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Abstract: A molecular computational procedure in which manipulation of DNA strands
may be harnessed to solve a classical problem in NP - the directed Hamiltonian path
problem - was recently proposed [Adleman 1994, Gifford 1994].  The procedure is in effect
a massively parallel chemical analog computer and has a computational capacity
corresponding to approximately ≈  105 CPU years on a typical 10 MFLOP workstation.  In
this paper limitations on the potential scalability of molecular computation are
considered.  A simple analysis of the time complexity function shows that the potential of
molecular systems to increase the size of generally solvable problems in NP is
fundamentally limited to ≈  102.  Over the chemically measurable picomolar to molar
concentration range the greatest practical increase in problem size is limited to ≈  101.
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1 Introduction

The (directed) Hamiltonian Path Problem (HPP), first proposed by William
Rowan Hamilton, is one of the most troublesome problems in Graph theory.  Very
similar to the Euler path problem, it may be stated as follows:  for a graph G with
vertices vi, and edges eij, is there a path which starting and ending at specified

vertices, visits each remaining vertex once and only once?
   A trial and error approach is theoretically possible but proves impossible in
practice for all but the smallest graphs;  the number of paths which it is necessary
to check simply grows too rapidly.  In fact the HPP problem belongs to a class of
problems called NP-complete, which rapidly become too complex to be solved by
standard (deterministic) computers.
   Problems of this nature are of considerable importance in computer science.
There was therefore considerable interest in a recent report by Adleman which
suggested that modern laboratory techniques of molecular biology could be
employed to manipulate strands of DNA so as to solve the HPP [Adleman 1994].
A subsequent study has suggested how the method may be adapted for the
solution of another classical problem in NP - the "satisfiability" or SAT problem
[Lipton 1995].
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   Adleman's insight lay in exploiting the parallelism inherent in chemical
systems to yield a massively parallel analog computer, in a brute force approach
to solving complex problems in NP.  However, while it was noted that chemical
systems - and thus molecular computers - can be easily scaled in size, the
fundamental question of the scalability of problems solvable by molecular
computation was left open.  This paper addresses this central issue and, because
the discussion draws on the diverse disciplines of molecular biology and
computer science, begins with a brief review of both problem classification and
Adleman's experiment.

1.1 Classification of Problem Complexity

Time complexity functions describe how the cost of solving a problem grows on
increasing the size (or input length), n, of the problem.  Computer scientists
recognize two distinct classes [Garey and Johnson 1979].  Algorithms for which
the time complexity function is O(p(n)), where p(n) is a polynomial in n, are
termed polynomial time algorithms, whereas algorithms with no polynomial bound
on their complexity are called exponential time algorithms.  There is a remarkable
difference in growth rates between polynomial and exponential algorithms [Fig.
1].
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Figure 1:  Time complexity functions for some polynomial (n, n2, n3, n4) and
exponential (2n, 3n, 4n) functions as a function of problem size, n.
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Problems with polynomial algorithms are considered "good", whereas problems
which are so difficult that no polynomial time algorithm can solve them are
termed "intractable".
   The theory of NP-completeness is concerned with decision problems.
Informally, a decision problem Π  is said to belong to the class P if there exists a
Deterministic Turing Machine (DTM) program which solves the problem in
polynomial time.  Non-deterministic computation differs from deterministic
computation in that a solution is exhaustively guessed and then checked.  If a
correct solution to a decision problem can be checked in polynomial time, then
that problem is said to belong to the class NP (Non-deterministic Polynomial
time).  Since problems which can be solved deterministically in polynomial time
can also be guessed non-deterministically and checked in polynomial time, we
can write P ⊆  NP [Fig. 2].  It is not known whether this inclusion is proper, that is
whether NP\P is occupied.
   A practical difficulty with problems in NP is that their time-complexity with a
deterministic algorithm is exponential.  Thus problems in NP are intractable with
deterministic machines.
   Certain problems in NP have the property that all other problems in NP may be
polynomially reduced to them, and are termed NP-complete.  If a polynomial
time algorithm can be found for any member of this equivalence class then one
can be found for all problems in NP.  In other words, if for any (problem) Π  ∈ 
NP-complete, then Π  ∈  P if and only if P = NP.  Problems ∈  NP-complete may
be regarded as the hardest problems in NP.  The relationship between P, NP and
NP-complete is illustrated below

