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Abstract: Two signi�cant recent advances in cryptanalysis, namely the di�erential at-
tack put forward by Biham and Shamir [BS91] and the linear attack by Matsui [Mat94a,
Mat94b], have had devastating impact on data encryption algorithms. An eminent prob-
lem that researchers are facing is to design S-boxes or substitution boxes so that an
encryption algorithm that employs the S-boxes is immune to the attacks. In this paper
we present evidence indicating that there are many pitfalls on the road to achieve the
goal. In particular, we show that certain types of S-boxes which are seemingly very ap-
pealing do not exist. We also show that, contrary to previous perception, techniques such
as chopping or repeating permutations do not yield cryptographically strong S-boxes.
In addition, we reveal an important combinatorial structure associated with certain
quadratic permutations, namely, the di�erence distribution table of each di�erentially
2-uniform quadratic permutation embodies a Hadamard matrix. As an application of
this result, we show that chopping a di�erentially 2-uniform quadratic permutation
results in an S-box that is very prone to the di�erential cryptanalytic attack.

Key Words: cryptography, di�erential attack, linear attack, permutations, substitu-
tion boxes (S-boxes).
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1 Basic De�nitions

Denote by Vn the vector space of n tuples of elements from GF (2). Let � =
(a1; : : : ; an) and � = (b1; : : : ; bn) be two vectors in Vn. The scalar product of
� and �, denoted by h�; �i, is de�ned by h�; �i = a1b1 � � � � � anbn, where
multiplication and addition are over GF (2). In this paper we consider Boolean
functions from Vn to GF (2) (or simply functions on Vn).

Let f be a function on Vn. The (1;�1)-sequence de�ned by ((�1)f(�0),

(�1)f(�1), : : :, (�1)f(�2n�1)) is called the sequence of f , and the (0; 1)-sequence
de�ned by (f(�0), f(�1), : : :, f(�2n�1)) is called the truth table of f , where
�0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1 = (1; : : : ; 1; 1). f is said to be
balanced if its truth table has 2n�1 zeros (ones), and quadratic if its algebraic
degree is 2.

An a�ne function f on Vn is a function that takes the form of f = a1x1 �
� � � � anxn � c, where aj ; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is called a
linear function if c = 0. The sequence of an a�ne (or linear) function is called
an a�ne (or linear) sequence.

The Hamming weight of a vector � 2 Vn, denoted by W (�), is the number
of ones in the vector.
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A (1;�1)-matrixH of order m is called a Hadamard matrix if HHt = mIm,
where Ht is the transpose of H and Im is the identity matrix of order m. A
Sylvester-Hadamard matrix or Walsh-Hadamard matrix of order 2n, denoted by
Hn, is generated by the following recursive relation

H0 = 1; Hn =

�
Hn�1 Hn�1

Hn�1 �Hn�1

�
; n = 1; 2; : : : :

Now we introduce bent functions, an important combinatorial concept dis-
covered by Rothaus in the mid 1960's, although his pioneering work was not
published until some ten years later [Rot76].

De�nition1. A function f on Vn is said to be bent if

2�
n
2

X
x2Vn

(�1)f(x)�h�;xi = �1

for every � 2 Vn. Here x = (x1; : : : ; xn) and f(x)� h�; xi is considered as a real
valued function.

Bent functions can be characterized in various ways. In particular, the fol-
lowing statements are equivalent (see also [Dil72]):

(i) f is bent.

(ii) h�; `i = �2
1

2
n for each a�ne sequence ` of length 2n, where � is the sequence

of f .
(iii) f(x)�f(x��) as a function in x is balanced for each non-zero vector � 2 Vn,

where x = (x1; : : : ; xn).

An n� s S-box or substitution box is a mapping from Vn to Vs, where n � s.
An S-box is said to be quadratic if its component functions are all quadratic.
Now we consider a nonlinearity criterion that measures the strength of an S-
box against di�erential cryptanalysis [BS91, BS93]. The essence of a di�erential
attack is that it exploits particular entries in the di�erence distribution tables of
S-boxes employed by a block cipher. The di�erence distribution table of an n� s
S-box is a 2n� 2s matrix. The rows of the matrix, indexed by the vectors in Vn,
represent the change in the input, while the columns, indexed by the vectors in
Vs, represent the change in the output of the S-box. An entry in the table indexed
by (�; �) indicates the number of input vectors which, when changed by � (in
the sense of bit-wise XOR), result in a change in the output by � (also in the
sense of bit-wise XOR).

Note that an entry in a di�erence distribution table can only take an even
value, the sum of the values in a row is always 2n, and the �rst row is always
(2n; 0; : : : ; 0). As entries with higher values in the table are particularly useful
to di�erential cryptanalysis, a necessary condition for an S-box to be immune to
di�erential cryptanalysis is that it does not have large values in its di�erential
distribution table (not counting the �rst entry in the �rst row).

De�nition2. Let F be an n� s S-box, where n � s. Let � be the largest value
in di�erential distribution table of the S-box (not counting the �rst entry in the
�rst row), namely,

� = max
�2Vn;�6=0

max
�2Vs

jfxjF (x)� F (x� �) = �gj:
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Then F is said to be di�erentially �-uniform, and accordingly, � is called the
di�erential uniformity of F .

