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Abstract: We introduce Wang cubes with colored faces that are a generalization of
Wang tiles with colored edges. We show that there exists an aperiodic set of 21 Wang
cubes, that is, a set for which there exists a tiling of the whole space with matching
unit cubes but there exists no periodic tiling. We use the aperiodic set of 13 Wang tiles
recently obtained by the �rst author using the new method developed by the second.
Our method can be used to construct an aperiodic set of n-dimensional cubes for any
n � 3.
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1 Introduction

Wang tiles are unit square tiles with colored edges. The tile whose left, right,
top and bottom edges have colors l; r; t and b, respectively, is denoted by the
4-tuple (l; r; t; b). A tile set is a �nite set of Wang tiles. Tilings of the in�nite
Euclidean plane are considered using arbitrarily many copies of the tiles in the
given tile set. The tiles are placed on the integer lattice points of the plane with
their edges oriented horizontally and vertically. The tiles may not be rotated. A
tiling is valid if everywhere the contiguous edges have the same color.

Let T be a �nite tile set, and f : ZZ2 ! T a tiling. Tiling f is periodic with
period (a; b) 2 ZZ

2 � f(0; 0)g i� f(x; y) = f(x + a; y + b) for every (x; y) 2 ZZ
2.

If there exists a periodic valid tiling with tiles of T , then there exists a doubly
periodic valid tiling, i.e. a tiling f such that, for some a; b > 0, f(x; y) = f(x +
a; y) = f(x; y + b) for all (x; y) 2 ZZ

2. A tile set T is called aperiodic i� (i) there
exists a valid tiling, and (ii) there does not exist any valid periodic tiling.

R. Berger in his well known proof of the undecidability of the tiling prob-
lem [2] refuted Wang's conjecture that no aperiodic set exists, and constructed
the �rst aperiodic set containing 20426 tiles. He shortly reduced it to 104 tiles.
Between 1966 and 1978 progressively smaller aperiodic sets were found by Knuth,
L�auchli, Robinson, Penerose and �nally a set of 16 tiles by R. Ammann. A dis-
cussion of these and related results is in chapters 10 and 11 of [6]. Recently, the
second author developed a new method for constructing aperiodic sets that is
not based on geometry, as are the earlier ones, but on sequential machines that
multiply real numbers by rational constants. This approach makes short and pre-
cise correctness arguments possible. He used it to construct a new aperiodic set
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containing only 14 tiles over 6 colors in [8]. The �rst author added an additional
trick in [3] and obtained an aperiodic set consisting of 13 tiles over 5 colors which
we will use here to construct an aperiodic set of Wang cubes.

General 3-D tilings have been extensively studied as applied to crystallo-
graphy and theoretical physics, see [7]. We introduce Wang cubes, the obvious
generalization of Wang tiles to three dimensions. A Wang cube is a unit cube with
colored faces. The cube with colors l; r; f; g; t; b at the left, right, front, back, top,
bottom faces, respectively, will be denoted by the six-tuple (l; r; f; g; t; b). A cube
set is a �nite set of Wang cubes. We consider 3-D tilings of the in�nite Euclidean
3-D space using arbitrarily many copies of the Wang cubes from the given cube
set. The cubes are placed on the integer lattice points of the space with their
sides oriented parallel to the xy; xz and yz coordinate planes. The cubes may
not be rotated. A tiling is valid if everywhere the contiguous faces have the same
color.

Let S be a cube set and f : ZZ3 ! S a 3-D tiling. Tiling f is periodic with
period (a; b; c) 2 ZZ

3 � f(0; 0; 0)g if f(x; y; z) = f(x + a; y + b; z + c) for every
(x; y; z) 2 ZZ

3. A cube set S is called aperiodic if

(i) there exists a valid 3-D tiling, and
(ii) there does not exist any valid periodic 3-D tiling.

Clearly, we can extend our de�nition to n-dimensionalWang cubes and n-dimensional
tilings.

