
MONSTR I — Fundamental Issues and the Design of
MONSTR

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk)

Abstract: This is the first in a series of papers dealing with the implementation of an extended
term graph rewriting model of computation (described by the DACTL language) on a distributed
store architecture. In this paper we set out the high level model, and under some simple
restrictions, prove an abstract packet store implementation correct modulo garbage. The abstract
packet store model is compared to a more realistic and finegrained packet store model, more
closely related to the properties of a genuine distributed store architecture, and the differences are
used to inspire the definition of the MONSTR sublanguage of DACTL, intended for direct
execution on the machine. Various alternative operational semantics for MONSTR are proposed
to reflect more closely the finegrained packet store model, and the prospects for establishing
correctness are discussed. The detailed treatment of the alternative models, in the context of
suitable sublanguages of MONSTR where appropriate, are subjects for subsequent papers.

Key Words: Intermediate Languages, Term Graph Rewriting, MONSTR, Semantic Models.

Category: C.1.3, D.1.3, D.3.1, F.3.2, F.4.2

1 INTRODUCTION

This is the first of a series of papers about MONSTR, in which we will study the prob-
lem of implementing an extended term graph rewriting model of computation described
by the language DACTL [Glauert et al. (1988a)], [Glauert et al. (1988b)], [Glauert et al.
(1990)] on a distributed store architecture, from a fairly theoretical vantage point.

The issue arose in the late 80’s when the Flagship Project intended to use DACTL as a
general purpose intermediate language for a distributed store multiprocessor, the Flag-
ship Machine, [Watson and Watson (1987)], [Watson et al. (1987)], [Banach et al.
(1988)], [Watson et al. (1989)]. This proved too ambitious an objective, and a sublan-
guage of DACTL, MONSTR, was designed to make the intermediate language problem
more tractable. As well as being useful and appropriate as an intermediate language,
MONSTR subsequently proved to be a flexible and expressive model of computation
in its own right. For a variety of applications in addition to its use in the Flagship Ma-
chine, see eg. [Banach and Papadopoulos (1993)], [Banach and Papadopoulos (1995a)],
[Banach and Papadopoulos (1995b)], [Banach et al. (1995)], [Banach and Papadopou-
los (1996a)], [Banach and Papadopoulos (1996b)].

Given the retrenchment to the MONSTR sublanguage, the original question then be-
came that of the correctness of the MONSTR implementation. The question is non-triv-
ial since the semantics of the language and of the machine differ substantially.
Nevertheless, it turns out that “reasonable programs” do not throw up problems when
run on the machine, and this therefore indicates that the semantic differences may in
many cases be circumvented. The present series of papers is intended to explore this in

Journal of Universal Computer Science, vol. 2, no. 4 (1996), 164-216
submitted: 18/7/95, accepted: 20/3/96, appeared: 28/4/96  Springer Pub. Co.

detail. Though some hints as to what may be expected have appeared before, eg. in [Ba-
nach and Watson (1989)], [Banach (1993)], the present series of papers is the thorough
study cited in these two references.

The main areas in which the models of computation differ are: depth of pattern match-
ing, granularity of atomic primitives, and concurrency. The language model favours big
serial atomic actions, the machine model favours small concurrent atomic actions. Thus
as well as being an essay in language semanticsper se, the study of MONSTR includes
the examination of issues of serialisability and atomicity in a somewhat unusual setting
(that of language semantics). For a thorough presentation of serialisability and atomic-
ity theory from a modern perspective and in its usual setting, see [Lynch et al. (1994)].