Obviously the di�erential uniformity � of an n � s S-box is constrained by
2n�s � � � 2n. Extensive research has been carried out in constructing di�er-
entially �-uniform S-boxes with a low � [Ada92, Pie91, BD94, Nyb91, Nyb93,
Nyb94, NK93]. Some constructions, in particular those based on permutation
polynomials on �nite �elds, are simple and elegant. However, caution must be
taken with De�nition 2. In particular, it should be noted that low di�erential
uniformity (a small �) is only a necessary , but not a su�cient condition for
immunity to di�erential attacks. This is shown by the fact that S-boxes con-
structed in [Ada92, Nyb91], which have a 
at di�erence distribution table, are
extremely weak to di�erential attacks, despite that they achieve the lowest pos-
sible di�erential uniformity � = 2n�s [BS93, BKPS93, SZZ93]. A more complete
measurement that takes into account the number of nonzero entries in the �rst
column of a di�erence distribution table is the robustness introduced in [SZZ93].

De�nition3. Let F = (f1; : : : ; fs) be an n � s S-box, where fi is a function
on Vn, i = 1; : : : ; s, and n � s. Denote by L the largest value in the di�erence
distribution table of F , and by N the number of nonzero entries in the �rst
column of the table. In either case the value 2n in the �rst row is not counted.
Then we say that F is R-robust against di�erential cryptanalysis, where R is
de�ned by

R = (1�
N

2n
)(1�

L

2n
):

Robustness gives more accurate information about the strength of an S-box
against the di�erential attack than di�erential uniformity does. However, di�er-
ential uniformity has an advantage over robustness in that the former is easier to
discuss than the latter. For this reason, di�erential uniformity is employed as the
�rst indicator for the strength of an S-box against the di�erential attack, while
robustness is considered when more complete information about the strength is
needed.

An n� s S-box F = (f1; : : : ; fs) is said to be regular if F runs through each
vector in Vs 2

n�s times while x runs through Vn once. The following lemma is
exactly the same as Theorem 1 of [SZZ95b].

Lemma4. Let F = (f1; : : : ; fs) be a mapping from Vn to Vs, where each fj is a
function on Vn. Then F is regular if and only if each nonzero linear combination
of f1; : : : ; fs is balanced.

S-boxes employed by a block cipher must be regular, since otherwise the
cipher would be prone to statistical attacks. For a regular n � s S-box, its dif-
ferential uniformity is larger than 2n�s (see also Lemma 2 of [SZZ95b]). The
robustness of the S-box is further determined by the number of nonzero entries
in the �rst column of the table.

We are particularly interested in n� s S-boxes that have the following prop-
erty: for each nonzero vector � 2 Vn, F (x) � F (x� �) runs through half of the
vectors in Vs, each 2n�s+1 times, but not through the other half of the vectors in
Vn. With each row in the di�erence distribution table of such an S-box, half of its
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entries contain a value 2n�s+1 while the other half contain a value zero. For sim-
plicity, we say such a di�erence distribution table to be uniformly half-occupied .
Clearly an n � s S-box with a UHODDT or uniformly half-occupied di�erence
distribution table achieves the di�erential uniformity of 2n�s+1. In Theorem 3
of [SZZ95b], it has been proved that for quadratic S-boxes, 2n�s+1 is the lower
bound on di�erential uniformity.

Note that a di�erentially 2-uniform permutation is also a permutation with a
UHODDT, and vice versa. These permutations have many nice properties [Pie91,
BD94, Nyb91, Nyb93, Nyb94, NK93]. In particular, they achieve the highest
possible robustness against the di�erential attack. The concept of n� s S-boxes
with a UHODDT can be viewed as a generalization of di�erentially 2-uniform
permutations. Hence n�s S-boxes with a UHODDT are very appealing and have
received extensive research (see for instance [BD94]).

There are two important questions about S-boxes with a UHODDT, namely

(i) Do there exist S-boxes with a UHODDT ? If there do, how to construct them
?

(ii) What is the robustness of an S-box with a UHODDT ?

When n = s, the answer to the �rst question is \yes". It has been shown
in [Pie91, Nyb94, BD94] that certain permutation polynomials on GF (2n), n
odd, have a UHODDT. So far no result has been known regarding the case of
n > s. In Section 2, we will partially solve the problem by showing that there
exist no quadratic n� s S-boxes with a UHODDT, if either n or s is even. The
second question will be discussed in Section 3. We will prove that the robustness
of an S-box with a UHODDT is very low.

Another important question is the synthesis of S-boxes, namely

(iii) How to construct S-boxes from existing ones ?

This question will be discussed in Section 4. We will show that many synthesis
methods which were previously taken for granted, in fact do not yield strong S-
boxes, even though the starting S-boxes employed are all strong ones. Section 5 is
solely devoted to the investigation of combinatorial properties of the di�erential
distribution table of an quadratic permutation. We reveal a result that is very
interesting even from the point of view of pure combinatorics, namely, every
uniformly half-occupied di�erence distribution table of a quadratic permutation
embodies a Sylvester-Hadamard matrix.

2 Nonexistence of Certain Quadratic S-boxes

2.1 On Quadratic S-boxes with a UHODDT

As mentioned in the previous section, an n � s S-box with a UHODDT or uni-
formly half-occupied di�erence distribution table achieves the di�erential uni-
formity of 2n�s+1, and for quadratic S-boxes, 2n�s+1 is the lower bound on
di�erential uniformity. In the following we show an impossibility result, namely,
there exist no quadratic S-boxes that have a UHODDT if either n or s is even.