A 3-D tiling f : ZZ3 ! S is called triply periodic if for some a; b; c > 0, and for
all x; y; z 2 ZZ we have f(x; y; z) = f(x+ a; y; z) = f(x; y + b; z) = f(x; y; z + c).

Note that in a plane every set of tiles that admits a periodic tiling also admits
a doubly periodic tiling. Similarly, in space the existence of a doubly periodic 3-D
tiling implies the existence of a triply periodic tiling. However, there are sets of
cubes that admit a periodic tiling but not any triply periodic tiling, for example,
sets W1 and W2 in Section 4.

In Section 2 we review the relation between sets of Wang tiles and sequential
machines, introduce the balanced representation of reals, and show how to con-
struct a sequential machine that implements the multiplication of a number in
balanced representation by a constant. These techniques are then used in Sec-
tion 3 to construct tile set T13 and prove its aperiodicity. We include Sections 2
and 3 not only to make this paper self-contained but because we need to use some
properties of the computations of the sequential machine corresponding to T13 in
the proof of our main result in Section 4. In the last Section we construct three
sets of cubes which are progressively less and less periodic. The �rst, W1, admits
tilings which are periodic in every non-horizontal direction. The second set, W2,
admits tilings that could be periodic in the vertical direction only. Finally, we
present our main result, an aperiodic set of 21 cubes over 7 colors.

2 Balanced representation of numbers, sequential machines

and tile sets

For an arbitrary real number r we denote by brc the integer part of r, i.e. the
largest integer that is not greater than r, and by frg the fractional part r� brc.
In proving that our tile set can be used to tile the plane we use Beatty sequences
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Figure 1: Sequential machine M3.

of numbers. Given a real number � its bi-in�nite Beatty sequence is the integer
sequence A(�) consisting of the integral parts of the multiples of �. In other
words, for all i 2 ZZ,

A(�)i = bi � �c:

Beatty sequences were introduced by S.Beatty [1] in 1926.
We use sequences obtained by computing the di�erences of consecutive ele-

ments of Beatty sequences. De�ne, for every i 2 ZZ,

B(�)i = A(�)i �A(�)i�1:

The bi-in�nite sequence B(�)i will be called the balanced representation of �.
The balanced representations consist of at most two di�erent numbers: If k �
� � k + 1 then B(�) is a sequence of k's and (k + 1)'s. Moreover, the averages
over �nite subsequences approach � as the lengths of the subsequences increase.
In fact, the averages are as close to � as they can be: The di�erence between l ��
and the sum of any l consecutive elements of B(�) is always smaller than one.

For example,

B(1:5) = : : :121212 : : :, B(1
3
) = : : :001001 : : : and B(8

3
) = : : :233233 : : : .

Now, we introduce sequential machines which de�ne mappings on bi-in�nite
strings. We will use them to implement multiplication of numbers in balanced
representation and later shown that they are isomorphic to set of tiles.

A sequential machine is a 4-tuple M = (K;�;�; 
) where K is the set of
states, � is the input alphabet,� is the output alphabet, and 
 � K�����K is
the transition set. Sequential machineM can be represented by a labeled directed
graph with nodes K and an edge from node q to node p labeled a; b for each
transition (q; a; b; p) in 
.

MachineM computes a relation �(M ) between bi-in�nite sequences of letters.
A bi-in�nite sequence x over set S is a function x : ZZ ! S. We will abbrevi-
ate x(i) by xi. Bi-in�nite sequences x and y over input and output alphabets,
respectively, are in relation �(M ) if and only if there is a bi-in�nite sequence s
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of states of M such that, for every i 2 ZZ, there is a transition from si�1 to si
labeled by xi,yi.