The main purpose of this first paper, is to set out the DACTL model that we will use, to
prove that a packet store implementation of it is correct under suitable circumstances,
to describe our version of the machine model in packet store terms, and then to see how
the characteristics of the machine model are used as a guide in the design of the MON-
STR sublanguage of DACTL. This is done in the sections which follow. Thus [Section
2] introduces the model informally, using simple examples. [Section 3] then gives an
illustrated formal definition of the model. On the basis of some simple syntactic as-
sumptions [Section 4] derives fundamental properties of DACTL systems that will be
crucial later in the paper, and throughout the subsequent series. [Section 5] tackles gar-
bage, a topic that has some rather strange repercusions in the DACTL framework. [Sec-
tion 6] deals with the representability in a packet store model, of the graph rewriting
model previously set out, using packet overwriting to model arc redirection.

The next few sections examine the impact of a distributed implementation on the packet
store model. Thus [Section 7] deals with packet mobility in a distributed packet store;
[Section 8] deals with packet copying and related issues; [Section 9] deals with redex
size; while [Section 10] looks at atomicity, and sketches informally the low level exe-
cution model that results from the preceding considerations. At last [Section 11] pulls
all of these insights together into the formal syntactic definition of the MONSTR sub-
language, and displays a couple of examples in full detail. [Section 12] looks ahead at
some of the correctness issues that the preceding design throws up.

The historical roots of the present undertaking can be traced back to the keen interest in
graph reduction architectures characteristic of the mid 80’s. Many models broadly
comparable to the Flagship Machine model were being explored and implemented at
that time. We cite [Fasel and Keller (1986)], [FPLCA], [Woods (1986)] as containing
representative collections of papers from that period. See also [Treleaven et al. (1982)].
The present study differs from these in two important respects. Firstly the present work
is a self-contained theoretical enterprise (though obviously strongly influenced by con-
siderations of practice), while most of the cited work has a strongly implementation-ori-
ented flavour. Secondly, apart from the inspiration of the original intended applications,
MONSTR is not application specific. This has both costs and benefits. The costs in-
clude an unavoidable increase in the complexity of the technical details that have to be
kept under control. For example, the notion of packet, originating in [Darlington and
Reeve (1981)], takes on a life of its own when coupled with considerations specific to
MONSTR such as balancedness, state saturatedness [Section 4], and the firewall prin-
ciple [Section 7]. The benefits include much wider applicability, as witnessed by the
more recent citations from the 90’s.

165Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

2 AN INTRODUCTION TO EXTENDED TERM GRAPH
REWRITING AND DACTL

Term graph rewriting [Barendregt et al. (1987)], and then DACTL, grew out of the de-
sire to place many of the low-level operational features found in implementations of de-
clarative languages onto a more formal basis, especially in the context of
implementations on parallel machines. This invevitably means dealing with graphs
rather than terms, since implementations inevitably feature sharing of subexpressions
for the sake of efficiency. So term rewriting becomes superseded by graph rewriting.
The desire to keep as close as possible to reality, means that the nodes of the graph look
as much like parts of a term as is reasonable. So term graphs as they were called, have
nodes each of which is labelled with a symbol and has a sequence of out-arcs to other
nodes in the graph (the node’s children).

The dynamic feature of term rewriting, substitution, is handled by the elegant notion of
arc redirection, whereby all the in-arcs pointing to a node may be redirected to point at
some other node. Of course for this to make sense, the other node has to be in the graph
already, and so when substitution by a completely new subgraph is desired, redirection
has to be preceded by formally incorporating the new material into the existing graph:
contractum building.

Redirection turns out to be a versatile concept, and can be applied to any node of the
graph, not just roots of redexes. This generalises the term-graph rewriting model allow-
ing many ideas from imperative programming to be smoothly expressed in the same
formalism as is used for the declarative side. All in all we end up with a flexible meth-
odology for describing computation, and this explains why DACTL turned out to be a
natural choice as intermediate language for the Flagship machine.

Let us now examine a couple of examples. Since our concern in this series of papers is
with equivalence of semantic models, we eschew discussion of the concrete syntax of
DACTL in the main, and draw term graphs directly, effectively dealing with an abstract
syntax. Nevertheless some conventions from DACTL’s concrete syntax creep in to our
pictures, eg. the caption of [Fig. 1.(a)], and in the examples in [Section 11].

