
A MARKOV PROCESS FOR SEQUENTIAL

ALLOCATION

C�at�alina S�tef�anescu 1

Abstract: We describe a Markov process which models the sequential allocation for
two adjacent tables coexisting in memory by growing towards each other. The tables
are expected to �ll at the same rate; random deletions and insertions are allowed.

1 Introduction

A widespread technique for representing two variable-size sequential lists in
memory is to store them in reverse order, so that list 1 expands to the right
and list 2 expands to the left. Over
ow occurs only when the total size of both
lists exhausts the available space.

D. E. Knuth proposed in [4] the following mathematical model: 
uctuations
in the tables are represented by a �nite sequence of insertion and deletion opera-
tions a1; a2; : : : ; an, where each ai 2 f1; 2g is interpreted with probability p as a
deletion and with probability 1� p as an insertion on top of stack ai. A deletion
from an empty list has no e�ect. Let l1 and l2 be the respective sizes of the ta-
bles during this process, k1 and k2 their sizes after the memory is full and m the
number of memory locations available. The process continues until l1 + l2 = m.
The purpose of this paper is to examine the dependence of max(k1; k2) on p and
m and to determine formul� for the probability distribution of (k1; k2).

2 A Mathematical Model

We introduce a �nite state Markov process modelling the random 
uctuations
in the adjacent tables. The set of states is

S = ffa; bg j 0 � a � b � m; 0 � a+ b � mg :

The system has nm states, where

nm =

mX
k=0

([k=2] + 1) =
�hm

2

i
+ 1

���m+ 1

2

�
+ 1

�
:

We label the states of the system in a manner similar to Cantor's diagonalization
method; state fa; bg comes before state fc; dg if a + b < c + d or a+ b = c + d
and a < c. The system is in state fa; bg if l1 = a, l2 = b or l1 = b, l2 = a.

We denote by fa; bg ! fc; dg a transition from state fa; bg to state fc; dg and
de�ne the transition probabilities according to the following deletion/insertion
rules :
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P (f0; 0g ! f0; 0g) = p and P (f0; 0g ! f0; 1g) = 1� p

P (fa; bg ! fc; dg) = 0 if c 62 fa� 1; a; a+ 1g or d 62 fb� 1; b; b+ 1g.

P (fa; bg ! fa; bg) = 1 if a+ b = m

P (fa; bg ! fa; bg) = p=2 if a = 0, b 6= 0, b 6= m

P (fa; bg ! fa� 1; bg) = p=2 if a 6= 0, a 6= b, a+ b 6= m

P (fa; bg ! fa� 1; bg) = p and P (fa; bg ! fa; b+1g) = 1� p if a = b 6= 0

P (fa; bg ! fa; b � 1g) = p=2 and P (fa; bg ! fa + 1; bg) = P (fa; bg !

fa; b+ 1g) = 1�p

2
if a 6= b, a+ b 6= m

Let km = [m=2] + 1. The process begins in the state f0; 0g when both lists
are empty and continues until the memory is full, that is until one of the last km
states with l1+ l2 = m is reached. Therefore we may regard each of these states
as an absorbing state; the states 1; 2; : : : ; nm � km are transient because they
certainly will not be occupied when the process stops (their limiting probability
is null).

We are interested in the limiting state probability of absorbing states which
represent the probability distribution of (k1; k2). They can be obtained from the
theory of canonical decomposition of matrices using a procedure of approxima-
tion of characteristic roots outlined in [1]. Since our transition matrix is large and
sparse we shall instead use the technique of the generating function described
in [2] to determine the asymptotic behavior of transition probabilities.

Let �(n) be the row vector with components �i(n), where �i(n) is the prob-
ability that the system will occupy state i after n transitions. Then

�j(n+ 1) =

nmX
i=1

�i(n)pij ; n = 0; 1; 2; : : :

and
�(n+ 1) = �(n)P; n 2 IN(1)

where P = (pi;j)1�i;j�nm is the transition probability matrix.
Let �(z) denote the z-transform of the vector �(n). From (1) we obtain

z�1[�(z)� �(0)] = �(z)P

and through rearrangement

�(z) = �(0)(I � zP )�1(2)

where I is the identity matrix of order nm. Let the matrix H(n) be the inverse
transform of (I � zP )�1 and H(n)[i; j] the element at the intersection of row i
and column j in H(n). Taking the inverse transform of (2) we obtain

�(n) = �(0)H(n)

Since the process begins in the �rst state the initial state probabilities are �(0) =
(1; 0; : : : ; 0), so that

�i(n) = H(n)[1; i]; 1 � i � nm:(3)
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R. Howard shows in [3] that H(n) = S+T (n), where the matrix T (n) represent-
ing the transient behavior of the process tends to zero as n becomes very large.
The stochastic matrix S is the steady-state component that arises from a term
of (I � zP )�1 of the form 1=(1 � z). The i-th row of S represents the limiting
state probability distribution that would exist if the system were started in the
i-th state.

