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Abstract: Given a biconnected network G with n nodes and a speci�c edge (r; s) of G,

the st-numbering problem asks for an assignment of integers to the nodes satisfying the

following condition: r is assigned the number 1 and s is assigned the number n and all

other nodes are assigned numbers in such a way that every node (other than r and s) has

a neighbour with smaller st-number and a neighbour with larger st-number. Since st-

numbering exists i� G is biconnected, it serves as a powerful \local characterization" of

the \global" property of the network. We present an e�cient O(e) message complexity

and O(n) time complexity algorithm for st-numbering a biconnected graph.
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1 Introduction

In almost every application implemented in a distributed system, we often �nd it

necessary to use certain network functions such as traversal through the network,

learning of global information not initially known by the sites and determina-

tion of optimal routes between the sites. Such network functions, if available

at each site, will spare the application programs the pain of handling directly

information transfers and the associated controlling tasks. The algorithms for

such network functions are known as network algorithms or distributed graph

algorithms. Distributed graph algorithms are known for a wide variety of graph

problems. See [Raynal 1987][Leeuwen 1990] for a comprehensive discussion on

this topic.

In this paper we are concerned with the computation of st-numbering (to be

de�ned later) for a biconnected network. Informally, st-numbering is a numbering

scheme in which we number the vertices in such a way that every vertex has at

least one neighbour with a larger number and one neighbour with a smaller
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number associated with it. Such a numbering scheme not only gives a structural

characterization of the network but also enables one to identify internally vertex

disjoint routes between a pair of sites. In another paper, we have discussed the

application of st-numbers to construct the centered spanning tree studied in

[Cheston et al. 1989][Easwarakumar et al. 1994].

2 Model

Consider a distributed computing system consisting of a number of autonomous

processors interconnected through a network of communication links. The pro-

cessors do not share common memory, have no global clock and communicate

with each other only by passing messages. The interconnection network can

be modeled by an undirected communication graph G = (V;E) where nodes

correspond to the processors and the edges correspond to the bidirectional com-

munication links. When we look at G as a graph, we refer to elements of V as

vertices and when we look at G as a network, we refer to them as nodes. The

exchange of messages between two neighbouring processors is asynchronous. The

communication subsystem, we assume will deliver the message at its destination

without loss after a �nite but unbounded delay. The messages sent over any link

follow a FIFO rule. The messages received at any processor are transferred to

a common queue before being processed. Messages arriving at a node simulta-

neously from several neighbours may be placed in any arbitrary order in the

queue.

The following complexity measures are used to evaluate performances of dis-

tributed algorithms operating in the above network. The communication or mes-

sage complexity is the total number of messages sent during execution of the

algorithm. The time complexity is the maximum time passed from its start to

its termination, assuming that the time of delivering a message over each link

is at most one unit of time and the computation complexity at each node is

negligible. No time out of any sort is assumed and the bounded delay is assumed

only for evaluating the time complexity. The algorithm operates correctly with

any �nite arbitrary message-delivery time.

3 De�nitions and Properties

Let G(V;E) be a biconnected graph. The degree of a vertex v is the number of

vertices adjacent to v in G. An undirected edge from u to v is denoted by (u; v).
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Let n denote the number of vertices in the graph.

De�nition 2.1 For an edge (r; s) of a biconnected graph G, a one-to-one func-

tion g : V ! f1; 2; :::; ng is called an st-numbering with respect to (r; s) if the

following conditions are satis�ed.

1. g(r) = 1

2. g(s) = n

3. for every v 2 V � fr; sg there are adjacent vertices u and w such that

g(u) < g(v) < g(w).

It is well known that a graph is biconnected i� it admits an st-numbering

with respect to every edge[Even and Tarjan 1976][Ebert and Koblenz 1983].

De�nition 2.2 Let T be a DFS (Depth First Search) tree rooted at r. De�ne

level(v) =

(
0 if v is the root of T

level(father(v))+1 otherwise

De�nition 2.3 The height HEIGHT (T ) of a rooted tree is maxflevel(v)jv 2

V g.

The Depth First Search (DFS) tree of a graph G, splits the edge set of G

into two disjoint sets, the set of tree edges and the set of back edges. Denote a

tree edge (v; w) by v �! w and a back edge by v �! w. A path from v to w

consisting of zero or more edges is denoted by v
?
! w.