Fac[•]

•

#Mul[• •]

#Fac[•]

∗Sub[• •]

1

^

^

Fig. 1.(a) Rule forFac[n] => #Mul[n ^#Fac[^∗Sub[n 1]]]

166 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

[Fig. 1.(a)] illustrates the non base case rule for the factorial function. The shaded part
is the left hand side, which is pattern matched to the graph being evaluated. Note that
it is the part accessible from the node pointed to by the fat arrow. (After this section,
we won’t bother doing the shading in pictures of rules.) The non-shaded part is the con-
tractum, a copy of which is glued to the redex when a match is found. The faint arrow
represents the single redirection of this rule, which stipulates that in the redirection
phase, in-arcs ofFac are to be redirected to the newMul node.

The markings (#, ^, ∗), are DACTL’s mechanism for controlling evaluation strategy.
Briefly, a node marked with a number of#’s is suspended, and must wait for that num-
ber of “notifications” to arrive from those of its children to which it is connected along
out-arcs marked witĥ, the notification marking. Each time such a notification arrives
(notifications are the other kind of atomic action besides rewrites), the^ on the arc in
question is deleted, and the number of#’s on the parent is decremented. When the latter
reaches zero, the parent is marked with∗, the active marking, and the parent is said to
be active. An unmarked node or arc is said to be idle, (unmarked arcs are also called
normal).

DACTL stipulates that only active nodes may be roots of redexes, and that selection of
which active node to reduce next is nondeterministic. When an active node is selected
for rewriting one of two things happens. If there is a rule, the root of whose LHS will
match at the given active node, the active marking is removed from the root of the redex
and rule execution proceeds as indicated above. If there is no such rule, the active mark-
ing is removed as in the other case, and notifications are sent up along all^-marked in-
arcs of the node. Normally the parents of these nodes at the tails of such in-arcs are
waiting for these notifications by being#-marked. (In fact we will demand this later on
in this paper.)

Note that the metaphor of sleeping while waiting for a sub-computation to complete,
before being woken and continuing, is fairly universal in computing, being found in im-
plementations of declarative languages, in the procedure call/return mechanism of im-

Fig. 1.(b) An evaluation ofFac[5]

∗Fac[•] ⇒ #Mul[• •] ⇒ … ⇒ ∗Mul[• •] ⇒ ∗120 ⇒ 120

5
#Fac[•]

∗Sub[• •]

15

5 24
^

^

167Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

perative languages, and at higher levels of abstraction too. This at least partly explains
DACTL’s suitability for a wide variety of applications.

[Fig. 1.(b)] illustrates some of the stages of the evaluation ofFac[5], where for clarity,
garbage is collected “as we go”. In reality DACTL does not say anything at all about
garbage, in the sense that no node in any computation step is ever destroyed, no matter
how useless it has become. We will address the issue of garbage more comprehensively
in [Section 5]. Aside from this perhaps surprising feature, DACTL provides mecha-
nisms for rule selection, inbuilt operators for common data-types such as integers and
booleans, a module discipline, interfacing between modules and to the outside world,
and so on. We will not however pursue these matters except as they directly affect the
definition of the MONSTR language below.

[Fig. 2] shows some basic rules for semaphore handling. Among other things this illus-
trates the utility of non-root redirection, particularly in imperative programming. [Fig.
2.(a)] shows how a free semaphore is claimed, and how the success of the operation is

GetSemaphore[•] ∗Succeeded

Free Busy

Fig. 2.(a) Rule for obtaining a free semaphore.

GetSemaphore[•] #GetSemaphore[•]

Busy

Fig. 2.(b) Rule for waiting for a busy semaphore.

^

ReleaseSemaphore[•] ∗Succeeded

Busy ∗Free

Fig. 2.(c) Rule for releasing a semaphore.

