5.46 zero
bytes.

• The probability of a zero data byte is 5.46/6.46 = 0.845, with an entropy of
0.205 bits per byte.

• If we assume that there are 127 possible terminators for a text file (there are no
8-bit symbols in the file), any given code can occur with a probability of
1/(127×6.46) = 1/820 = 0.00121, requiring 9.68 bits to encode.

• From the actual distribution of significant bits (161 2-bit values, 278 3-bit
values, and so on), the best possible displacement coding appears to require 76,357
bits.

595

Encoding the whole file should then require —

phrase terminators 8224 at 9.68 bits 79,608 bits

phrase body (53161-8224) at 0.205 bits 9,212 bits

sub-total (Phrases) 88,820 bits

displacement 76,357 bits

TOTAL 165,177 bits

The phrases themselves actually need 85,921 data bits, which is 3.5% less than the
predicted 88,820. The difference arises because the terminating symbols are not
evenly distributed over the possible 127 values; some can be encoded more
efficiently, so reducing the overall number of code bits.

The displacement coding however requires 98,590 bits, which is 29% greater than
the apparent best coding; the average displacement length is 11.99 bits, compared
with the “ideal” of 9.28. The difference arises from the need to specify the
displacement length, as well as the value. In practice, the models absorb the
statistics on the component lengths and include it implicitly within the coding.

The displacements could be coded as the couple {length, value} with the most-
significant 1-bit omitted, giving an average displacement value of 8.28 bits. The
entropy of the lengths (using the frequencies of Table 2) is 3.64 bits, giving an
average displacement encoding length of 3.64+8.28 = 11.92 bits. The displacement
coding achieves 11.99 bits average length, which is within 0.6% of the ideal. It is
obvious that little improvement is possible.

6. The relevance of variable length codes

It is useful to consider the general relevance of variable-length integer codings, as
given in [Bell, Cleary and Witten, 1990]. These usually use some form of variable-
size overhead to allow small values to be coded compactly, but at the cost of less
efficient coding for large values which often need a larger overhead. This is
precisely the opposite effect of what we want for displacements! Most of the
displacements are large, and should be encoded with low overhead. The short
displacements, being infrequent, can be coded with larger overheads. Thus the
conventional variable-length codes are quite inappropriate for displacements. Very
long displacements predominate and even transmitting the raw 14-bit binary value is

596

relatively efficient in comparison with a compact coding of the displacement.

Precisely the opposite situation applies for encoding the phrase lengths in
conventional LZ-77 compression. The shorter phrases are much more frequent with
relatively little compression gain and must be coded as compactly as possible. The
longer phrases are less frequent, give much more benefit, and can be coded
inefficiently with little penalty.

7. Interpretation as an arithmetic code

Although the technique has been introduced as a derivative of LZ-77 compression, it
can be viewed as high context arithmetic compressor. An LZ-77 parse is used to
find the best following context including the next byte and the coder then emits from
this context, with 100% certainty, for as long as possible. This is in contrast to
conventional high-order arithmetic compression where we establish a preceding
context for each byte, and emit probabilistically from this context.

The output from any high order arithmetic compressor consists of two intermingled
data streams, one conveying data and one information on the contexts. Thus in a
compressor which allows escapes to lower order contexts, the code for every byte
must include the information “this is a symbol with some probability” (i.e. data) and
“this is not an escape” (context). Explicit escape codes will reverse these meanings.
While data in a high context arithmetic coder can be emitted at about 1 bit per byte
for many files, we often find that more information is required for context control.
Thus context management is more expensive than data encoding proper.

Exactly the same situation applies here. Because the LZ-77 parse establishes a
precise context, data can be emitted with zero cost – all of the coding is concerned
with context management. The normal “data encoding” uses about 0.2 bit/byte to
signal “continue in this context”. With some expense it notes the end of the phrase
and then requires a dozen or more bits to establish a new context, in all about 20 bits
to switch between contexts. The context management, rather than the data, sets the
compression performance.