Remark:We usually imagine that the edges of the DFS tree are oriented \away"

or \downwards" from the root. Also, a non-tree edge can exist only between a

pair of vertices with one of them an ancestor of the other. That is why, the

non-tree edges are called back edges and we always assume that back edges are

oriented \upwards" or \towards" the root.

De�nition 2.4 De�ne DFS(v), where v 2 V , to be k if v is the k-th vertex to

be processed in the formation of the DFS tree. Clearly DFS(v) is the preorder

number of v in the DFS tree, T.

De�nition 2.5[Tarjan 1972] For all v 2 V ,

low(v) = min(fDFS(v)g [ flow(w)jv �! wg [ fDFS(w)jv �! wg).

De�nition 2.6[Ebert and Koblenz 1983] For all v 2 V de�ne

low child(v) =

(
w if v �! w and low(v) = low(w)

0 otherwise

For a given node, there may be more than one node which satis�es this
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de�nition. In such cases any arbitrary assignment is made. For example, in [Fig.

2], both G and D are candidates for the low child(F).

De�nition 2.7 For all v 2 V de�ne desc(v) to be the number of descendants of

v in the DFS tree, including v.

De�nition 2.8 For all v 2 V de�ne parent(v) to be the parent of v in the DFS

tree.

We now state some properties of DFS trees. Henceforth, we denote the DFS

tree by T and assume that T is rooted at the vertex r.

Lemma 1 [Tarjan 1972]: G is biconnected, i�

1. there is exactly one tree edge r �! u in the DFS tree T .

2. low(u) = DFS(r), and

3. low(w) < DFS(v) for all other tree edges v �! w.

Lemma 2 [Tarjan 1974]: There is a path v
?
! w in the DFS tree T i�

DFS(v) � DFS(w) < DFS(v) + desc(v).

Note, that in order to �nd an st-numbering with respect to (r; s), s should

not be the child of r in T . Therefore by lemma 1, (s; r) will be a back edge. This

is clear from the DFS tree in [Fig. 2], for the sample graph in [Fig. 1].
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Figure 1: A sample graph G
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Figure 2: The DFS tree T

De�nition 2.9 For all v 2 V de�ne

next1(v) =

(
w if low child(v) = w 6= 0

nil otherwise

De�nition 2.10 The graph de�ned by (V; f(v; next1(v)) : v 2 V g) is denoted

by G1 and it is clear that

{ G1 is a subgraph of DFS tree T .

{ G1 consists of paths called component paths.

Let x
?
! y be a component path. Then x is referred to as the head vertex and

y as the tail vertex. Note that, a vertex x is a head vertex i� the parent z of x

in the DFS tree satis�es the condition that next1(z) 6= x. That is, x is not the

low child(z). Clearly, a node y is a tail vertex if next1(y) = nil.
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Figure 3: The graph G1

Lemma 3[Ebert and Koblenz 1983]: If x
?
! y, is a component path in G1

the following assertions hold:

1. DFS(x) < DFS(v) for all v 6= x on x
?
! y.

2. low(x) = low(v) for all v on x
?
! y.

3. DFS(parent(x)) 6= low(x).

Proof: The proof follows from the de�nition [Section 2.9] of next1. 2

De�nition 2.11 Let P denote the path r = v0; v1; :::vt = s from r to s in the

DFS tree T . By an abuse of notation let P also denote the set of vertices in the

path P . Now de�ne for all v 2 V

next2(v) =

8><
>:
nil if v 2 P and v = vt

vi+1 if v 2 P and v 6= vt

next1(v) otherwise

De�nition 2.12 Again, consider the auxiliary graph G2 formed as follows.

G2 = (V; f(v; next2(v)) : v 2 V g)

Clearly G2 is also a subgraph of the DFS tree T and G2 consists of one or more

paths which we refer to as maximal paths. As in the case of G1 we can de�ne

head and tail vertex for the graph G2. Note that, P will appear as a maximal
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path in G2 and we refer the same as the trunk path.

See [Fig. 2][Fig. 3][Fig. 4] for a clear description of the above de�nitions.
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Figure 4: The graph G2

DESC

DESC

ASC

ASC
DESC

TRUNK

Lemma 4[Ebert and Koblenz 1983]: If x
?
! y, is a non-trunk maximal path

in G2 that is, x
?
! y 6= r

?
! s then the following assertions hold:

1. DFS(x) < DFS(v) for all v 6= x on x
?
! y.

2. low(x) = low(v) for all v on x
?
! y.