168 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

communicated to the waiting parent. (It is assumed that symbolSucceeded has no
rules.) In [Fig. 2.(b)], if the semaphore isBusy, the suspension mechanism using # and
^ markings achieves the required semantics. In [Fig. 2.(c)], the activeFree symbol
(also assumed to have no rules), will when it rewrites, notify any suspendedGetSema-
phores, which will then have an opportunity to claim the resource required.

3 A FORMAL DEFINITION OF DACTL REWRITING

Although the intuitions of the previous section are very useful in thinking about
DACTL rewriting, a formal definition is ultimately necessary, and we provide one here.
The version of DACTL we present is tuned to our future requirements, and differs in
minor detail from the current language definition, but this is not of importance.

We assume we are given an alphabetS = {S, T, …} of node symbols. When we wish
to refer to specific symbols we will write them likeS, T. But when we speak about sym-
bols in general in the meta-language we will use italics thusS, T.

Definition 3.1 A term graph (or just graph)G, is a quintuple (N, σ, α, µ, ν) where

(1) N is a set of nodes.

(2) σ is a mapN → S, which labels each node.

(3) α is a mapN → N*, which maps each node to its sequence of children.

(4) µ is a mapN → { ε, ∗, #, ##, ###, … #n (n ≥ 1)}, which maps each node to its
node marking (idle, active, once, twice… n times suspended).

(5) ν is a mapN → { ε, ^}*, which maps each node to the sequence of arc markings
on the arcs to its children (each either the normal or notification marking).

Clearly we must have for allx ∈ N, dom(α(x)) = dom(ν(x)), where the domain of a se-
quence is the set of its indices.

We writeA(x), the arity of a nodex, for dom(α(x)) = dom(ν(x)). Note thatA(x) is a set
of consecutive natural numbers starting at 1, or empty. When dealing with more than
one graph (or pattern — see below), we subscript the objects defined in (1) – (3) above
with the name of the graph in question to avoid ambiguity. Also we allow ourselves to
write x ∈ G instead ofx ∈ N(G) or x ∈ NG etc. Each child nodec of some nodep de-
termines an arc of the graph, and we will refer to arcs using the notation (pk, c) to indi-
cate thatc is thek’th child of p; i.e. thatc = α(p)[k] for somek ∈ A(p). The mapsµ, ν
are referred to as the markings and are mainly concerned with encoding execution strat-
egies, whileN, σ, α are referred to as the graph structure and provide the main informa-
tion content of the graph.

For ease of use, the names are meant to be reasonably alliterative:σ for symbols,α for
arcs,µ for markings,ν for notifications.

[Fig. 3] below shows a term graph, in which each node is depicted by its symbol fol-
lowed by its sequence of out-arcs in brackets, and only non-idle markings are shown.
Obviously term graphs are directed graphs. We use standard digraph terminology be-
low where necessary without further comment; eg. path, semipath, and accessibility of
one node from another. (Recall a semipath ignores the orientation of arcs.)

169Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

For rewriting, we need a notion of pattern, and a sufficiently flexible notion of pattern
matching. For this reason we introduce a symbolAny not inS.

Definition 3.2 A pattern is defined as in definition 3.1 except that the signature ofσ is
N → S ∪ {Any}, andAny-labelled nodes must satisfy

(ANY) σ(x) = Any ⇒ A(x) = ∅ i.e.α(x) = ν(x) = ∅

Any-labelled nodes are called implicit whereas other nodes are explicit. (Thus every
graph is a pattern but not vice-versa.)

Patterns have a natural notion of homomorphism.

Definition 3.3 Let P, Q be patterns (and letP have a rootr). A node maph : P → Q
is a homomorphism toQ at t ∈ Q iff (h(r) = t and) for all explicit nodesx ∈ P

(1) σ(x) = σ(h(x)), i.e.h is label-preserving.

(2) A(x) = A(h(x)), i.e.h is arity-preserving.