For a given positive rational number q = n
m , let us construct a sequential

machine (nondeterministic Mealy machine) Mq that multiplies a real number in
balanced representation B(�) by q. The states of Mq will represent all possible
values of qbrc � bqrc for r 2 IR. Because

qbrc � 1 � qr � 1 < bqrc � qr < q(brc + 1);

we have
�q < qbrc � bqrc < 1:

Because the possible values of qbrc � bqrc are multiples of 1

m
, they are among

the n+m� 1 elements of

S = f�
n� 1

m
;�

n� 2

m
; : : : ;

m� 2

m
;
m � 1

m
g:

S is the state set of Mq .
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Figure 2: Sequential machines M 1
2
and M 0

1
2

.

The transitions of Mq are constructed as follows: There is a transition from
state s 2 S with input symbol a and output symbol b into state s + qa � b, if
such a state exists. If there is no state s + qa � b in S then no transition from s
with label a; b is needed. After reading input : : : B(�)i�2 B(�)i�1 and producing
output : : : B(q�)i�2 B(q�)i�1, the machine is in state

si�1 = qA(�)i�1 �A(q�)i�1 2 S:

On the next input symbol B(�)i the machine outputs B(q�)i and moves to state

si�1 + qB(�)i � B(q�)i = qA(�)i�1 + qB(�)i � (A(q�)i�1 +B(q�)i)

= qA(�)i �A(q�)i
= si 2 S
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The sequential machine was constructed in such a way that the transition is
possible. This shows that if the balanced representation B(�) is a sequence of
input letters andB(q�) is over output letters, then B(�) and B(q�) are in relation
�(Mq).

Sequential machineM3 in Fig. 1 is constructed in this fashion for multiplying
by 3, using input symbols f0; 1g and output symbols f1; 2g. This means that B(�)
and B(3�) are in relation �(M3) for all real numbers � satisfying 0 � � � 1 and
1 � 3� � 2, that is, for all � 2

�
1

3
; 2
3

�
. Similarly, M1=2, shown in Fig. 2(a), is

constructed for input symbols f0; 1; 2g and output symbols f0; 1g, so that B(�)
and B(1

2
�) are in relation �(M1=2) for all � 2

�
0; 2

�
.

Our intention is to iterate sequential machines M3 and M 1
2
without allowing

M 1
2
to be used more than twice in a row. To assure that we modify M 1

2
by

introducing new input/output symbol 00 and changing its diagram to M 0

1
2

as

shown in Fig. 2(b). We also change the state 0 to 00 to make the sets of states
of M3 and M 0

1
2

disjoint. That allows us to view the union of M3 and M 0

1
2

as one

sequential machine M .

b

s t

a

Figure 3: The tile (s; a; b; t) corresponding to the transition s
a;b
�! t

There is a one-to-one correspondence between the tile sets and sequential
machines which translates the properties of tile sets to properties of computations
of sequential machines.

A �nite tile set T over set of colors CEW on east-west edges and set of
colors CNS on north-south edges is represented by sequential machine M =
(CEW ; CNS ; CNS; 
) where (s; a; b; t) 2 
 i� there is a tile (s; a; b; t) in T , see
Fig. 3.

Obviously, bi-in�nite sequences x and y are in the relation �(M ) i� there exists
a row of tiles, with matching vertical edges, whose upper edges form sequence
x and lower edges sequence y. So there is a one-to-one correspondence between
valid tilings of the plane, and bi-in�nite iterations of the sequential machine on
bi-in�nite sequences.

Clearly, the two conditions for T being aperiodic can be translated to con-
ditions on computations of M . Clearly, set T is aperiodic if (i) there exists a
bi-in�nite computation of M , and (ii) there is no bi-in�nite word w over CNS

such that (w;w) 2 [�(M ) ]+, where �+ denotes the transitive closure of �.

3 An aperiodic set of tiles

We say that the tile in Fig. 3 multiplies by q if aq + s = b+ t.
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Let denote by T3 and by T 1
2
the tile sets representing the sequential ma-

chines M3 and M 0

1
2

, respectively. Therefore, T3 and T 1
2
multiply by 3 or by 1=2,

respectively. The tile set T13 = T3 [T 1
2
, consisting of 13 tiles, is shown in Fig. 4.
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Figure 4: T13 | an aperiodic set of 13 Wang tiles

Now, we proceed to prove that T13 is an aperiodic set of tiles.