Assume that F = (f1; : : : ; fs) is a quadratic n � s S-box with a UHODDT,
where n > s. We prove that neither n nor s can be even.
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Recall that a vector � 2 Vn is called a linear structure of a function f on Vn
if f(x) � f(x � �) is a constant. The set of the linear structures of f forms a
linear subspace. The dimension of the subspace is called the linearity dimension
of f . Let �1; : : : ; �2n�1 be the 2n � 1 nonzero vectors in Vn and g1; : : : ; g2s�1
be the 2s� 1 nonzero linear combinations of f1; : : : ; fs. We construct a bipartite
graph whose vertices comprise �1; : : : ; �2n�1 on one side and g1; : : : ; g2s�1 on
the other side. An edge or link between �i and gj exists if and only if �i is a
linear structure of gj .

Theorem 2 of [SZZ95b] states that n � `i is even, where `i is the linearity
dimension of gi. Equivalently, n and `i must be both even or both odd. Since
each gi is balanced, it can not be bent. By Lemma 5 of [SZZ95b], a quadratic
function is bent if and only if it does not have linear structures. Hence we have
`i � 1. On the other hand, from the proof for Corollary 1 of [SZZ95b], we have
`i � n� 2. We distinguish the following two cases:

Case 1: n is odd and `i is 1; 3; 5; : : :, or n� 2.
Case 2: n is even and `i is 2; 4; 6; : : :, or n � 2.
First we consider Case 1. Let pj denote the number of `i, 1 � i � 2s�1, such

that `i = j. Then we have a sequence of numbers p1; p3; p5; : : : ; pn�2: Obviously,

p1 + p3 + p5 + � � �+ pn�2 = 2s � 1: (1)

Since F is a S-box with a UHODDT, for each nonzero vector �k 2 Vn

F (x)� F (x� �k) = (f1(x)� f1(x� �k); : : : ; fs(x) � fs(x� �k))

is not regular. Thus, by Lemma 4, there exists a linear combination of f1(x) �
f1(x � �k); : : : ; fs(x) � fs(x � �k), say gj(x) � gj(x � �k), such that gj(x) �
gj(x � �k) is not balanced. Since gj is quadratic, gj(x) � gj(x � �k) is a�ne.
Furthermore, as gj(x)� gj(x� �k) is not balanced, it must be a constant (0 or
1). This proves that each nonzero vector �k 2 Vn is a linear structure of a gj, a
linear combination of f1; : : : ; fs. On the other hand, by Theorem 4 of [SZZ95b],
for each �k, there exists at most one gj among g1; : : : ; g2s�1 such that �k is
a linear structure of gj . By the construction of the bipartite graph, each �k is
linked to a unique gj . Also each gi with `i = j has j linearly independent linear

structures and 2j � 1 nonzero linear structures. Hence we have

(21 � 1)p1 + (23 � 1)p3 + (25 � 1)p5 + � � �+ (2n�2 � 1)pn�2 = 2n � 1: (2)

From (1) and (2) we have

(21 � 2)p1 + (23 � 2)p3 + (25 � 2)p5 + � � �+ (2n�2 � 2)pn�2 = 2n � 2s

or equivalently

(22 � 1)p3 + (24 � 1)p5 + � � �+ (2n�3 � 1)pn�2 = 2s�1(2n�s � 1) (3)

Note that 2k�1 is divisible by 3 if and only k � 2 is even. Thus the left hand
side of (3) is divisible by 3. This implies that the (2n�s�1) part in the right hand
side of the equation is divisible by 3. Hence s must be odd. Thus there exists no
quadratic n� s S-box with a UHODDT if n is odd (n � 5) and s is even.
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We now consider Case 2. Let qj denote the number of `i, 1 � i � 2n�1, such
that `i = j. Similarly to Case 1, we have a sequence of numbers q2; q4; q6; : : : ; qn�2,
and

q2 + q4 + q6 � � �+ qn�2 = 2s � 1;

(22 � 1)q2 + (24 � 1)q4 + (26 � 1)q6 + � � �+ (2n�2 � 1)qn�2 = 2n � 1:

By simple deduction,

(23 � 2)q4 + (25 � 2)q6 + � � �+ (2n�3 � 2)qn�2 = 2n�1 � 3 � 2s�1 + 1: (4)

It is not hard to see that the left hand side of (4) is even when n � 4, while
the right hand side of (4) is always odd for s � 2. From this we can conclude that
there exists no quadratic n� s S-box with a UHODDT if n is even with n � 4.

Summarizing Case 1 and Case 2, we have

Theorem5. For n � 4, there exists no quadratic n� s S-box with a UHODDT
if either n or s is even.

Theorem 5 can be viewed as an extension of Corollary 2 in [SZZ95b], which
states that there exists no di�erentially 2-uniform quadratic permutation on an
even dimensional vector space.

By Theorem 5, n � s S-boxes with a UHODDT do not exist if either n or s
is even. When n is odd and n = s, as mentioned before, we do have di�erentially
2-uniform quadratic permutation [Pie91, BD94, Nyb94]. Thus a problem that is
left open is whether there are quadratic S-boxes with a UHODDT for n > s, both
n and s odd. It should be pointed out that an S-box which has an odd number
of input bits and also an odd number of output bits may not be very useful in
practice.