(3) For allk ∈ A(x), h(α(x)[k]) = α(h(x))[k], i.e.h is order-preserving.

Suppose in addition the following hold:

(4) µ(x) = µ(h(x)), i.e.h is node-marking-preserving.

(5) For allk ∈ A(x), h(ν(x)[k]) = ν(h(x))[k], i.e.h is arc-marking-preserving.

In such a case we say thath preserves markings. (To emphasise the converse, we can
call ordinary homomorphisms, graph structure homomorphisms.)

Omitting mention of roots, definition 3.3 serves just as well for graphs and unrooted pa-
terns as it does for rooted patterns. Homomorphisms are also called matchings.

Definition 3.4 A ruleD is a quadruple (P, root, Red, Act) where

(1) P is a pattern, called the full pattern of the rule.

(2) root is an explicit node ofP called the root, and all implicit nodes ofP are acces-
sible from the root. Ifσ(root) = S, thenD is a rule forS. The subpattern ofP
of nodes and arcs accessible from (and including)root is called the left patternL

∗F[• •]

Cons[• •] Var

2 Nil

#Q[•]

^

Fig. 3 A term graph.

Root[•]

170 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

of the rule, and nodes ofP not inL are called contractum nodes.L is unmarked,
i.e. for allx ∈ L, µ(x) = ε, andν(x)[k] = ε for all k ∈ A(x).

(3) Red is a set of pairs of nodes, (called redirections) such thatRed⊆ L × P, and
Red satisfies the invariants (RED-1), (RED-2) and (RED-3) below:

(RED-1) Red is the graph (in the set theoretic sense) of a partial function.

(RED-2) (a, b) ∈ Red⇒ a is an explicit node ofL.

(RED-3) {(a, b), (a′, b′)} ⊆ Red anda ≠ a′ ⇒ σ(a) ≠ σ(a′).

For (a, b) ∈ Red, a is called the LHS andb the RHS of the redirection.

(4) Act is a set of nodes (called activations) ofP such thatAct ⊆ L.

[Fig. 4] is a picture of a rule, withroot indicated by the short stubby arrow,Red indicat-
ed by the dotted arrows, andAct indicated by adorning the relevant (single in this case)
nodes ofL with a∗ (these are unmarked according to definition 3.4.(2)). Note that we
have labelled the implicit nodes with theAny symbol here in contrast to [Fig. 1].

A DACTL system is (for us) just a set of rules. Rewriting proceeds via three stages:
root selection, rule selection and rule execution.

Let G be a graph that is to be rewritten, and assume some systemR understood.

Definition 3.5 Root selection is the nondeterministic choice of one of the active nodes
of G to act as the root of the redex for rewriting. Call itt, the chosen root.

Definition 3.6 Let t be the chosen root inG. LetSel = {D | there is aD ∈ R such that
there is a matchingg : L → G of the left pattern L of the full patternP of the ruleD to
G at t}. Rule selection is the nondeterministic choice of a member ofSel assuming it is
non-empty. The chosenD makest the root of the redexg(L) and D the selected rule that
governs the rewrite.

Evidently there is a matching of the left subpattern of the rule in [Fig. 4] to the graph in
[Fig. 3], with a redex rooted atF, and this rule and graph will provide us with a running
example.

F[• •]

Cons[• •] Var

Any ∗Any

#G[• •]

∗SUCCEED

^

Fig. 4 A rule.

171Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Assuming we have a selected rule and redex, rule execution (or rewriting according to
the rule governing the rewrite) proceeds in three phases: contractum building, redirec-
tion, and activation. AssumeG, t, D = (P, root, Red, Act) andg given as above.

Contractum building adds a copy of each contractum node ofP to G. Node markings
for such nodes are taken fromP. Copies of arcs ofP from contractum nodes to their
children are added in such a way that there is a graph structure homomorphism (called
the extended matching)g′ : P → G′ from the whole ofP to the graph being created,
which agrees withg onL. Arc markings are again taken fromP.