Theorem1. The tile set T13 is aperiodic.

1. We show that set T admits uncountably many valid tilings of the plane. For
any � 2 [1

3
; 2], from the input sequence B(�) the sequential machineM computes

output B(3�) if � 2 [1
3
; 2
3
] and output B[�

2
] if � 2 [2

3
; 2]. In the latter case, if

� 2 [1; 2] then output �
2
2 [1

2
; 1] can be encoded in alphabet f0; 10g and ifB �

2
� 2

3

the second application of M computes �
4
2 [1

3
; 1
2
] represented in alphabet f0; 1g.

In any case, the machine M can be applied again using the previous output as
input, and this may be repeated arbitrary many times.

On the other hand, if � 2 [1
3
; 2] there is input B(�

3
) or B(2�), that is in

relation �(M ) with B(�). Input sequence B(�
3
) is used for � � 1, and B(2�) for

� � 1. This can be repeated many times so M can be iterated also backwards.
Hence, for every bi-in�nite B(�); � 2 [1

3
; 2], there is a bi-in�nite iteration yielding

a tiling of the plane.
2. Now, we show that the tile set T does not admit a periodic tiling. Assume
that f : ZZ2 ! T is a doubly periodic tiling with horizontal period a and vertical
period b. We can inspect that there is no tiling for b = 1 or 2 so we can assume
that b � 3. Since no more than two consecutive rows of tiles can consist of tiles
from subset T1=2, we can assume without loss of generality that in row zero the
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tiles are from T3. Let ni denote the sum of colors on the upper edges of tiles
f(1; i); f(2; i); : : : ; f(a; i). Because the tiling is horizontally periodic with period
a, the \carries" on the left edge of f(1; i) and the right edge of f(a; i) are equal.

Therefore ni+1 = qini, where qi = 3 if tiles from T3 are used in row i and
qi =

1

2
if tiles from T1=2 are used. Because the vertical period of tiling is b,

n1 = nb+1 = q1q2 : : : qb:n1 :

Since tiles from T3 are used for i = 0, there are no 0's on the upper edges of the
�rst row and thus n1 6= 0. Hence, q1q2 : : : qb = 1. This contradicts the fact that
no nonempty product of 3's and 1

2
's can be 1.

We now show a property of valid tilings by T13 which we will need in the
next section.

Lemma2. On every valid tiling of the plane by T13 there exists arbitrarily long
horizontal sequences of tiles with 2 on the upper edge.

Proof. Let f : ZZ2 �! T13 be a valid tiling. For every i 2 ZZ let qi = 3 (qi =
1

2
)

i� T3 (T 1
2
, respectively) is used on row i. Let nN;i denote the sum of the upper

edges of tiles f(1; i); f(2; i); : : : f(N; i), for every N > 0 and i 2 ZZ. Because the
tiles on the i'th row multiply by qi, and because the di�erence between available
carries is at most 2, we have for every i 2 ZZ and N > 0,

jnN;i+1 � qi � nN;ij � 2:

Therefore, for every N;m > 0,

jnN;m � q0q1 : : : qm�1 � nN;0j � 2(1 + q0 + q0q1 + : : :+ q0 � : : : � qm�2) � 12m:

The last inequality follows from the fact that qiqi+1 � : : : � qi+j is always at most
6.

Let " be an arbitrarily small positive number. In the following we show that
for every large enough N there exists m such that nN;m

N
> 2�14". Consequently

the upper edges of tiles f(1;m); : : : ; f(N;m) must contain a long sequence of
2's. (On the average, only every 1=(14")'th symbol may be 1.)

Because log2 3 is an irrational number, the set fm log2 3 mod 1jm 2 ZZ+g
is dense in [0; 1]. This means that for any subinterval I � [0; 1] there exists a
number M such that 8x 9m <M , m positive, such that x+m log2 3 mod 1 2 I.
Let us choose I = [log2(2� 13"); log2(2� 12")], and let M be as above.