3. DFS(parent(x)) 6= low(x).

De�nition 2.13 For any node v 2 V , let dfs ch(v) denote the set of all children

of v in T , that is dfs ch(v) = fyjv �! yg. De�ne,

ch set(v) = dfs ch(v) � next2(v).

We have already noted that G2 is a subgraph of the DFS tree T .The following

lemma characterizes the edges of T that are not in G2.

Lemma 5: An edge (z; x) 2 T �G2 i� x is a head vertex of a maximal path and

z is its parent in the DFS tree T .

Proof: The result follows by the de�nition of next1 and next2. 2

De�nition 2.14 For every tail vertex v of G2 except s, there exists a back edge

of the form v �! z, where low(v) = DFS(z). Let t be that child of z, which is

an ancestor of v in the DFS tree T. Then t, is called the sign vertex of v and z

is the par sign vertex of v.

639



For example, in [Fig. 4], J is a tail vertex and low(J) is C. Therefore C is the

par sign vertex of J . T is that child of C which is an ancestor of J . Therefore

sign vertex of J is T .

Lemma 6: Every tail vertex except s has a sign vertex.

Proof: Let y 6= s be a tail vertex such that low(y) = DFS(z). Then, there exists

a back edge y �! z. Clearly, z is an ancestor of y. Therefore there exists a path

z
?
! y. Let x be the head node of the maximal path on which y lies. By lemma

4, low(x) = DFS(Z). Thus by lemma 1, there exists a vertex w 6= x such that,

z �! w
?
! x

?
! y is a path in T since y 6= s. Thus w is the sign vertex and the

lemma follows. 2

De�nition 2.15 De�ne head sum(u) for any u 2 V to be the sum of desc(x)

where x is a child of u and x is a head vertex.

By lemma 5, head sum(u) =
P

desc(x), where x 2 ch set(u).

4 Algorithm

4.1 Stage 1

The �rst stage of our algorithm is fully devoted to �nding the Depth �rst Search

numbers and other tree functions we introduced in the previous section. Specif-

ically, we compute DFS(v), low(v), low child(v), next1(v), parent(v), dfs ch(v)

and desc(v) for every node v. The DFS starts at the node r and chooses a node

other than s as the son of r. Thus r is the root of the DFS tree and the edge

(r; s) will be a back edge.

Our computation closely follows the DDFS algorithm presented in [Laksh-

manan et al. 1987][Cidon 1988]. The DDFS algorithms in [Lakshmanan et al.

1987][Cidon 1988] use the message TOKEN or DISCOVER to e�ect a forward

phase and a backward phase. Informally, the forward phase carries the message

from root to leaves and the backward phase does just the opposite.

In the forward phase, DFS(v) and parent(v) are computed by piggybacking

the DFS number of the sending node onto the TOKEN or DISCOVER message

while in the backward phase desc(v) and low(v) where v is the node sending

the message are piggybacked and low(v), low child(v), next1(v), dfs ch(v) and

desc(v) are computed. Also, the DFS number is piggybacked onto the VISITED

message.
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Stage 1 terminates at the root node r upon receiving the message DISCOVER

or TOKEN in the backward phase.

Basically, both next1 and next2 decompose the DFS tree into maximal paths.

The major (and only) di�erence is that next2 has the trunk path as one of its

maximal paths while the de�nition of next1 is independent of s. Thus, next1 may

be constructed explicitly while the DFS tree is built but next2 is (dynamically

and implicitly) constructed while the st-numbering is done.

4.2 Stage 2

In this phase, we label each maximal path as either ASC or DESC and the

trunk path as TRUNK. The intuitive idea behind such a task is to allocate the

st-numbers for the vertices in a maximal path in the increasing or decreasing

order (from head to tail) depending on its label (ASC, DESC or TRUNK). The

st-numbers for vertices in the TRUNK path will always be in the increasing

order.

In order to label the maximal paths in a meaningful way, we put the nodes

into one of the following 4 states

TRUNK

DESC

ASC

NORMAL

All the nodes will initially be in the NORMAL state. They will then move

into one of the three states (TRUNK, ASC, DESC).

