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Abstract: We describe new methods for the estimation of the bounds of the coe�cients
of proper divisors of integer polynomials in one variable. There exist classes of poly-
nomials for which our estimates are better than those obtained using the polynomial
measure or the 2-weighted norm.

1 Introduction

A main step in the process of factorization of integer polynomials in one variable
is the estimation of the moduli of the coe�cients of all possible divisors. Powerful
methods are the consideration of estimations using the measure of a polynomial
(cf. Mignotte [9]) and the use of weighted norms (cf. Beauzamy [3]).
We shall prove that there exist real polynomials for which sharper results may
be obtained working directly with the upper bound of the roots instead of the
measure. Such are, the polynomials with roots having moduli greater than one,
for example Hurwitz polynomials. Alternative results are obtained for the lower
bound.

We use the following standard notations:

IN = the natural numbers,
ZZ = the integers,
IQ = the rational numbers,
IR = the real numbers
IC = the complex numbers,

R[X] = the univariate polynomials on the domain R;
IN� = the nonzero natural numbers,
IR�

+ = the nonzero positive real numbers:

Let us suppose that

P (X) =
nX
i=0

aiX
i 2 IC[X] n IC;

and let z1; : : : ; zn 2 IC be the roots of P .
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There are several sizes associated with a polynomial P 2 IC[X]. Among them
we mention

the measure M (P ) = janj
nY
j=1

max(1; jzjj);

the height H(P ) = max
0�i�n

jaij;

the norm jjP jj=
vuut nX

i=0

a2i ;

the weighted l2 � norm [P ]2 =

vuut nX
i=0

a2i�
n
i

� :
The measure was introduced by K. Mahler [8] (cf. also E. Landau [7]), the

height was known to Cauchy [4], the norm corresponds to the euclidean norm
of the vector given by the coe�cients and the weighted norm was considered by
Bombieri [2].

If P 2 ZZ[X] n ZZ these sizes proved to be usefull for �nding bounds for the
coe�cients of the divisors. Let Q be a divisor of P from ZZ[X] and let T 2 IR�

+

be an upper bound for the coe�cients of all possible divisors Q, i.e. T is a bound
of the height of Q. A key step in factorization devices is the choice of a prime
p > T (or of a power of a prime ps > T ), which allows us to consider �rst the
factorization of the image of P in a �nite �eld. (See, for example ch. 7 from [10]).

Other sizes associated with P are

B = B(P ) = maxfjzjj; 1 � j � ng
and

A = A(P ) = minfjzjj; 1 � j � ng
If Q is a proper divisor of P in ZZ[X], then the coe�cients of Q are bounded by

max
0�j�h

janj
�
h

j

�
Bj ; (1)

where h = deg(Q) 2 f1; 2; : : :; n � 1g. (See a proof, for example, in the mono-
graph of A. G. Akritas [1].) We shall invoke this inequality for obtaining sharper
estimates for the moduli of the coe�cients of Q. For some classes of polynomials
they are better than those obtained using the measure or the l2 weighted norm.
We also obtain other related evaluations of H(Q) which depend on the size of a0
and of an auxiliary parameter � > 0.
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2 Evaluation of the height of Q vs upper bounds of the roots

We �rst prove two results about binomial coe�cients involved in the estimation
of the moduli of the coe�cients of Q.

Proposition 2.1 Let h 2 IN� and B 2 IR�
+, B � 1. Then

max
0�i�h

�
h

i

�
Bi =

8>><
>>:

Bh if h < B;

max(Bh ;

�
h

u

�
Bu); if h � B;

where u =
jB(h + 1)

B + 1

k
.

Proof. Because B � 1 one has�
h

0

�
B0 = 1 � Bh =

�
h

h

�
Bh: (2)

Therefore the maximum is equal to Bh or there exists u 2 f1; 2; : : :; h� 1g such
that

max
0�i�h

�
h

i

�
Bi =

�
h

u

�
Bu:

In this case we note that �
h

u

�
Bu �

�
h

u� 1

�
Bu�1 (3)

and �
h

u+ 1

�
Bu+1 �

�
h

u

�
Bu: (4)

>From (3) it follows that
B

u
� 1

h� u+ 1
;

therefore

u � (h+ 1)B

B + 1
: (5)