Exponential 

NP

P 

NP-Complete 

Figure 2:  Classification of problem complexity

Not surprisingly the class of NP-complete problems has been the focus of
considerable attention; including some recent ideas on "Quantum Computers"
[DiVincenzo 1995] which could in principle solve NP problems in polynomial
time.  Several classical problems such as the Hamiltonian Path problem, the
satisfiability problem have been shown to be NP-complete.  For a more complete
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discussion of these points the reader is referred to the work of Garey and Johnson
[Garey and Johnson, 1979].

1.2  Molecular Computation and the HPP

The following is a simple non-deterministic algorithm for solving the HPP
[Adleman 1994]:

(Step I) generate random paths in the graph
(Step II) keep only those paths with begin and end at the specified 

vertices.
(Step III) for an n vertex graph keep only those paths with n vertices.
(Step IV) keep only those paths which visit each vertex once.
(Step V) if any paths remain then those paths are Hamiltonian and the

answer to the HPP is "Yes".  Otherwise "No".

Adleman demonstrated, using a graph small enough to be solved by visual
inspection [Fig. 3], that DNA could be used to solve the Hamiltonian Path
Problem (∈  NP-complete).
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Figure 3:  The directed graph used by Adleman.  For vin=0 and vout=6 the edges 0-
1, 1-2, 2-3, 3-4, 4-5, 5-6, define a Hamiltonian path.

20-mer oligonucleotides were associated with each vertex vi in the graph.
Oligonucleotides representing edges eij, linking vertices vi and vj, consisted of
the 3' 10-mer of vi and the 5' 10-mer of vj [Fig. 4].  The highly specific binding of

nucleotides A with T and C with G are such that strands which are Watson-Crick
complementary to vi, denoted vi , serve to link compatible edges [Fig. 4].  Thus,

ligation reactions can only generate nucleotide polymers corresponding to random
paths on the graph.
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   Step I is the most critical step in the algorithm as it is essential that all paths
be explored, a task with exponential time complexity on a deterministic machine.
Adleman addressed this by employing 50 picomole quantities of nucleotides
corresponding to edges and the Watson-Crick complement of vertices.  While 50
picomole quantities are minute in chemical terms, the parallelism of chemical
systems is such that they correspond to > 1013 copies of each edge and vertex -
presumed sufficient to ensure that polymers corresponding to all paths in the
graph are generated.

GCTATTCGAG   CTTAAAGCTA

CGATAAGCTC   GAATTTCGAT

GTATATCCGA   GCTATTCGAG   CTTAAAGCTA   GGCTAGGTAC

v 3

v 3

e 2-3 e 3-4

5'-3'

3'-5'

5'-3'

(a)

(b)

(c)

Figure 4:  (a) DNA strand corresponding to vertex v3 .  (b) Watson-Crick

complement of vertex v3 .  (c) strands corresponding to edges e23  and e34 .

Nucleotide specificity in binding (A-T and C-G) ensures that vertex v3  serves to
bind edges e23 and e34.

   The remaining steps (II-V) in the algorithm were executed using standard
laboratory techniques.  Polymers corresponding to paths between the specified
starting vertex (v0) and finishing vertex (v6) were selected (Step II) and

amplified (i.e. concentration increased) by using the polymerase chain reaction
(PCR).  Argose gel electrophoresis was used to identify those polymers
corresponding to paths involving n (= 7) vertices (Step III), and the product was
again amplified using the PCR.  Step IV was implemented using affinity
purification for oligonucleotide sequences corresponding to vertices 1, 2, 3, 4, 5
and 6.  Any remaining polymer must correspond to a Hamiltonian path, and a
suitably primed PCR was employed to detect and amplify any such polymer.