2.2 An Extension

The result in the previous subsection can be extended to a special kind of dif-
ferentially 2n�s+t-uniform quadratic S-boxes. Let F be an n� s S-box such that
for each nonzero vector � 2 Vn, F (x) � F (x � �) runs through 2s�t vectors in
Vs, each 2n�s+t times, but not through the remaining 2s � 2s�t vectors in Vs,
where t � 1. The case when t = 1 has been discussed in the previous subsection.
In the following we present a nonexistence result on the case when t > 1.

Assume that F is a di�erentially 2n�s+t-uniform quadratic S-box such that
for each nonzero vector � 2 Vn, F (x) � F (x � �) runs through 2s�t vectors in
Vs, each 2n�s+t times, but not through the remaining 2s � 2s�t vectors in Vs.

Similarly to the previous discussions, we can construct a bipartite graph with
�1; : : : ; �2n�1, the 2n � 1 nonzero vectors in Vn on one side and g1; : : : ; g2s�1,
the nonzero linear combinations of f1; : : : ; fs on the other side. An edge between
�i and gj exists if and only if �i is a linear structure of gj. By Theorem 3
of [SZZ95b], each �i is associated with at most 2t edges. In addition, one can
see that each �i is associated with exactly 2t edges.

Now assume further that n is odd. By a similar argument to Case 1 in the
previous section, we have

p1 + p3 + p5 + � � �+ pn�2 = 2s � 1;
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and

(21 � 1)p1 + (23 � 1)p3 + � � �+ (2n�2 � 1)pn�2 = (2n�s+t � 1)(2n � 1):

Hence

(21 � 2)p1 + (23 � 2)p3 + � � �+ (2n�2 � 2)pn�2 =

(2t � 1)(2n � 1)� (2s � 1): (5)

where pj denotes the number of `i, 1 � i � 2n� 1, such that `i = j, and `i is the
linearity dimension of gi.

Now we prove that if (5) holds, then both s and t are odd or both of them
are even.

Re-write (5) as

(21 � 2)p1 + (23 � 2)p3 + � � �+ (2n�2 � 2)pn�2 =

(2t+n � 2s) � (2n + 2t) + 2: (6)

Note that as n is odd, the left hand side, and hence the right hand side, of (6)
are both divisible by 3. Consider two cases: (1) s is odd. (2) s is even.

In the �rst case when s is odd, if t is even, then both 2t+n � 2s and 2n + 2t

in the right hand side are divisible by 3, which, together with the third term 2,
results in the right hand side indivisible by 3. Hence if s is odd, t must be odd
as well.

By a similar argument, one can show that in the second case when s is even,
t must be even as well. Thus we have proved:

Theorem6. Let n be odd. If a quadratic n � s S-box satis�es that for each
nonzero vector � 2 Vn, F (x) � F (x� �) runs through 2s�t vectors in Vs, each
2n�s+t times, then both s and t are odd or both of them are even.

This result supersedes Theorem 5 in Section 2.2 of [SZZ94] which is an early
version of this paper.

3 Columns of a UHODDT

In the previous section we proved that there does not exist a quadratic n � s
S-box with a UHODDT if either n or s is even. It is not clear whether or not
higher degree S-boxes with a UHODDT exist. If there do exist such S-boxes, we
would like to know whether or not they satisfy a more stringent requirement,
namely high robustness. Results to be shown below give a negative answer to
this question.

It is easy to show that the pro�le of the di�erence distribution table of an
S-box is not changed by a nonsingular linear transformation on input coordinates
(see for instance [BD94, SZZ95b]). In particular we have

Lemma7. Let F = (f1; : : : ; fs) be a regular S-box with a UHODDT or uni-
formly half-occupied di�erence distribution table. Let A be a nonsingular matrix
of order n and B a nonsingular matrix of order s over GF (2). Then both G(x) =
F (xA) = (f1(xA); : : : ; fn(xA)) and H(x) = F (x)B = (f1(x); : : : ; fn(x))B are
regular S-boxes with a UHODDT.
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By de�nition, each row in a uniformly half-occupied di�erence distribution
table, except the �rst, contains an equal number of zero and nonzero entries. The
following lemma shows that a similar result holds with columns in the table.

Lemma8. Let F be a regular n� s S-box with a UHODDT. Then each column,
except the �rst, in the di�erence distribution table contains an equal number of
zero and nonzero entries.

Proof. We prove that for each nonzero � 2 Vs, there exist 2
n�1 nonzero � 2 Vn

such that F (x)� F (x� �) = � has solutions for x.
Fix x0 2 Vn. Since the di�erence distribution table of F is uniformly half-

occupied, F (x0) � F (x0 � �) runs through each nonzero � 2 Vs 2n�s times
while � runs through Vn. As x0 is arbitrary, for each nonzero � 2 Vs, there
exist 2n � 2n�s pairs (x; �) such that F (x)� F (x� �) = �, where � 6= 0. On the
other hand, since the di�erence distribution table of F is uniformly half-occupied,
F (x)� F (x� �) = � either has 2n�s+1 solutions or has no solution for x. Thus
for each nonzero � 2 Vs there exist 2n � 2n�s=2n�s+1 = 2n�1 nonzero vectors
� 2 Vn such that F (x)� F (x� �) = � has solutions for x. ut

Recall that the robustness of an S-box is determined by the largest value in
the di�erence distribution table of the S-box, and also by the number of nonzero
entries in the �rst column of the table. The lemma described below gives the
precise number of nonzero entries in the �rst column of a uniformly half-occupied
di�erence distribution table.