8. Performance limits of standard LZ-77 compression

We can extend the above analysis to conventional LZ-77 compression. The

597

comparisons are somewhat “apples and oranges”, because the differential (or vector
quantising) compressor alters the definition of an LZ-77 phrase by always over-
running by one byte. We may also note the well-known effects of buffer size on
LZ-77 performance, which means that we might not always compare like with like.
There are also various subtle differences in details of the encoding, such as the
LZ3VL compressor coding displacements to the end of the phrase rather than to its
start, and considerable variations within files, so that the overall statistics might not
be completely representative. However, the calculations do appear to give a
reasonable indication of the possible performance of LZ-77 compression.

input literals phrases predicted displ disp len phr len
 bytes displ bits avg entropy entropy

BIB 111,261 7,928 14,279 165,132 11.565 2.898 3.247
BOOK1 768,771 38,179 142,028 1,656,514 11.663 2.874 2.951
BOOK2 610,856 31,167 89,544 1,005,560 11.230 3.076 3.347
GEO 102,400 24,829 23,316 239,324 10.264 3.228 1.383
NEWS 377,109 41,541 53,589 584,734 10.911 3.189 2.780
OBJ1 21,504 6,017 2,238 18,633 8.326 3.498 1.639
OBJ2 246,814 29,110 26,237 247,772 9.444 3.503 2.760
PAPER1 53,161 3,611 7,460 80,716 10.820 3.185 3.251
PAPER2 82,199 4,295 12,952 145,911 11.266 3.022 3.251
PIC 513,216 22,761 16,655 162,731 9.771 3.130 2.990
PROGC 39,611 3,226 5,081 51,914 10.217 3.343 3.304
PROGL 71,646 3,158 6,483 65,374 10.084 3.357 3.726
PROGP 49,379 2,629 4,290 41,079 9.576 3.436 3.525
TRANS 93,695 5,713 7,256 74,326 10.243 3.375 3.378

Table 3. Observed parameters from LZ-77 compression

An LZ-77 compressor (with greedy parsing, 2-byte minimum phrase length and 16
K buffer) was instrumented to report various statistics on compressing the files of
the Calgary Corpus, producing the results in [Table 3], with consequent predictions
given in [Table 4]. The two basic assumptions are –

1. The phrase is located by an actual displacement, rather than a position in some
complex data structure, and

 2.A phrase is encoded as the triple {length, displ_precision, displ_value}, where
the phrase length and displ_precision are entropy encoded and displ_value is
the actual bits following the most-significant 1 of the displacement.

598

This phrase encoding should be very close to the optimal coding of the phrase
definition. Conventional LZ77 encoding (more correctly LZ-SS) uses a flag bit to
indicate a literal or phrase; here we use a reserved length, most sensibly 1, and
encode a literal as {1, literal}. This coding is slightly less efficient for literals, but
saves one bit when encoding the usually more frequent phrases.

Much of the calculation parallels that given earlier for PAPER1. In more detail,
consider the file BIB which produced 7,928 literals and 14,279 phrases. The
weighted sum of the minimum displacement lengths gives a “predicted displ bits”
and the average displacement length. The entropy of the displacement lengths gives
the minimum cost of specifying the displacement lengths. The phrase length
entropy is similarly calculated from the distribution of phrase lengths.

The average length of a phrase is then 10.56+2.90+3.25=16.71 (omitting the most-
significant 1-bit of the displacement reduces the displacement length by 1, from
11.56 to 10.56). A literal is encoded as 8 bits plus information to specify one of
7,928 literals out of a total of 22,207 cases, or 8+log2(22,207/7,928) = 9.49 bits,
giving 75,205 bits for literals over the whole file. We predict a total of
16.71×14,279 phrase bits, giving a total of 313,807 bits and 2.82 bits per byte. The
best available compressor delivers 3.00 bits/byte, or 94% of the predicted limit.
Entropy-encoding literals might allow some more compression, but it is unlikely to
be significant because it is only the less-probable values which appear as literals —
the more-frequent ones, which would benefit from statistical coding, tend to appear
within phrases anyway.

Two points are apparent from this study. The first is that for most files one or other
of the LZ-77 compressors is within 10% of the apparent limit, with some being
within 5%. There appears to be little possible gain beyond what has been achieved
already in LZ-77 compressors. The new diffLZ compressor attains the predicted
limit for GEO.

The second point is that the phrase length is nearly constant. The average over the
whole corpus is 15.6 bits, with a standard deviation of 1.2 bits. Ignoring the binary
files gives a length of 16.0±0.6 bits. This gives a useful rule of thumb for LZ77
compression, that

an LZ77 phrase usually needs about 16 bits to encode.