Doing this for our running example yields [Fig. 5]. We see that copies of exactly the
contractum nodes and arcs, suitably marked, have been added, and that this enables the
extended matchingg′ of the whole ofP to be constructed.

More formally we have the following.

Definition 3.7 Assume the preceding notation. Let the graphG′ be given by

(1) NG′ = NG ∪+ (NP – NL) where∪+ is disjoint union.

(2) σG′(x) = σG(x) if x ∈ G,
σG′(n) = σP(n) if n ∈ P – L.

(3) αG′(x)[k] = αG(x)[k] if x ∈ G, for k ∈ A(x),
αG′(n)[k] = αP(n)[k] if both n andαP(n)[k] ∈ P – L, for k ∈ A(n),

g(αG(n)[k]) if n ∈ P – L andαP(n)[k] ∈ L, for k ∈ A(n).

(4) µG′(x) = µG(x) if x ∈ G,
µG′(n) = µP(n) if n ∈ P – L.

(5) νG′(x)[k] = νG(x)[k] if x ∈ G, for k ∈ A(x),
νG′(n)[k] = νP(n)[k] if n ∈ P – L, for k ∈ A(n).

Redirection takes each arc (pk, c) such thatc = g′(a) for some (a, b) ∈ Red and replaces
it with (pk, g′(b)). This can be done consistently since the LHSs of two distinct redirec-
tions cannot map to the same node ofG since (RED-3) means that their node symbols

∗F[• •]

Cons[• •] Var

2 Nil

#Q[•]

^

Root[•]

#G[• •]

∗SUCCEED

^

Fig. 5 Contractum Building.

172 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

are different and so the nodes cannot be identified in a matching. All such redirections
are performed simultaneously.

Performing the redirections on our example yields [Fig. 6].

More formally we have the following.

Definition 3.8 Assume the preceding notation. Let the graphG′′ be given by

(1) NG′′ = NG′.

(2) σG′′ = σG′.

(3) αG′′(x)[k] = g′(b) if (a, b) ∈ Red andg′(a) = αG′(x)[k], for k ∈ A(x),
 αG′(x)[k] for k ∈ A(x), otherwise.

(4) µG′′ = µG′.

(5) νG′′ = νG′.

OnG′′ the mapg′ induces a mapg′′ : P → G′′ which is now just a node map, rather than
a homomorphism.

Activation makes active theg′′-images of idle nodes inAct, and also makes theg′′-im-
age oft idle, unless it was one of them itself. Doing this for our running example yields
[Fig. 7]. More formally we have the following.

Definition 3.9 Assume the preceding notation. Let the graphH be given by

(1) NH = NG′′.

(2) σH = σG′′.

(3) αH = αG′′.

(4) µH(x) = If a ∈ Act andg′′(a) = x andµG′′(x) = ε Then ∗
Else If x = t andt ∉ g′′(Act) Then ε
Else µG′′(x).

(5) νH = νG′′.

∗F[• •]

Cons[• •] Var

2 Nil

#Q[•]

^

Root[•]

#G[• •]

∗SUCCEED

^

Fig. 6 Redirection.

173Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Note how root quiescence is effectively done last in this definition, in contrast to the in-
formal account of [Section 2] where it was mentioned first. The net effect is the same
of course, but definition 3.9 will prove more convenient later. OnH, g′′ induces a map
h : P → H which is of course another node map.

Definition 3.10 The result of the rewrite of the redexg : L → G according to the rule
D = (P, root, Red, Act) is the graphH produced by applying definitions 3.7 – 3.9.

Given a chosen root, the above applies providedSel is non-empty. IfSel is empty, then
instead of a rewrite, notification takes place. Notification causes the chosen root to be
quiesced as in a rewrite, all notification in-arcs to the chosen root to lose their notifica-
tion marking, and parent nodes of such in arcs to have any non-zero suspension marking
to be decremented.