Lemma9. Let F be a regular n � s S-box with a UHODDT. Then there are
2n�1 � 2s�1 nonzero entries in the �rst column of the di�erence distribution
table (excluding the �rst entry).

Proof. We show that there exist 2n�1 � 2s�1 nonzero � 2 Vn such that F (x)�
F (x� �) = 0 has solutions for x. Fix x0 2 Vn. Since the di�erence distribution
table of F is uniformly half-occupied, F (x0) � F (x0 � �) runs through each
� 2 Vs 2

n�s times while � runs through Vn. In particular, F (x0) � F (x0 � �)
runs through the zero vector in Vs 2

n�s times, while � runs through Vn. Note that
� = 0 is a trivial case. Hence F (x0)�F (x0��) runs through the zero vector in
Vs 2

n�s�1 times while � runs through all nonzero vectors in Vn. In other words,
there exist 2n�s � 1 nonzero � 2 Vn such that F (x0)� F (x0 � �) = 0. Since x0
is arbitrary, for each nonzero � 2 Vs, there exist 2

n � (2n�s� 1) pairs (x; �) such
that F (x)� F (x� �) = 0, where � 6= 0. Recall that F (x)� F (x� �) = 0 either
has 2n�s+1 solutions or has no solution for x. Thus for each nonzero � 2 Vs there
exist 2n � (2n�s � 1)=2n�s+1 = 2n�1 � 2s�1 nonzero vectors � 2 Vn such that
F (x)� F (x� �) = 0 has solutions for x. ut

As an immediate consequence of Lemma 9, we obtain the robustness of an
S-box with a UHODDT:

R = [1� (2n�1 � 2s�1)=2n](1� 2n�s+1=2n) = (1=2 + 2�n+s�1)(1� 2�s+1):

When n = s, we have R = 1 � 2�n+1, which is the highest possible value for
robustness. However, when s is relatively smaller than n, say n�s > 3, R is very
close to 1=2. For comparison, we note that the robustness of S-boxes constructed
in [SZZ93] is at least 7=8.
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4 On Methods for Synthesizing S-boxes

This section is concerned with methods for constructing S-boxes from existing
ones. We show that a number of techniques which were previously taken for
granted do not yield good S-boxes.

4.1 Chopping Permutations

Chopping permutations which are cryptographically strong has been conceived
as a promising method to construct S-boxes for DES-like encryption algorithms.
For this reason, many researchers have focused their attention on permutations,
especially those on a �nite �eld [BD94, Nyb91, Nyb93, Nyb94, NK93]. Results to
be present in this subsection indicate that, contrary to the common perception,
this practice does not produce good S-boxes.

First we prove the following:

Theorem10. Let F = (f1; : : : ; fs) be a regular n � s S-box with a UHODDT,
where n � s and each fj is a function on Vn. The following two statements hold:

(i) Let 1 � t � s�1 and let G be an S-box obtained by dropping s� t component
functions from F , say G = (f1; : : : ; ft). Then the di�erence distribution table
of G is not uniformly half-occupied.

(ii) Let n � t � s+ 1 and let H be an S-box obtained by adding t� s component
functions to F , say H = (f1; : : : ; fs; fs+1; : : : ; ft), where fs+1; : : : ; ft are
newly added. Then the di�erence distribution table of H is not uniformly
half-occupied.

Proof. (i) Since F has a UHODDT, for each nonzero � 6= 0, F (x) � F (x � �)
runs through 2s�1 vectors in Vs, each 2n�s+1 times, but not through the other
2s�1 vectors in Vs, while � runs through Vn. Fix a nonzero vector, say 
 =
(0; �) 2 Vs, where 0 is the zero vector in Vt and � is a nonzero vector in Vs�t.
By Lemma 8 there exist 2n�1 nonzero vector � such that F (x)� F (x� �) = 

has solutions for x. Thus there exist at least 2n�1 nonzero vector � such that
G(x) � G(x � �) = 0 has solutions for x, where 0 is the zero vector in Vt. By
Lemma 9, a regular uniformly half-occupied G has 2n�1 � 2t�1 nonzero vector
� such that G(x)� G(x� �) = 0 has a solution for x. Contradiction.

(ii) follows (i). ut

FromTheorem 10 chopping a regular S-box with a UHODDT does not yield a
regular S-box with a UHODDT. In particular, chopping a di�erentially 2-uniform
permutation on Vn does not produce an S-box with a UHODDT.

As quadratic permutations with a UHODDT or di�erentially 2-uniform quad-
ratic permutations have been studied very extensively, an important problem is
about the structure of the di�erence distribution table of an S-box obtained by
chopping such a permutation. We will devote a single section, Section 5, to this
topic.

In addition to chopping permutations, other techniques, such as linear trans-
forms or modulo operations on inputs or outputs of di�erentially 2-uniform
permutations, and repeating di�erentially 2-uniform permutations, are also con-
ceived as possible S-box synthesis methods. In the following we show that none
of these methods generates an S-box with a UHODDT.
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4.2 Linear Transforms Applied on Inputs

Let F be a di�erentially 2-uniform permutation on Vs, B a matrix of order n� s
(n > s) over GF (2). Set G(y) = F (yB) where y 2 Vn. Since the rank of B is s,
yB runs through all vectors in Vs each 2n�s times while y runs through Vn. As
a result G is a regular n� s S-box.