The following messages are used in this stage:

TRUNK(l;m)

PROBE(c)

BEGIN

SIGN (c)

ECHO(c)

STN (p; q)

We also use the following state transition function called change which is

de�ned as follows

change(TRUNK) = DESC

change(DESC) = ASC

change(ASC) = DESC
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Stage 1 terminates at r and after the termination of stage 1, the root r will

initiate stage 2, by sending a message TRUNK(n; 0) to s via the back edge (s; r).

Then the node s sends BEGIN message to all its children in the DFS tree and

sends TRUNK(n - desc(s), desc(s)) to parent(s). Thus the second stage begins

with identifying the trunk path. The node s, which is the tail of the trunk path

initiates the task of identifying the trunk. We identify the nodes in the trunk

path by passing the TRUNK messages. In the message TRUNK(l;m) sent by a

node in the trunk path, l denotes the st-number assigned to the node receiving

the message and m denotes the number of descendants of the node sending the

message.

When a node u 6= s receives the TRUNK(l;m) message it will assign itself

the st-number l and move into the TRUNK state. It will then send TRUNK(l+

m�desc(u); desc(u)) to parent(u). Thereafter it sends a BEGIN message to every

child except next2(u). Thus we note that the TRUNKmessages, propagated from

s moves up and marks all the nodes of the trunk path and changes their states

to TRUNK and ends at the root. On its way up, it assigns the st-number for

each node and initiates the computation of head sum and propagates BEGIN

messages to all other non-trunk nodes. When a node receives the BEGIN message

from its parent it will pass on the BEGIN message to all its children in the DFS

tree. The receipt of the TRUNK or BEGIN message initiates the algorithm at

each node. When the root r receives the TRUNK message it simply changes its

state to TRUNK and does nothing.

Observe that, TRUNK messages, pass through only the trunk path while

BEGIN messages travel along other maximal paths. Also, once a node receives

the TRUNK or BEGIN message it knows whether it is on the trunk path or not

and can compute next2 and ch st. Thereafter it can compute head sum.

Our goal now, is to determine if a non-trunk maximal path is an ASC or

DESC path. Let x
?
! y be a maximal path. We stipulate that this path is an

ASC path if the state of sign vertex(y) is DESC and it is a DESC path if the

state of sign vertex is ASC or TRUNK. The justi�cation for such a labeling will

be given later.

Hence the tail vertex does the following

Step 1 Send messages to get the information on the state of sign vertex(y).

Step 2 Propagate using the state transition function \change", the new state

of all nodes on the maximal path along the maximal path to x and then to
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parent(x):

Step 1 is carried out as follows

When a tail node t receives the message BEGIN, it sends PROBE(1) to par sign vertex(t)

along the edge (t; par sign vertex(t)). Note that, by lemma3, par sign vertex(t)

can determine the sign vertex(t). After receiving PROBE(1), par sign vertex(t)

sends the message PROBE(2) to sign vertex(t). Recall that the sign vertex(t)

was initiated to NORMAL state. If it is in the NORMAL state it does not re-

spond to PROBE(2). If sign vertex(t) has changed to some other state (one of

TRUNK, ASC, DESC), it is ready to respond. Now sign vertex(t) sends the

message ECHO(c) to par sign vertex(t), which in turn sends the message to t.

Here c denotes the current state of sign vertex(t). In summary, t sends PROBE

message via par sign vertex(t) to x and x sends ECHO(c) message to t via

par sign vertex(t).

Step 2 is carried out as follows

When t receives the ECHO(c) message it sends SIGN(change(c)) to parent(t). It

also changes its state fromNORMAL to change(c). The SIGN(change(c)) travels

all the way up in the maximal path for which t is a tail and reaches the head

say h of the maximal path. From h, the message SIGN(change(c)) goes one step

further along the edge (h,parent(h)), and reaches the node parent(h). As the

SIGN(change(c)) message travels up from t to h, we keep updating the state to

change(c) for every node including h. This completes the description of stage 2.

Thus, at the end of stage 2, the parent(h) where h is the head node of a

maximal path, knows the state of h.

Lemma 7 A �nite time after r sends the TRUNK(n; 0) message nodes on the

path r
?
! s will receive the TRUNK message and all the other nodes will receive

the BEGIN message.

Proof: Obvious. 2

Lemma 8 A �nite time after r sends the TRUNK(n; 0) message every tail

node will change its state, and by that every node on the maximal path of that

tail node will change state.