In [Fig. 7], assuming there are no rules forNil or SUCCEED, there is scope for two
notifications. When they have both been performed, [Fig. 8] results.

More formally we have the following.

Definition 3.11 Let t be the chosen root in a graphG such thatSel is empty. Let the
graphH be given by

F[• •]

Cons[• •] Var

2 ∗Nil

#Q[•]

^

Root[•]

#G[• •]

∗SUCCEED

^

Fig. 7 Activation.

F[• •]

Cons[• •] Var

2 Nil

∗Q[•]

Root[•]

∗G[• •]

SUCCEED

Fig. 8 Two notifications.

174 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

(1) NH = NG.

(2) σH = σG.

(3) αH = αG.

(4) µH(x) = If αG(x)[k] = t andµG(x) = #n (with n ≥ 1) and

νG(x)[k] = ^ Then #n–1 (where#0 = ∗)
Else If x = t Then ε
Else µG(x).

(5) νH(x)[k] = If αG(x)[k] = t andνG(x)[k] = ^ Then ε
Else νG(x)[k].

The result of the notification is the graphH.

Definition 3.12 Rewrites (done whenSel is non-empty) and notifications (done when
Sel is empty) are called execution steps.

Definition 3.13 An initial graph is one which consists of an isolated node with empty
arity, with the active node marking, and labeled by the symbolInitial.

Definition 3.14 An executionG of a systemR is a sequence of graphs [G0, G1…] of
maximum length such thatG0 is initial and for eachi ≥ 0 such thati+1 is an index ofG,
Gi+1 results fromGi by some execution step at some arbitrarily selected active nodeti
of Gi. Graphs occuring in executions are called execution graphs.

Heavy use of induction over executions will be made in the remainder of this series of
papers. It is not a great overestimate to say that it is the only technique that works in
general for establishing properties of systems.

Remark. Our definitions so far concealed a little subtlety concerning disjoint unions.
In constructive definitions of disjoint union, the members of such a union are tagged so
that one can discern their origin. Our definition 3.7 omitted to do this. This is not nor-
mally a source of difficulty unless one is interested in “all possible” disjoint unions that
can be built from some base sets. However a proper definition would take this into ac-
count. In this case a nodex in G and its representative inG′ after contractum building,
are no longer the same thing, and there is a natural injectioniG,G′ : G → G′ that takesx
to its representative inG′. Similarly one can introduce the notationsiG′,G′′ : G′ → G′′
andiG′′,H : G′′ → H for the obvious injections which happen to be identities. Also of
interest is the maprG′,G′′ : G′ → G′′ which maps nodes to their targets under redirection
in the second phase, and agrees withiG′,G′′ on nodes that are unaffected by redirection
(sorG′,G′′(x) = iG′,G′′(x) unlessx = h′(a) for some (a, b) ∈ Red, in which caserG′,G′′(x)
= iG′,G′′(h′(b))).

By composing the various mapsiG,G′, iG′,G′′ or rG′,G′′, etc., we can track the history of
a node through a rewrite. ThusiG,H(x) = (iG′′,H iG′,G′′ iG,G′)(x) is the node which is
the copy inH of x ∈ G, andrG,H(x) = (iG′′,H rG′,G′′ iG,G′)(x) is the node ofH thatx got
redirected to. In future we will often need to keep a close track of nodes through the
phases of a rewrite, particularly when relevant properties of nodes change from one
phase of a rewrite to another, so the above notation is a useful alternative to theg, g′,
g′′, h maps already introduced in pinpointing bits of the rewriting process.

175Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

For uniformity, we introduce the same notationiG,H = rG,H for the obvious injection on
nodes in a notification step. Therefore, composing a sequence ofiG,H maps or ofrG,H
maps, allows us to track the history of a node through an execution of the system. The
former tracks a node’s identity, and the latter tracks what a node “becomes” via redirec-
tion. Generically, any such composition will be callediX,Y or rX,Y whereX andY are the
first and last graphs in the sequence. An arc (pk, c) is evidently tracked by (iX,Y(p)k,
rX,Y(c)). A final property of these notations is that they are portable to situations in
which one wishes to define operations on graphs “universally”, i.e. up to isomorphism.