It turns out that the di�erence distribution table of G is not uniformly half-
occupied. The reason is described in the following. Since n > s there exists a
nonzero vector in Vn, say �, such that �B = 0, where 0 is the zero vector in Vs.
Note that G(y) �G(y � �) = F (yB) � F ((y � �)B) = F (yB) � F (yB � �B) =
F (yB) � F (yB) = 0, where 0 is the zero vector in Vs, for every y 2 Vn.

4.3 Linear Transforms Applied on Outputs

Let F be a di�erentially 2-uniform permutation on Vn, and B a matrix of order
n � s (n > s) over GF (2). Set G(x) = F (x)B. Note that the rank of B is s.
Hence yB runs through all vectors in Vs each 2n�s times while y runs through
Vn. As F is a permutation on Vn, G is a regular n� s S-box.

Since n > s, there exists a matrix of order n� (n � s), say D, such that the
matrix A = [BD] of order n is nonsingular. Set 	 (x) = F (x)A. By Lemma 7,
	 is a also a di�erentially 2-uniform permutation. By Theorem 10, G is not an
S-box with a UHODDT.

4.4 Connecting Permutations in Parallel

Let F be a di�erentially 2-uniform permutation on Vs. Set

G(y) = (1� xs+1)F (x)� xs+1F (x� �)

where x = (x1; : : : ; xs), y = (x1; : : : ; xs; xs+1), � 2 Vs. Note that G(x; 0) = F (x),
G(x; 1) = F (x��). Since F is permutation on Vs G is a regular (s+1)�s S-box.

Let � = (�; 1). Clearly G(y � �) = G(y) for every y 2 Vs+1. Thus G(y) �
G(y � �) = 0, where 0 is the zero vector in Vs, for every y 2 Vn. Thus the
di�erence distribution is very bad in this case, and G(y) is not an S-box with a
UHODDT.

The above discussions can be extended to the general case where F is repeated
2k times, k � 1.

4.5 Enlarging Inputs or Reducing Outputs by Modulo Operations

Let � = (a1; : : : ; an) 2 Vn. Rewrite � as � = a1 � a2x� � � � � anx
n�1. Thus Vn

and the set of polynomials of degree at most n�1 over GF (2) have a one-to-one
correspondence. Let �(x) be a primitive polynomial of degree s (s < n). For any
� 2 Vn, we have

� = h� � �

where the degree of h is less than or equal to n � s � 1, the degree of � is less
than s. Thus we have de�ned a mapping from Vn to Vs: �! �.

Now let � be a vector in Vn and � a vector in Vs. Let F (�) be a di�erentially

2-uniform permutation on Vs. Set G(�) = F (�). This gives an n� s S-box. Note
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that � � � = � � �. This means that the mapping from Vn to Vs, � ! �, is
linear. Hence G(�) is not an S-box with a UHODDT, although it is regular (see
Subsection 5.1).

Now let �(�) be a di�erentially 2-uniform permutation on Vn. Set 	 (�) =

�(�). 	 is an n � s S-box. A similar argument shows that the di�erence distri-
bution table of 	 (�) is not uniformly half-occupied.

5 Hadamard Matrices Embodied in Di�erence Distribution

Table

In this section we reveal a very important combinatorial property of di�eren-
tially 2-uniform quadratic permutations, namely, every di�erentially 2-uniform
quadratic permutation is associated with a Sylvester-Hadamard matrix. As an
application of the result, we show that chopping a di�erentially 2-uniform quad-
ratic permutation results in an S-box whose di�erence distribution table is nearly

at. Such an S-box is very weak to the di�erential attack.

5.1 Di�erence Distribution Tables and Incidence Functions

Let F = (f1; : : : ; fn) be a di�erentially 2-uniform quadratic permutation on Vn,
namely, a quadratic permutation with a UHODDT or uniformly half-occupied
di�erence distribution table. Let W� be the set of vectors F (x)�F (x��) runs
through when x runs through Vn, namely,

W� = fF (x)� F (x� �)jx 2 Vng (7)

Obviously if � = 0 then W� = f0g. Since each fj is quadratic fj(x)� fj(x� �)
is an a�ne function.

Write fj(x)�fj(x��) = c1jx1�� � ��cnjxn�dj, j = 1; : : : ; n. Set C� = (cij),
�� = (d1; : : : ; dn). Thus F (x)�F (x��) = xC�� �� and W� = fF (x)�F (x�
�)jx 2 Vng = fxC� � ��jx 2 Vng.

Now let � 6= 0. Since F is a permutation, F (x) � F (x � �) 6= 0 for each
x 2 Vn. Hence 0 62 W�. Since F (0) � F (�) = ��, we have �� 6= 0. And by the
de�nition of a UHODDT, jW�j = 2n�1 and hence rank(C�) = n � 1. Thus we
have

Lemma11. Let F be a di�erentially 2-uniform quadratic permutation on Vn.
If � 6= 0 then

(i) 0 62W�, (ii) �� 6= 0, (iii) jW�j = 2n�1, and (iv) rank(C�) = n � 1.

Now set W 0
� = fxC�jx 2 Vng. Then we have

Lemma12. Let F be a di�erentially 2-uniform quadratic permutation on Vn.
If � 6= 0 then Vn = W� [W

0
� and W� \W

0
� = �.