Proof: By lemma 7, every tail node will receive the BEGIN message and all

trunk nodes would have received TRUNK message. Therefore, the state of the

trunk nodes would have changed to TRUNK. By lemma 6, every tail node has

a sign vertex. Thus, all the maximal paths x
?
! y where sign vertex(y) 2

TRUNK will change their state. Extending, all other maximal paths will also

change their state. 2
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Lemma 9 The state of all nodes on a maximal path changes according to the

state transition function \change" depending on the state of the sign vertex of

the tail vertex.

Proof: Obvious. 2

Lemma 10 A �nite time after r sends the TRUNK(n; 0) message, every node

which has child vertices which are head nodes will have received a SIGN message

from each of these nodes.

Proof: By lemma 7 and lemma 8, the result is easily proved. 2

4.3 Stage 3

For this stage of the algorithm each node computes two values i.e. ST LOW

and ST HIGH. The st-number assignment of nodes on the trunk is done when

the TRUNK message arrives while at all other nodes it will be done by STN

messages.

The new state that the nodes of a maximal path reach, indicates the direction

of assignment of the st-numbering along the maximal path. If the state of the

nodes are DESC then the st-number will be in descending order from head

vertex to tail vertex and in the other way for the nodes in ASC state. This stage

proceeds concurrently with stage 2.

4.3.1 Algorithm at trunk nodes

When a trunk node u receives the TRUNK(l;m) message it assigns itself the

st-number l. It then initialises st high to l�1 and st low to l+m�desc(u)+1. It

also sends TRUNK(l+m�desc(u); desc(u)) to parent(u). Whenever u receives a

SIGN message from a child v (which ought to be a head node of a maximal path),

u assigns v a chunk of st-numbers in the range [st high � desc(v) + 1:::st high]

by sending the STN (st high � desc(v) + 1; st high) message to v. It updates

st high to st high � desc(v). It repeats this procedure until it has received a

SIGN message from every child except the one on the trunk. At this point the

algorithm at this node terminates. For example, node F receives TRUNK(20; 3)

from G and sends TRUNK(17; 6) to C. F receives the SIGN(DESC) message

from D and sends D STN (18; 19).

Lemma 11 The algorithm at a trunk node u terminates.

Proof: The trunk node u receives a SIGN message after it receives the TRUNK

message, since for any non-trunk child v, of u, low(v) < DFS(u). Also low(v)
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points to an ancestor of u(lemma 1) and therefore the sign vertex does not

change state before u receives the TRUNK message. Thus, once u changes its

state it will receive SIGN messages from all its children which are head nodes.

As these messages are received u responds with an STN message. By lemma 10

u receives SIGN messages from all its children which are head nodes. 2

Lemma 12 When a trunk node assigns an interval of st-numbers to its non-

trunk (head node) child v in the DFS tree, the numbers are su�cient and granted

exclusively for all the nodes which are descendants of v

Proof: Observe that v receives an interval consisting of desc(v) numbers. 2

Lemma 13 The st-numbers assigned to the nodes on the trunk path will be in

increasing order with g(r) = 1 and g(s) = n.

Proof: Clearly, by the movement of the message TRUNK(n; 0) along the edge

(r; s) the st-number assigned to s will be n. Now, the st-number assigned to the

parent of a node u where u is on the trunk is n � desc(u). This can easily be

proved by induction on the nodes of the trunk. Thus, the st-number assignment

will be in decreasing order from s to r. By, lemma 1, r has exactly one child v in

the DFS tree which is on the trunk. Therefore desc(v) = n � 1. Thus g(r) = 1.

Hence the lemma. 2

4.3.2 Algorithm at other nodes

In general every non-trunk node will receive an interval or a continuous chunk

of numbers to be assigned to itself and to its descendants, so that the numbers

assigned satisfy the st-numbering properties. Thus, every node u will receive an

interval of the form [a; a+ desc(u)� 1] via the message STN (a; a+ desc(u)� 1)

from its parent in the DFS tree.

Now, let ch set(v) = fu1:::uk; u
0

1:::u
0

lg where state of ui 1 � i � k is ASC

and state of u
0

j 1 � j � l is DESC.

When u receives the message STN (p; q), it initialises two variables st high

to q and st low to p. If u is in the state ASC it sends the interval [st low +

head sum(u)+1:::st high] to next2(u) if next2(u) exists by sending the message

STN (st low + head sum(u) + 1; st high) along the edge (u; next2(u)). After

sending the interval, it updates st high to st low + head sum(u). If however, u

is in the state DESC it sends the interval [st low:::st high � head sum(u) � 1]

to next2(u) if next2(u) exists by sending the message STN (st low; st high �

head sum(u)� 1) along the edge (u; next2(u)) and updates st low to st high�

645



head sum(u).