On the other hand, from (4) it follows that

B

u+ 1
� 1

h� u
;

therefore

u � Bh � 1

B + 1
: (6)

From (5) and (6) it follows that

Bh � 1

B + 1
� u � B(h + 1)

B + 1
:
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But
B(h + 1)

B + 1
� 1 =

Bh � 1

B + 1
. It follows that

B(h + 1)

B + 1
� 1 � u � B(h + 1)

B + 1
: (7)

>From (5) and (7) it follows that

u = bB(h + 1)

B + 1
c: (8)

>From relations (2) and (8) it follows that

max
0�i�h

�
h

i

�
Bi = max(Bh ;

�
h

u

�
Bu):

We now observe that h � bB(h + 1)

B + 1
c if and only if h � B. Indeed

h� B(h+ 1)

B + 1
=
h� B

B + 1
� 0 () h � B:

Now deal with case H � B.

If h < B, then Bh >

�
h

s

�
Bs for all s < h. Actually, for B > h and s < h we

have

Bh �
�
h

s

�
Bs = Bs

�
Bh�s �

h�s�1Y
i=0

h� i

i+ 1

�
: (9)

But
h � i

i+ 1
< h� i < h < B. Therefore

h�s�1Y
i=0

h� i

i+ 1
< Bh�s

and from (9) it follows that

Bh >

�
h

s

�
Bs:

Therefore if h < B, then

max
0�i�h

�
h

i

�
Bi = Bh:

Theorem 2.2 Let n 2 IN , n � 2 and B 2 IR�
+, B � 1. Then

max
1�h�n�1

( max
0�i�h

�
h

i

�
Bi) =

8>><
>>:

Bn�1 if n < B + 1;

�
n� 1j
Bn
B+1

k�B
�
Bn

B+1

�
if n � B + 1:
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Proof. For �xed h 2 f1; 2; : : : ; n� 1g let

C(h) = max
0�i�h

�
h

i

�
Bi:

We have to evaluate
max

1�h�n�1
C(h):

From Proposition 2.1 we know that

C(h) =

8>><
>>:

Bh if h < B;

max(Bh;

�
h

u

�
Bu); if h � B;

(10)

where u = bB(h + 1)

B + 1
c.

We �rst observe that that Bn�1 = max
1�i�n

Bi because B � 1.

On the other hand we compare C(h) and C(h� 1) and we consider

u =
jB(h + 1)

B + 1

k
and v =

j Bh

B + 1

k
:

to show that �
h

u

�
Bu �

�
h� 1

v

�
Bv: (11)

Indeed, we have
B(h + 1)

B + 1
� Bh

B + 1
=

B

B + 1
< 1;

so that
u� v � 1:

It follows that u = v or u = v + 1.
First case: u = v.

We observe that u 6= 0 because
B(h+ 1)

B + 1
� 1.

We have �
h

u

�
�
h � 1

u

� =
h

h� u
> 1

and therefore strict inequality in (11).
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Second case: u = v + 1.
In this case �

h

u

�
�
h� 1

u� 1

� =
h

u
� 1;

and again (11) holds.

Now we note that

B(h + 1)

B + 1
= h+

B � h

B + 1
� h if h � B:

Hence

h �
jB(h + 1)

B + 1

k
for h � B: (12)

It now follows from relation (11) that max
1�h�n�1

C(h) is realized for h = n� 1.

If n� 1 < B, then
max
h

C(h) = Bn�1

by Proposition 2.1.

If n� 1 � B, then

max
h

C(h) =

�
n� 1j
Bn
B+1

k�B
�
Bn

B+1

�

again by Proposition 2.1.

In Proposition 2.1 and Theorem 2.2 we considered B � 1. But with slight
modi�cations the same results hold for 0 < B < 1.

Proposition 2.3 Let h 2 IN� and B 2 IR�
+, 0 < B < 1. Then

max
0�i�h

�
h

i

�
Bi =

8>><
>>:

1 if h < 1

B
;

max(1;

�
h

u

�
Bu); if h � 1

B
;

where u =
jB(h + 1)

B + 1

k
.