2. Scalability of Molecular Computation
2.1  Computational Capacity of Molecular Computers

In Adleman's original paper the question of the scalability of problems solvable
by molecular computation was left open [Adleman 1994].  The system contained
14 edges, each represented by 50 picomoles of nucleotide, corresponding to a
total of 5 x 1014 edge nucleotides.  Associating each nucleotide binding with a
computation, Adleman's molecular system yielded a total of ≈  1 0 1 4
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computations.  Concentrations could easily be scaled to yield ≈  1 0 2 0

computations [Adleman 1994], which may be easily shown to correspond to ≈
105 CPU years on a typical 10 MFLOP workstation.
   Given this phenomenal computational capacity, and the ease with which
chemical systems can be scaled, it would be easy for the non-specialist to
conclude that the potential for molecular computation is practically unlimited.
This is not the case; [Linial and Linial 1995, Bunow 1995 and Lipton 1995] have
identified problems in the potential scalability of Adleman's method.  The
following analysis quantifies these limitations.
   Problems in NP, among them the directed Hamiltonian Path problem, have a
time complexity of O(2p(n)), where n is the „size“ of the problem and p(n) a
suitably defined polynomial in n [Garey and Johnson 1979].  Taking the best case
situation, p(n)  = n , the cost of solving a problem of size n1 using a given

computational resource is ≈  2p(n1).  Increasing the scale of the molecular system
by a factor 10k allows for the solution of larger problems, the size of which, n2, is

given by solving the equality

10 2 21 2k n n. = (1)

and the increase in the size of solvable problem, ∆n, is given by

∆n n n k= − =( ) / log2 1 10 2 (2)

2.2  Size of Molecular Computers

The limitations expressed in equation (2) on the capacity of molecular computers
to solve problems in NP are forcefully illustrated by considering limits on the
scale of chemical systems.  In practice, electroanalytical techniques allow for the
detection of chemicals in the picomolar range [Dong and Wang 1988].  However,
if we set aside this technological limit, and assume that individual molecules can
in principle be detected (as in scanning tunnelling microscopy), then the smallest
possible molecular computers would consist of order unity molecules.
   The largest conceivable molecular computer would involve all particles in the
universe.  Of course, the amount of matter in the universe is not known, but it

may be reasonably estimated as follows:  Taking Hubbel's constant as 75 km.s-

1.Mpc-1 [Kaufmann 1994] the age of the universe is 1.3 x 1010 years or 4.1 x
1017 seconds.  Expanding at the speed of light this gives the volume of the
universe as 7.9 x 1084 cm3.  Further assuming a universe with critical density, ρc
= 10-29g.cm-3 [Kaufmann 1994], i.e. a universe which has just sufficient matter to
be closed, the mass of the universe may be estimated as 8.7 x 1055 g ≈  1056g.
This is the equivalent of ≈  1080 particles of mass 1 a.m.u. (taking Avogadro's
number as 6.02 x 1023 ).
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   Assuming therefore for the purposes of illustration that the universe contains ≈
1080 particles, it follows that the size of molecular systems can span a maximum
80 decades, and the greatest possible increase in solvable problem size is given
by equation (2) as

∆n n n= − = ≈( ) / log2 1 10
280 2 10 (3)

Thus the potential to increase the size of problem (in NP) which may be solved,
by increasing the size of the chemical system, is very modest indeed, even when
fantastic scales are involved.
   More relevantly, over the realizable/detectable picomolar to molar
concentration range we have

∆n n n= − = ≈( ) / log2 1 10
112 2 10 (4)

Thus while the size of molecular computers can be readily increased, the
increase in the size of problems which such systems could solve is much more
modest.  The scalability of problem size with the size of molecular system
employed is illustrated in Fig. 5.
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Figure 5:  Increase in solvable problem size with increase in the size of the
molecular computer (relative to the size of problem solvable with a system of order
unity molecules).

3 Conclusion

The potential of molecular systems to increase the size of solvable problems in
NP is fundamenta l ly  limited to the order of ≈  1 0 2 .  Nevertheless, the
computational capacity of Adleman's approach is enormous, equivalent to ≈  105

CPU years on a 10 MFLOP workstation.  The analysis is general and based on
the time complexity function, which gives the time in which a solution is
guaranteed to be found, and is therefore a worst possible case analysis; faster
solutions may be available in many cases.  It is not therefore suggested that there
will be no instances where molecular computers will prove superior to electronic
computers.
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