Note that if u is a tail node then next2(u) will be nil and hence no interval

will be sent and no update will take place in this case.

Having sent the STN message to next2(u), u is ready to send intervals to the

members of ch set(u) once it receives SIGN messages from these nodes. After

u receives the SIGN (ASC) message from ui, it sends the interval [st high �

desc(ui) + 1:::st high] to ui by sending the message STN (st high � desc(ui) +

1; st high) along the edge (u; ui) and updates st high to st high�desc(ui). After

u receives the SIGN (DESC) message fromu
0

j it sends the interval [st low:::st low+

desc(u
0

j)� 1] by sending STN (st low; st low+ desc(u
0

j)� 1) to u
0

j along (u; u
0

j)

and updates st low to st low + desc(u
0

j).

After sending st-number intervals in the above fashion to all the members of

ch set(u), u will be left with an interval of unit size, that is st low = st high.

Now, u takes st low as its st-number and terminates.

For example, in [Fig. 5], the maximal paths with M and N as head nodes

will be in ASC state while the maximal paths with Q and T will be in DESC

state. We shall consider the algorithm at V . It receives STN (4; 15) from T . It

also receives SIGN(ASC) from its only child which is a head node, M . It sends

U the node which is on the same maximal path as V STN (4; 4). It sends M

STN (6; 15) and will be �nally left with the interval [5; 5] and assigns itself the

st-number 5.

The �nal st-numbering for the sample graph is in [Fig. 5].

Lemma 14 When a non-trunk node assigns an interval of st-numbers to its

(head node) child v in the DFS tree, the numbers are su�cient and granted

exclusively for all the nodes which are descendants of v

Proof: Obvious. 2

Lemma 15 The st-number of nodes in a maximal path x
?
! y will be in descend-

ing order from x to y, if the state of the nodes in the maximal path is DESC.

Proof: If the state of the node u is DESC, then the interval of st-numbers allot-

ted to its child node v in the maximal path is (st high� head sum� 1; st low)

where u and v lie on the maximal path. The interval retained for the node u

itself is (st high; st high� head sum) which is clearly larger than that allotted

to v. Since, the st-number allotted for u is from this interval, the result follows.

2
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Figure 5: The graph G2 with st-numbers assigned

Lemma 16 The st-number of nodes in a maximal path x
?
! y will be in ascending

order from x to y, if the state of the nodes in the maximal path is ASC.

Proof: Similar to lemma 15. 2

Lemma 17 The algorithm at non-trunk nodes terminates

Proof: By lemma 10, the node would have received all the required SIGN mes-

sages. Thus a non-trunk node which has received a STN message would have

sent a STN message to all its children in the DFS tree. Thus, it is easily proved

that the STN message reaches all the non-trunk nodes. 2

Lemma 18 The st-number interval assigned by a non-trunk node x to a child u

which is a head node, is greater than the st-number assigned to itself if the state

of u is ASC.

Proof: x sends the interval [st high:::st high�desc(u)+1] and reduces its range

to [st high�desc(u); st low] from which its own st-number is assigned. Also, by

lemma 12 the range of st-numbers available to x is su�cient. Thus the result

follows. 2

Lemma 19 The st-number interval assigned by a non-trunk node x to a child u

which is a head node, is lesser than the st-number assigned to itself if the state

of u is DESC.

Proof: By an argument similar to lemma 18 the result follows. 2
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Theorem 1

The algorithm correctly assigns st-numbers to the entire network.

Proof: By lemma 13, g(r) = 1 and g(s) = n and property 3 (def. 2.1) is satis�ed

by all internal nodes of the trunk path. By lemma 12, 14, 15 and 16 property

3 is satis�ed by all the internal nodes of non-trunk maximal paths and the st-

number range assigned is su�cient. It remains to show that every head and tail

node has a smaller and a larger neighbour. Consider a maximal path x
?
! y.

Let z denote the parent of x i.e. z = parent(x). Let p be the node such that

DFS(p) = low(x) = low(y) that is, p is the par sign vertex(y).

case 1: z is a trunk node.