Let N > 12M (1 + log2 3)=" be so large that for every i 2 ZZ,
nN;i
N is at least

1=3 � ". This is possible because there cannot be three consecutive 0's on the
upper edges of the tiles on the valid tiling f . Now, choose x = log2(

nN;0
N

). There
exists a positive integer m < M such that x + m log2 3 � k 2 I, where k is a
positive integer not greater than M log2 3. This means that

2� 13" �
nN;0
N

3m

2k
� 2� 12":

Necessarily q0q1 : : : qm+k�1 =
3
m

2k
. Otherwise the product would be either at

most 3
m�1

2k+1
or at least 3

m+1

2k�1
. This would mean that

nN;0
N q0q1 : : : qm+k�1 � 1=3�2"

or � 12� 78". Because m+ k < M (1 + log2 3) we know that
�
�
�
nN;m+k

N
� q0q1 : : : qm+k�1 �

nN;0
N

�
�
� � 12(m + k)=N < ":
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So we would have either
nN;m+k

N < 1=3�" (a contradiction), or
nN;m+k

N > 12�79"

(a contradiction, if " is small). We conclude that q0q1 : : : qm+k�1 = 3
m

2k
, and

consequently

2� 14" �
nN;m+k

N
� 2� 11":

4 Wang cube sets
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Figure 5: Corresponding Wang tile and Wang cube in Example 1.

Example 1. We convert each tile from tile set T13 into a Wang cube by using
the edge colors at the corresponding vertical faces, and a uniform color on all
horizontal faces, see Fig. 5. Formally,

W1 = f(s; a; b; t; 0; 0) j (s; a; b; t) 2 T13g:

Given any period (a; b; c) 2 ZZ
3; c 6= 0, set W1 admits a 3-D tiling with period

(a; b; c). Indeed, we can choose any 2-D tiling f : ZZ2 ! T13 and de�ne 3-D tiling
g : ZZ3 !W1 by g(x; y; z) = f(x�bazc c; y�b

bz
c c). Clearly, g(x+a; y+b; z+c) =

g(x; y; c) for all x; y; z 2 ZZ.

Example 2. Now we construct Wang cube set W2 that admits tilings periodic
at most in one direction. We modify the construction from Example 1. to force
identical tilings at all horizontal levels, see Fig. 6. Formally, we de�ne

W2 = f(s; a; b; t; s; s) j (s; s; b; t)2 T13g

In every bi-in�nite computation of sequential machine M (corresponding to set
T13) a bi-in�nite sequence of bi-in�nite strings of states uniquely determines the
bi-in�nite sequence of bi-in�nite strings of inputs. Therefore in every valid 3-D
tiling g : ZZ3 ! W2 all horizontal levels are identical, i.e. g(x; y; z) = g(x; y; 0)
for all x; y; z 2 ZZ. Since every horizontal level simulates a 2-D tiling valid for
T13 and therefore is aperiodic, clearly, g is periodic with period (0; 0; 1), and its
multiples, but with no other period.
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Figure 6: Corresponding Wang tile and Wang cube in Example 2.

Finally, we construct a cube set that does not admit any aperiodic 3-D tiling.

Theorem3. There exists an aperiodic set of 21 Wang cubes over 7 colors.

Proof. We will modify a simpli�ed version of the cube set W2 from the pre-
vious example to prevent the periodicity of its tilings in the vertical direction.
According to Lemma 2, on any valid tiling by T13 there are arbitrarily long hori-
zontal blocks of tiles (00; 2; 1; 00) or (1

2
; 2; 1; 1

2
). We will prevent the periodicity by

simulating a simple cellular automaton (trellis automaton, see [4]) on blocks of
cubes corresponding to blocks of (00; 2; 1; 00) -tiles or blocks of (1

2
; 2; 1; 1

2
) -tiles.