Theorem 2.4 Let n 2 IN , n � 2 and B 2 IR�
+, 0 < B < 1. Then

max
1�h�n�1

( max
0�i�h

�
h

i

�
Bi) =

8>><
>>:

1 if n < 1

B + 1;

�
n� 1j
Bn
B+1

k�B
�
Bn

B+1

�
if n � 1

B
+ 1:
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Now we consider an application of Theorems 2.2 and 2.4 to the estimation of
the height of a proper divisor Q of P . Let K > 0 be a bound for B(P ).

Corollary 2.5 If 1 � K � n � 1 or
1

n� 1
< K < 1 then

H(Q) � janj
�
n� 1j
Kn
K+1

k�K
�
Kn

K+1

�
:

Proof. If 1 � K � n�1, we apply Theorem 2.2. For
1

n� 1
< K < 1 the estimate

follows from Theorem 2.4.

3 Limits for roots of polynomials with positive coe�cients

We next show that knowledge of upper bounds for the sizes associated with a
complex polynomial allows the determination of bounds of the coe�cients of the
divisors.

If we consider the bound (1) for the coe�cients of a divisor of degree h of P ,
then we are interested in obtaining sharper estimates of B. The usual estimates
relative to complex polynomials give evaluations that are too far from the best
bound.

But for real polynomials with all the coe�cients strictly positive the bound
B can be evaluated in a more convenient way, thanks to a result of Enestr�om
[5].

Theorem 3.1 Let P (X) =
Pn

i=0 aiX
i 2 IR�

+[X]. If x1; x2; : : : ; xn 2 IC are the
roots of P then

min
1�i�n

ai�1

ai
� jxjj � max

1�i�n

ai�1

ai
; 8j = 1; 2; : : :; n:

Proof. We �rst recall the key result of Enestr�om about polynomials with positive
real coe�cients.

Let Q(X) =
nX
i=0

biX
i 2 IR�

+[X] and let z1; : : : ; zn 2 IC be the roots of Q. Then

i) If b0 � b1 � : : : � bn > 0, then jzjj � 1 8j = 1; : : : ; n.
ii) If 0 < b0 � b1 � : : : � bn, then jzj j � 1 8j = 1; : : : ; n.

Next, note that the coe�cients of the polynomial

P�(Y ) = P (�Y ) =
nX
i=0

ai�
iY i 2 IR�

+[Y ];

where � > 0, satisfy

a0 � a1� � a2�
2 � : : :� ai�1�

i�1 � ai�
i � : : : � an�

n > 0
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if and only if

� � ai�1

ai
8i:

Taking

� = min
1�i�n

ai�1

ai

and letting y1; : : : ; yn 2 IC be the roots of P�, we therefore have

jyjj � 1; (j = 1; : : : ; n):

But yj =
xj

�
and therefore

jxjj � min
1�i�n

ai�1

ai
; 8j = 1; : : : ; n:

A similar argument, based on ii), shows that

jxjj � max
1�i�n

ai�1

ai
; 8j = 1; : : : ; n

which ends the proof.

Remark: Let P (X) = (�1)nanXn + : : : + a2x
2 � a1X + a0 2 IR[X], where

a0; a1; : : : ; an > 0. If x1; : : : ; xn are the roots of P then

min
1�i�n

jai�1
ai

j � jxjj � max
1�i�n

jai�1
ai

j; 8j = 1; 2; : : : ; n:

Indeed, the polynomialP (�X) satis�es the hypotheses of Theorem 3.1 and jxjj =
j � xjj for all j.

4 Height estimates vs lower bounds of the roots

EliminatingX from the relations P (X) = 0, Y = �X (where � > 0), one obtains
a new polynomial P�(Y ). From the study of factors of P� it is possible to derive
new evaluations for the heights of factors of P .

Proposition 4.1 Let P 2 ZZ[X] n ZZ, P (0) 6= 0, x1; : : : ; xn 2 IC the roots of P ,

and � � 1

min
1�j�n

jxjj . If Q(X) =
hX
i=0

biX
i 2 ZZ[X] n ZZ is a proper divisor of P

then

jbij � ja0j
�
h

i

�
�i for all i = 0; 1; : : : ; h� 1:
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Proof. Let Y = �X. We notice that yj = �xj (j = 1; : : : ; n) are the roots of the
polynomial