By lemma 1 and 4 p should be an ancestor of z. Thus the state of all nodes on the

maximal path should be DESC(lemma 9). Clearly, the st-number range allotted

to x by z is less than the st-number assigned to z. Therefore st-number assigned

to x is less than that assigned to z. Also, the st-number range allotted to any of

z's ancestors on the trunk path is smaller than the st-number range allotted to

x. To be speci�c, st-number assigned to p is smaller than the st-number assigned

to y. Thus property 3 [see Section 2.1] is also satis�ed for x and y.

For example, in [Fig. 4], for the maximalpath with T as head node, parent(T )

C lies on the trunk path and B is the par sign vertex while C is the sign vertex

of U .

case 2: z is not a trunk node.

By lemma 18 and 19 property 3 [Section 2.1] is satis�ed for x. It remains to show

that it is satis�ed for y, the tail node.

Assume y is in the state ASC.

We shall prove that st-number of p is larger than y. Let u be the sign vertex of

y. By lemma 9, the state of u is DESC. Now, consider two cases

case a: p is on the same maximal path as u.

Clearly, the st-number range sent by p to u is smaller than the range retained

for itself. Since, (lemma 1 and 4) x and y are descendants of u, the result follows.

For example, in [Fig. 4], for the maximal path with Q as head node, W is the

parent(Q) and N is the par sign vertex while X is the sign vertex of I. Both N

and X lie on the same maximal path.

case b: p is not on the same maximal path as u

This implies that u is the head vertex of a maximal path with state DESC. p

is the parent of u and by lemma 19 the range of st-numbers assigned to u is less

than the st-number assigned to p. Thus by lemma 1 and 4 the result follows.
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For example, in [Fig. 4], for the maximal path with M as head node, V is

the parent(M ) and C is the par sign vertex while T is the sign vertex of J .

If y is in state DESC, u maybe in ASC or TRUNK. The proof for the case u

is ASC is similar to the proof given above. If u is in state TRUNK, then p also

must be on the trunk and clearly st-number of p is less than that of all vertices

in the maximal path, which all have u as an ancestor.

Therefore, by lemmas 11 and 17, the algorithm terminates correctly. 2

5 Complexity

The message and time complexity of stage 1 is 3�e and 2�n�2 respectively[Cidon

1988].

Let the number of trunk nodes i.e. nodes in the path r
?
! s be p. Let the

number of maximal paths x
?
! y 6= r

?
! s be q. Each trunk node will send a

TRUNK message and the total number of TRUNK messages will thus be p. On

every other edge of the DFS tree a BEGIN message is transmitted and therefore

the message complexity of this part of the algorithm is n. At every unit of time,

at least one more message is sent and therefore the time complexity is atmost n.

The probe/echo interaction will require 4 messages per tail vertex and the

total probe/echo message complexity is therefore 4 � q. Each non-trunk node

sends a SIGN message and this complexity is n� p. By an argument similar to

the above, the time complexity will in this case also be bounded by the message

complexity.

Each non-trunk node receives one STN message and therefore the total num-

ber of STN messages are n � p. The time complexity here also is bounded by

n� p.

The above complexity details are summarised in the following table.

message complexity time complexity

DFS tree 3 � e 2 � n� 2

TRUNK/BEGIN n n

PROBE/ECHO 4 � q 4

SIGN n� p n� p

STN n� p n� p

Table 1: Complexity
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Clearly the message bit complexity at any stage of the algorithm is O(logn).

Hence, we state the following theorem.

Theorem 2

The message complexity of the algorithm is O(e), the time complexity O(n) and

the message bit complexity O(log(n)). 2

6 Conclusions

This paper presents the �rst distributed algorithm for st-numbering a bicon-

nected graph. st-numbers are among the non-trivial node functions and is ex-

tensively used in a variety of graph problems including the planarity test[Even

1979]. Since a graph is biconnected i� it admits an st-numbering of its vertices, we

see that this function is a powerful characterization of the entire structure of the

network in terms of extremely simple local information. Such characterizations

are very critical in the context of distributed computing where the fundamen-

tal assumption is that every node knows only its neighbours and not the entire

network. Since every node has a smaller and a larger neighbour, it is easy to see

how one can construct internally vertex disjoint paths between a pair of given

vertices. Elsewhere, we show an interesting application of the st-numbers for

the centering of a spanning tree in a biconnected network[Easwarakumar et al.

1994][Aranha and Rangan 1994].
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