Proof. Suppose that W� \W
0
� 6= �. Then there exists a � 2 Vn such that � 2

W�\W
0
�. Thus � = �C���� and � = �C� for some �, � 2 Vn. Hence (���)C��

�� = 0. This implies that 0 2 W�, which contradicts Lemma 11. This proves
that W� \W

0
� = �. Note that rank(C�) = n � 1. Hence we have jW 0

�j = 2n�1

and W� [W
0
� = Vn. ut
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Lemma13. Let F be a di�erentially 2-uniform quadratic permutation on Vn.
Let � 6= 0. Then the following statements hold:

(i) If �, �0 2 W� then � � �0 2W 0
�,

(ii) if � 2W�, �
0 2W 0

� then � � �0 2W�,
(iii) if �, �0 2 W 0

� then � � �0 2 W 0
�.

Proof. (i) Write � = �C� � �� and �0 = �0C� � �� for some �, �0 2 Vn. Hence
� � �0 = (� � �0)C�. This implies that � � � 2W 0

�.
(ii) Write � = �C� � �� and �0 = �0C� for some �, �0 2 Vn. Hence � � �0 =

(� � �0)C� � �� and � � � 2W�.
(iii) Write � = �C� and �0 = �0C� for some �, �0 2 Vn. Hence � � �0 =

(� � �0)C� and � � � 2W 0
�. ut

Let F be a di�erentially 2-uniform quadratic permutation on Vn and let W�

be the same as (7). For each � 2 Vn we de�ne an incidence function '� as
follows:

'�(�) =

8><
>:
0 if � = 0

1 if � 6= 0 and � 2W�

0 if � 6= 0 and � 62W�

(8)

As is to be proved below, each '� is in fact a linear function on Vn.

Lemma14. Let F be a di�erentially 2-uniform quadratic permutation on Vn.
Then '�, de�ned in (8), is a linear function on Vn for every vector � 2 Vn.

Proof. The lemma is true trivially true when � = 0. Now let � 6= 0 and consider
'�(x) � '�(x� !). We distinguish between ! 2W� and ! 62W�.

Case 1: ! 2W�. In this case we have '�(!) = 1.
Case 1.1: Consider x 2W�. We have '�(x) = 1. By Lemma 13, x�! 62W�.

Hence '�(y � !) = 0. Furthermore we have '�(x)� '�(x � !) = '�(!) = 1.
Case 1.2: Now we consider x 62 W�. We have '�(x) = 0. By Lemma 13,

x�! 2W� and hence '�(x�!) = 1. Therefore '�(x)�'�(x�!) = '�(!) = 1.
Case 2: ! 62W�. In this case we have '�(!) = 0. By an argument similar to

the above, we have '�(x) � '�(x � !) = '�(!) = 0 regardless whether or not
x 2W�.

In summary, '�(x)�'�(x� !) = '�(!) holds in all cases. This proves that
'� is a linear function on Vn. ut

Lemma15. Let F be a di�erentially 2-uniform quadratic permutation on Vn.
If � 6= �0, then '� 6= '�0 .

Proof. When � = 0 or �0 = 0, the lemma is clearly true.
Next we consider the case when � 6= 0 and �0 6= 0. Suppose the lemma is

not true. Then we have '� = '�0 , namely, W� = W�0 for � 6= �0. Note that
F (x0)�F (x0����

0) 2W���0 for each �xed x0 2 Vn. Rewrite F (x0)�F (x0�
�� �0) = F (x0)� F (x0 � �)� F (x0 � �)� F (x0 � �� �0).

Since F (x0) � F (x0 � �) 2 W�, F (x0 � �) � F (x0 � � � �0) 2 W�0 and
W� = W�0 , by Lemma 13, we have F (x0) � F (x0 � �� �0) 2W 0

�.
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As x0 is arbitrary, we have W���0 � W 0
�. Note that jW���0j = jW 0

�j = 2n�1.
Thus

W���0 = W 0
� (9)

By Lemma 11, 0 62 W�. Then by Lemma 12, 0 2W 0
�. On the other hand, by

Lemma 11, 0 62 W���0. This contradicts (9). ut

5.2 Hadamard Matrices in Di�erence Distribution Tables

Lemma 14 states that each row of the di�erential distribution table is associated
with a linear function on Vn, while Lemma 15 indicates that these linear functions
are all di�erent. Hence we have

Theorem16. Let F be a di�erentially 2-uniform quadratic permutation on Vn.
Then '� runs through all linear functions on Vn while � runs through the vectors
in Vn.

Recall that �0; �1; : : : ; �2n�1 are all the vectors in Vn, with �0 = (0; : : : ; 0),
: : :, �2n�1 = (1; : : : ; 1). Let M = (mij) be a (1;�1)-matrix de�ned by

mij = (�1)'�i (�j) (10)

M is called the di�erence trait matrix of F . Essentially,M is a matrix obtained
from the di�erence distribution table of the S-box by replacing each zero entry
by 1 and each nonzero entry by �1, with an exception that the �rst entry in the
�rst row is replaced by 1.

Theorem17. Let F be a di�erentially 2-uniform quadratic permutation on Vn.
Then M , the di�erence trait matrix of F , is a Sylvester-Hadamard matrix if the
row-order is ignored.

Proof. From Theorem 16, the 2n rows of M comprise all the linear sequences of
length 2n. By Lemma 1 of [SZZ95a], each linear sequence of length 2n is a row
of Hn. Thus M can be changed to Hn by re-ordering its rows. ut

Obviously, W�, '� and M can be de�ned for any permutation on Vn, not
restricted to quadratic ones.