The last km rows of matrix P are the vectors enm�km+1; : : : ; enm from the
canonical base of IRnm , therefore we can express P as

P =

�
A B
0 I

�

where the region 0 consists entirely of zeroes, I is the identity matrix of km
dimension, A 2 Mnm�km(IR[p]), B 2 Mnm�km;km(IR[p]). (Here IR[p] denotes
the ring of real polynomials in the variable p.)
Hence we obtain

I � zP =

�
I � zA �zB

0 (1� z)I

�
:

>From Laplace's rule we have

det(I � zP ) = det(I � zA) � det((1� z)I) = (1� z)km eQ(z; p)
where we have denoted det(I � zA) = eQ(z; p) 2 IR[z; p], degp eQ(z; p) = nm�km.

Lemma1. The relation eQ(1; p) 6= 0 holds true.

Proof. In any �nite Markov chain the probability that after n steps the process
is in an ergodic state tends to 1 as n tends to in�nity. The (nm�km)�(nm�km)
matrix A concerns the process as long as it stays in transient states, hence its
powers tend to 0. We consider the identity

(I �A) � (I +A+A2 + � � �+An�1) = I �An;

whose right side tends to I . Thus, for su�ciently large n, the determinant of the
matrix I �An must be non-zero, therefore the determinant of the matrix I �A
cannot be zero.
But eQ(1; p) = det(I �A), so that eQ(1; p) 6= 0, which completes the proof.

Let Ri = limn!1 �i(n) be the probability of an absorption in the state
i when the system has started from state 1. From (3) it follows that Ri =
limn!1H(n)[1; i]. Now we are able to prove the following

Theorem 2.1 There exist Q(p) 2 IR[p] and Qi(p) 2 IR[p], nm � km � i � nm,
with degQ = nm � km, degQi < nm � km such that

Ri =
Qi(p)

Q(p)
; i = nm � km + 1; : : : ; nm:
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Proof. Let Mi be the matrix obtained from matrix I � zP by deleting the �rst

column and the i-th row. Therefore det(Mi) = (1�z)km�1 eQi(z; p) for nm�km �

i � nm, where eQi(z; p) 2 IR[z; p], degp eQi(z; p) < nm � km. We have

(I�zP )�1[1; i] =
(�1)i+1detMi

det(I � zP )
=

(�1)i+1(1� z)km�1 eQi(z; p)

(1� z)km eQ(z; p) =
(�1)i+1 eQi(z; p)

(1� z) eQ(z; p)
which is a function of z with a factorable denominator. By partial fraction ex-
pansion

(�1)1+i eQi(z; p)

(1� z) eQ(z; p) =
Ti(p)

1� z
+
Si(z; p)eQ(z; p)

where Ti(p) is a rational fraction in the variable p. It follows that

Ti(p) eQ(z; p) + (1� z)Si(z; p) = (�1)i+1 eQi(z; p):

For z = 1 we obtain Ti(p) eQ(1; p) = (�1)i+1 eQi(1; p). Since by lemma (1) eQ(1; p) 6=
0, we have

Ti(p) = (�1)i+1
eQi(1; p)eQ(1; p) ; nm � km < i � nm:(4)

Let us make the notation Qi(p) = (�1)i+1 eQi(1; p) and Q(p) = eQ(1; p). Since
H(n) is the inverse transform of (I�zP )�1 and Ri = limn!1H(n)[1; i], we have
from [3] that Ri equals the coe�cient of 1

1�z
in the expansion of (I � zP )�1[1; i]

and therefore Ri = Ti(p). Now by (4) we have the desired representation of Ri.

In an absorbing chain the limiting probabilities of the transient states are
zero, therefore the sum of the absorption probabilities is 1. Since the states
fl1; l2g with l1 + l2 are absorbing, it follows that

Pnm
i=nm�km+1

Ri = 1. But

Ri; nm� km < i � nm are the limiting probabilities of the states fk1; k2g, hence
we have obtained a representation of the distribution of (k1; k2) depending on p.