P�(Y ) = �nP (
Y

�
) = anY

n + an�1�Y
n�1 + an�2�

2Y n�2 + : : :+ a0�
n 2 IC[Y ]

and jyjj � 1 for all j.
We may suppose that x1; x2; : : : ; xh are the roots of the divisor Q. Therefore

y1; y2; : : : ; yh are the roots of the polynomial

Q�(Y ) = �hQ(
Y

�
) =

hX
i=0

b0iY
i = bhY

h +
h�1X
i=0

bi�
h�iY i 2 IC[Y ]:

As each jyjj � 1 it follows that

j b
0
i

bh
j = j

X
yu1yu2 : : : yui j �

�
h

i

�
jy1y2 : : : yhj =

�
h

i

�
j b0
bh
j�h: (13)

But b0i = �h�ibi. Therefore from (13) it follows that

jbij �
�
h

i

�
ja0j�i; (14)

which ends the proof.

Corollary 4.2 If all the roots of P are outside the unit disk then

jbij �
�
h

i

�
ja0j; for all i:

Proof. Let

� =
1

min jxjj ;
where x1; : : : ; xn 2 IC are the roots of P . But jxjj � 1 for all j, therefore � � 1.

The previous result gives now the desired estimate.

Remark: We obtained in [11] necessary and su�cient conditions for a poly-
nomial over the integers to have all roots outside the unit disk. Therefore it is
possible to know to which polynomials our corollary 4.2 may be applied.

Now we are able to evaluate the height of a proper divisor Q of P . Let L > 0
be a lower bound for A(P ).

Corollary 4.3 If
1

n� 1
� L � 1 or 1 < L � n� 1, then

H(Q) � ja0j
�
n� 1j
n

L+1

k�L�
�

n

L+1

�
:

Proof. This follows from Proposition 4.1, with reference to Theorem 2.2, The-

orem 2.4, and the proof of Corollary 2.5.
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5 Applications

Let P 2 ZZ[X] n ZZ, P (0) 6= 0. Let m1;m2;m3;m4 be the following estimates of
bounds heights of a proper polynomial divisor of P :

m1 =

�
n�
n
2

�
�
M (Specht, 1949)

m2 =
33=4 � 3n2
2
p
�n

[P ]2 (Beauzamy, 1992)

m3 = janj
�
n � 1j
Kn
K+1

k�K
�
Kn

K+1

�
(Corollary 2.5 of this paper)

m4 = ja0j
�
n� 1j
n

L+1

k�L�
�

n

L+1

�
(Corollary 4.3 of this paper);

where M is the measure, [P ]2 the weighted l2-norm,K is un upper bound for
the maxima of the moduli of the roots and L a lower bound for the minima of
the moduli of the roots.

We consider the polynomials

P1 = 2X7 � 2X6 + 3X5 � 4X4 + 5X3 � 7X2 + 9X � 12;

P2 = 28X7 + 19X6 + 13X5 + 9X4 + 6X3 + 4X2 + 3X + 2;

P3 = X6 + 2X5 + 4X4 + 5X3 + 6X2 + 7X + 9;

P4 = 3X7 + 4X6 + 6X5 + 9X4 + 13X3 + 19X2 + 13X + 19:

We notice that, for these polynomials, the estimates given by Corollary 2.5 (re-
spectively Corollary 4.3) are given by m3, respectively m4.

In the following table we compare the upper bounds of H(Q) obtained from
the four previous estimates, where Q is a possible proper divisor of P . The �rst
four columns contain the sizes involved in the estimates, and the other four give
the values of the estimates.

P M [P ]2 K L m1 m2 m3 m4

P1 6 11:369 1:5 1 420 145:627 151:875 420
P2 1 20:534 0:75 0:666 980 233:680 236:25 151:875
P3 9 9:775 2 1:666 180 69:302 80 66:122
P4 � 19 29:206 1:5 0:684 � 1995 332:046 227:812 1300:426

We note that the estimate m1 gives better results for polynomials with small
measure and small leading coe�cients. The estimate m2 gives good results for
broader classes of polynomials. The estimates m3 and m4 apply to polynomials
with strictly positive or non-zero alternate coe�cients. They are useful, for ex-
ample, in the study of polynomials with `small distances' between consecutive
coe�cients.
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Remark: In the original problem of factorization of a non-constant polynomial
P from ZZ[X] it is necessary to �nd a bound which exceeds not only H(Q), with
Q a proper divisor of P , but also janj.
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