Theorem18. Let F be a di�erentially 2-uniform (not necessarily quadratic)
permutation on Vn and M be the di�erence trait matrix of F . Then F�1, the
inverse of F , is also a di�erentially 2-uniform permutation, and the di�erence
trait matrix of F�1 is the transpose of M .

Proof. Suppose that

F�1(y) � F�1(y � �) = � (11)

where �, � 6= 0. Set x = F�1(y). Then we have y = F (x), F�1(y � �) = x� �,
F (F�1(y � �)) = F (x��), y� � = F (x��), and F (x)� � = F (x��). Hence

F (x)� F (x� �) = �: (12)
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Since F is di�erentially 2-uniform, by Lemma 8, for each nonzero � 2 Vn there
exist 2n�1 nonzero vectors � 2 Vn such that (12) holds. Note that if (12) holds
then (11) also holds. Thus for each nonzero � 2 Vn there exist 2n�1 nonzero
vectors � 2 Vn such that (11) holds. This proves that F�1 is also di�eren-
tially 2-uniform. This result has also been obtained by Nyberg (Proposition 2
of [Nyb94]).

We can de�ne W 0
� , '

0
� and M 0 for F�1 as we did with W� , '� and M for

F . Since (11) and (12) stand in parallel, we can conclude that '0�(�) = '�(�)

and M 0 is identical to the transpose of M . Since M is an Hadamard matrix, so
is M 0 ut

Note that for a di�erentially 2-uniform quadratic permutation F based on a
cubic polynomial on GF (2n), n odd, the algebraic degree of F�1 is larger than
(n + 1)=2. By Theorems 17 and 18, both the di�erence trait matrix of F and
that F�1 are Sylvester-Hadamard Matrices, with the former being subject to
re-ordering its rows while the later its columns.

5.3 Chopping Quadratic Permutations

Let F = (f1; : : : ; fn) be a di�erentially 2-uniform permutation on Vn. Let G be
an S-box obtained by chopping a component function of F , say G = (f2; : : : ; fn).
Similarly to W�, ' and M corresponding to F (see (7), (8) and (10)), we can
de�ne

U� = fG(x)�G(x� �)jx 2 Vng;

where � 2 Vn, and the incidence function

 �(�) =

8><
>:
0 if � = 0

1 if � 6= 0 and � 2 U�
0 if � 6= 0 and � 62 U�

where � 2 Vn�1.
Let �0; �1; � � � ; �2n�1 be the ordered vectors in Vn and �0; �1; � � � ; �2n�1�1

the ordered vectors in Vn�1. De�ne a 2n � 2n�1 (1, -1)-matrix, say N = (nij),

where nij = (�1) �i (�j).

Write M = [M1M2] where each Mj is of order 2
n � 2n�1, M1 = (mij), and

M2 = (mij+2n�1 ). It is easy to see that  �(�) = 1 if and only if '�(0; �) = 1 or
'�(1; �) = 1. In other words, nij = �1 if and only ifmij = �1 ormij+2n�1 = �1.

Since F is a di�erentially 2-uniform quadratic permutation, by Theorem 17,

each row of M is a row of Hn. Now recall that Hn =

�
Hn�1 Hn�1

Hn�1 �Hn�1

�
. Write

Hn = (hij), i; j = 1; : : : ; 2n. We can see that �hij = hij+2n�1 if i > 2n�1. This

implies that hij = �1 or hij+2n�1 = �1, if i > 2n�1. Note that M and Hn have

the same set of rows. This proves that there exists 2n�1 nonzero � 2 Vn such
that  � is constant 1. In this case G(x) � G(x � �) runs through every vector
(including the zero vector) in Vn�1, for some 2n�1 nonzero vectors � 2 Vn and
hence the robustness of G is less than 1

2
.

To summarize the above discussions, the di�erence distribution table of an
S-box obtained by chopping a component function of a di�erentially 2-uniform
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quadratic permutation has the following pro�le: it can be viewed as a folded
(right to left) version of the uniformly half-occupied table of the original per-
mutation, with half of the rows containing a value 2 in all their entries, and the
remaining rows, not counting the �rst row, containing an equal number of 0s
and 4s. Similarly, chopping two component functions from a permutation results
in an S-box whose di�erence distribution table is almost 
at: it can be viewed
as a twice-folded (right to left) version of the uniformly half-occupied table of
the original permutation, and three quarters of the rows contain a value 4 in all
their entries, while the remaining rows, not counting the �rst row, have an equal
number of 0s and 8s. This observation can be extended to the case when three
or more component functions are chopped.

In conclusion, S-boxes obtained by chopping di�erentially 2-uniform quad-
ratic permutations have an almost 
at di�erence distribution table, which renders
a DES-like encryption algorithm that employs such S-boxes very prone to the dif-
ferential attack.

6 Concluding Remarks

We have shown that certain S-boxes that are seemingly very appealing do not
exist. We have also shown that various methods for synthesizing S-boxes do
not produce cryptographically desirable S-boxes. In addition, we have revealed
an important combinatorial structure in quadratic permutations, namely, each
di�erentially 2-uniform quadratic permutation embodies a Hadamard matrix.

In Section 2, we obtained a nonexistence result for quadratic S-boxes with a
UHODDT or uniformly half-occupied di�erence distribution table. This result
might be extended in several directions. One direction is to di�erentially 2n�s+1-
uniform quadratic S-boxes which include quadratic S-boxes with a UHODDT as
a special case. Another direction is to higher degree S-boxes.
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