3 Examples

In [4] Knuth mentions the probability distribution of (k1; k2) for m = 4 and
notes that the di�erence between k1 and k2 tends to increase as p increases.
We shall further analyze the case m = 5. The ordered set of states is S =
ff0; 0g; f0; 1g; f0; 2g; f1; 1g; f0; 3g; f1; 2g; f0; 4g; f1; 3g; f2; 2g; f0; 5g; f1; 4g; f2; 3gg.
The transition probability matrix is
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P =

0
BBBBBBBBBBBBBBBBB@

p 1� p 0 0 0 0 0 0 0 0 0 0
p
2

p
2

1�p
2

1�p
2

0 0 0 0 0 0 0 0
0 p

2

p
2

0 1�p
2

1�p
2

0 0 0 0 0 0
0 p 0 0 0 1� p 0 0 0 0 0 0
0 0 p

2
0 p

2
0 1�p

2

1�p

2
0 0 0 0

0 0 p

2

p

2
0 0 0 1�p

2

1�p

2
0 0 0

0 0 0 0 p

2
0 p

2
0 0 1�p

2

1�p

2
0

0 0 0 0 p

2

p

2
0 0 0 0 1�p

2

1�p

2

0 0 0 0 0 p 0 0 0 0 0 1� p
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCA

:

The quantities R10; R11; R12 are the limiting probability distribution of states
f0; 5g; f1; 4g; f2; 3g. We have

eQ(1; p) = �
(p4 � 17p3 + 68p2 � 96p+ 64)(p� 1)5

64
;

eQ10(1; p) =

������������������

p� 1 0 0 0 0 0 0 0 0
1� p

2

p�1

2

p�1

2
0 0 0 0 0 0

�p

2
1� p

2
0 p�1

2

p�1

2
0 0 0 0

�p 0 1 0 p� 1 0 0 0 0
0 �p

2
0 1� p

2
0 p�1

2

p�1
2

0 0
0 �p

2

�p

2
0 1 0 p�1

2

p�1

2
0

0 0 0 �p

2
0 1� p

2
0 0 p�1

2

0 0 0 �p

2

�p

2
0 1 0 0

0 0 0 0 �p 0 0 1 0

������������������

=
(p3 � p2 + 4)(p� 1)5

64
;

eQ11(1; p) =

������������������

p� 1 0 0 0 0 0 0 0 0
1� p

2

p�1

2

p�1

2
0 0 0 0 0 0

�p

2
1� p

2
0 p�1

2

p�1

2
0 0 0 0

�p 0 1 0 p� 1 0 0 0 0
0 �p

2
0 1� p

2
0 p�1

2

p�1
2

0 0
0 �p

2

�p

2
0 1 0 p�1

2

p�1

2
0

0 0 0 �p

2
0 1� p

2
0 0 p�1

2

0 0 0 �p

2

�p

2
0 1 0 p�1

2

0 0 0 0 �p 0 0 1 0

������������������

= �
(3p3 � 16p2 + 25p� 20)(p� 1)5

64
;
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eQ12(1; p) =

������������������

p� 1 0 0 0 0 0 0 0 0
1� p

2

p�1

2

p�1

2
0 0 0 0 0 0

�p

2
1� p

2
0 p�1

2

p�1

2
0 0 0 0

�p 0 1 0 p� 1 0 0 0 0
0 �p

2
0 1� p

2
0 p�1

2

p�1
2

0 0
0 �p

2

�p

2
0 1 0 p�1

2

p�1

2
0

0 0 0 �p
2

0 1� p
2

0 0 0
0 0 0 �p

2

�p
2

0 1 0 p�1
2

0 0 0 0 �p 0 0 1 p� 1

������������������

=
(p4 � 15p3 + 53p2 � 71p+ 40)(p� 1)5

64
:

Therefore

R10 =
p3 � p2 + 4

p4 � 17p3 + 68p2 � 96p+ 64
;

R11 = �
3p3 � 16p2 + 25p� 20

p4 � 17p3 + 68p2 � 96p+ 64
;

R12 =
p4 � 15p3 + 53p2 � 71p+ 40

p4 � 17p3 + 68p2 � 96p+ 64
:

Form = 6 the Markov chain has 16 states and the quantitiesR13; R14; R15; R16

represent the limiting probability distribution of the absorbing states f0; 6g; f1; 5g; f2; 4g; f3; 3g.
Similar calculations lead to

R13 = �
p4 � 5p3 + 4p2 � 4

2(p6 � 9p5 + 44p4 � 120p3 + 192p2 � 160p+ 64)
;

R14 =
3p4 � 16p3 + 41p2 � 44p+ 24

2(p6 � 9p5 + 44p4 � 120p3 + 192p2 � 160p+ 64)
;

R15 =
p6 � 9p5 + 45p4 � 125p3 + 196p2 � 160p+ 60

2(p6 � 9p5 + 44p4 � 120p3 + 192p2 � 160p+ 64)
;

R16 =
p6 � 9p5 + 41p4 � 104p3 + 151p2 � 116p+ 40

2(p6 � 9p5 + 44p4 � 120p3 + 192p2 � 160p+ 64)
:

As p! 1 we obtain R10 = 1=5; R11 = R12 = 2=5 for m = 5 and R13 = R16 =
1=6; R14 = R15 = 2=6 for m = 6, which shows that in both cases the distribution
of k1 becomes uniform when p approaches unity.
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