We choose this cellular automaton so that its computations will have a period at
least as big as the size of its input, i.e. the size of the block of identical tiles. Now,
we proceed with technical details, � denotes the operation exclusive-or (addition
mod 2).

Let T9 = T13 � f(00; 2; 1; 00); (1
2
; 1; 1; 00); (1

2
; 2; 1; 1

2
); (00; 1; 1; 1

2
)g, and de�ne

W21 = A [B [ C, where

A = f((s; 1); a; b; (t; 1); (1; 1); (1; 1)) j (s; a; b; t) 2 T9g;

B = f((s; x); 2; 1; (s; y); (1; x); (1; x� y)) j s 2 f00;
1

2
g; x; y 2 f0; 1gg;

C = f((
1

2
; 1); 1; 1; (00; x); (0; 1); (0; 1)); ((00; 1)1; 1; (

1

2
; x); (0; 1); (0; 1)) j x 2 f0; 1gg:

First, we have simpli�ed the colors on the horizontal faces of cubes from W2

by coloring by 0 the faces of the cube that simulates the tiles (00; 2; 1; 00) and
(1
2
; 2; 1; 1

2
), and coloring by 1 all the other horizontal faces. Then we added a

second bit to the colors of all the faces except front and back. For 9 of the cubes,
simulating the tiles of T9, we have made the second bit always 1 so there are no
new cubes. The four cubes corresponding to the tiles (1

2
; 1; 1; 00) and (00; 1; 1; 1

2
)

di�er in the second bit in the right face which is the only one that can be either
0 or 1. Finally, for the tiles (00; 2; 1; 00) and (1

2
; 2; 1; 1

2
) we created 8 new cubes (4

for each tile) so that the second bits at the top and at the right face are arbitrary,
the second bit at the left face is the same as at the top, and the second bit at the
bottom is equal to the exclusive-or of the second bits at the top and at the right
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face. The values of the second bits in the four new cubes (vertical cuts) from B,
corresponding to each of the tiles, are shown in Fig. 7.
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0 01 1

0 0 1 1

0 00 01 11 1

Figure 7: The second bits in each four-tuple of the cubes from B

Since there must be large blocks of either (00; 2; 1; 00) or (1
2
; 2; 1; 1

2
) in each

2-D tiling valid for T13, which must match at all horizontal levels, there must
be arbitrary wide vertical bi-in�nite strips consisting entirely of cubes from B
bordered on left in each row by one cube from C. Our choice of bit values
guarantees that each row of the cubes in these strips simulates one step of the
computation of the trellis type cellular automaton each cell of which computes
the logical operation exclusive-or (or equivalently addition mod 2). Indeed, the
values of the \second bits" at each cube are �rst copied, half step to the left
(identity) and then the bottom bit is set to the exclusive-or of the left and right
bit (same as the left bit of the right neighbor). The whole cellular automaton
is deterministic (in the top-down direction) since the �rst right neighbor out of
the block has always new bit 1 in the left face. The neighbor on the left side is
always a cube from C and the value of the second bit in its right face is uniquely
determined.

Since it is well known (see e.g. [4]) that the exclusive-or cellular automaton
always repeats its initial value (string from f0; 1g?) in no less steps than the size
of input we conclude that every strip itself is periodic with a period not shorter
than its width. Since there are arbitrary wide strips no tiling admitted by W21

is periodic.
Clearly, every 3-D tiling admitted by W2 can be converted into a tiling ad-

mitted by W21, hence W21 is an aperiodic set of Wang cubes.
Set T13 requires 4 di�erent colors on the horizontal edges, and 5 di�erent

colors (states) on the vertical edges. Since we \split" two of the states (colors
of vertical edges) and use two bits for the colors of the horizontal faces the set
W21, requires 7, 4, and 4 distinct colors at faces parallel to yz, xz, and xy,
respectively. Since no rotation of the cubes is allowed max(7,4,4) = 7 distinct
colors is su�cient.
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