What really varies between files is the average phrase length. Those with more long
phrases are more compressible and with more short phrases less compressible; the

599

cost of encoding a phrase is approximately constant. The main limitation is in the
coding of the displacement. This is essentially a large random number and not very
much can be done to optimise its coding.

pred avg pred total pred total pred limit best of LZB, perf. rel
phrase bits literal bits phrase bits bit per byte LZ3VL, diffLZ to limit

BIB 16.71 75,205 238,602 2.80 3.00 94%
BOOK1 16.49 390,907 2,341,758 3.56 3.65 97%
BOOK2 16.66 310,220 1,491,176 2.95 3.07 96%
GEO 13.88 222,353 323,510 5.33 5.34 100%
NEWS 15.88 381,985 850,993 3.27 3.47 94%
OBJ1 12.46 50,881 27,892 3.60 4.08 90%
OBJ2 14.71 259,865 385,868 2.62 2.92 89%
PAPER1 16.27 34,725 121,270 2.94 3.08 95%
PAPER2 16.54 42,974 214,213 3.13 3.23 97%
PIC 14.89 200,120 248,010 0.88 1.02 86%
PROGC 15.86 30,210 80,605 2.80 2.97 94%
PROGL 16.17 30,349 104,811 1.89 2.03 93%
PROGP 15.54 24,702 66,654 1.86 2.01 92%
TRANS 15.99 52,461 116,067 1.80 1.96 92%

Table 4. Predictions of best LZ-77 compression

An interesting observation is that the incompressible files tend to require fewer bits
to encode a phrase. Not only are their phrases shorter, requiring fewer length bits to
encode, but the shorter phrases are more likely to be matched closer to the current
position and with shorter displacements as well.

The deficiencies in the new compressor are, as might be expected, almost entirely in
the definition of the phrase length, although the data over-runs do reduce the number
of phrases and allow more efficient coding of infrequent literals.

9. Conclusions

We have described a novel combination of Ziv-Lempel, arithmetic and vector
quantisation to produce a text compressor of good general performance, and
excellent performance on some files. It is unique in that while based on LZ77
parsing, it has no explicit phrase length or literal encoding.

600

Investigations of the performance of this compressor led to a wider study of LZ77
compression and firm indications that text files cannot be compressed to better than
about 3.0 bits/byte with LZ77 compression. The best extant LZ77 compressors are
already very close to this predicted limit.

References

[Bell, Cleary and Witten, 1990] . T.C. Bell, J.G. Cleary, and I.H. Witten, Text
Compression, Prentice-Hall, Englewood Cliffs, NJ 1990

[Fenwick, 1993]. P. M. Fenwick, “Ziv-Lempel coding with multi-bit flags”, Proc Data
Compression Conference, DCC-93, Snowbird, Utah, Mar 1993

[Fenwick and Gutmann, 1994]. P.M. Fenwick and P.C. Gutmann, “Fast LZ77 String
Matching”, Dept of Computer Science, The University of Auckland, Tech Report 102,
Sep 1994

APPENDIX. The Gutmann fast string matching algorithm

A recent study by Gutmann has examined the performance of many string-matching
algorithms, from the very simple to very complex. He found that while it is easy to
devise extensive data structures to minimise the number of comparisons, it is only
too easy to lose out from the overheads of maintaining and traversing the data
structure. It may be better to use a simple structure with frequent, but inexpensive,
comparisons. His preferred algorithm is described here.

We maintain a conventional LZ buffer as a simple byte array. Pairs of adjacent
bytes are hashed and used to index a table which defines links through the array,
connecting byte pairs of like hash values. When looking for a string we hash the
first bytes of the string and then trace along the chain corresponding to that hash
value. The chain must include all occurrences of those first bytes (plus any others
which collide in the hash table). So far it is a standard simple LZ buffer.

Assume that at some stage we have a longest match of length λ, and are looking for
a string of length λ+1. As there is no benefit in considering any string with
length ≤ λ , we first look at the “mismatch” byte in position λ+1, one beyond the
known best length. If that byte does not match, the position cannot possibly give a
better match. If that byte matches, we then compare “half-match” bytes at about the
midpoint of the known best string. This byte is simply a representative candidate of
the strings. Only if the mismatch and half-match comparisons succeed do we do a
full byte-by-byte comparison of the two strings. If the match succeeds to length

601

λ+1, we then extend the match as far as possible.

1. Start of strings. Bytes may match, from hashing
2. Mismatch. Eliminate strings which cannot extend
3. Half-match. Verify that this may be the string

Known best
match, to
length λ4. Full comparison. Check that the strings really match

History
buffer

look-ahead
area

1. Start of strings

2. Mismatch test

3. Half-match test

4. Full comparison

Gutmann’s experiments show that about 50% of possible phrases are eliminated on
the mismatch test and that fewer than 10% survive the half-match as well and need a
full comparison. Testing a given candidate string then requires only the following
steps, most of which are simple and fast —

1. Check that this position is still valid (not beyond the end of the hash chain)

2. Compare the mismatch bytes

3. Compare the half-match bytes

4. Do a full comparison of the two strings

5. Step to the next position in the hash chain

A further refinement, which is not used here, is to select as the half-match byte one
with a low probability. This approximately halves the number of full comparisons
for files such as PIC and GEO.

602