4 FUNDAMENTAL PROPERTIES — BALANCEDNESS
AND STATE SATURATEDNESS

In this section we show that DACTL rewriting preserves two simple invariants which
will prove crucial later on.

Definition 4.1 A nodex in a graphG is balanced iff forn ≥ 1,

µ(x) = #n ⇔ |{ k | ν(x)[k] = ^} | = n

Thus a node is balanced if it is waiting for exactly the number of notifications it might
ever receive. We say that a pattern or graph is balanced iff every node is balanced.

Theorem 4.2 Suppose in a DACTL systemR, in every ruleD = (P, …), P is balanced.
Then every execution graph ofR is balanced.

Proof. By induction on executions. An initial graph is balanced. Furthermore, notifi-
cations preserve balancedness, since for each notification marking removed from an
arc, a suspension marking is removed from the parent node. We check that the phases
of a rewrite do not affect balancedness. Contractum building preserves balancedness,
as all new nodes added to the graph are balanced by the assumption on the full patterns
of rules. Redirection only affects the heads of some arcs, so preserves balancedness.
Finally, activation and root quiescence only affect the node markings on non-suspended
nodes, thus preserving balancedness. So we have the result by induction over execu-
tions.

Let V be a subset of the symbols, called stateholders (or variables). For the moment,
we impose no extra conditions onV, but later we will do so.

Definition 4.3 An arc (pk, c) of a graphG is state saturated iff

ν(p)[k] = ^ andµ(c) = ε ⇒ σ(c) ∈ V

A node of a graph is state saturated iff all of its in-arcs are state saturated. Thus a node
is state saturated if it cannot be both idle, and the target of a notification arc, without
being labelled by a stateholder. Likewise, a graph or pattern is state saturated if all of
its nodes and arcs are.

Theorem 4.4 Suppose in a DACTL systemR, for every ruleD = (P, root, Red, Act)
we have:

(1) For allx ∈ P, x is state saturated, orx ∈ Act.

(2) (root, b) ∈ Red for someb ∈ P,

(3) (a, b) ∈ Red andµ(b) = ε ⇒ σ(b) ∈ V or b ∈ Act.

176 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Then every execution graph ofR is state saturated.

Proof. By induction over executions. An initial graph is state saturated. A notification
step clearly preserves state saturatedness, since for the only node which becomes idle
all notification in-arcs become idle. We argue that rewrites preserve state saturatedness
as follows.

Let Gi be rewritten toGi+1, using a ruleD = (P, root, Red, Act), and a redexgi : L → Gi.
Assume the usual notation for the pieces of a rewrite (eg. mapsgi, gi′, gi′′, andgi+1 :
P → Gi+1). Consider contractum building. It is easy to check that all new nodes intro-
duced inG′i are state saturated by (1) sinceAct⊆ L. Obviously the nodes ofGi′ –gi′(P)
are state saturated since they continue to have (gi′ copies of) just the same arcs they had
in Gi, andGi is state saturated by the induction hypothesis. This leaves the nodes of
gi′(L). Nodes ingi′(L) – gi′(Act) are state saturated because any new arcs they acquired
are state saturated by (1). This leaves a set of nodesgi′(χ) ⊆ gi′(Act) ⊆ gi′(L) ⊆ Gi′
which fail to be state saturated as they acquired a non-zero number of notification in-
arcs during contractum building, but were idle, notV-labelled, and without notification
in-arcs (and thus state saturated by default) inGi. ThereforeGi′ may fail to be state sat-
urated, but just for this reason.

Now consider redirection and activation. All arcs ofGi+1 are copies, or redirected cop-
ies of arcs ofGi′. We check that all arcs ofGi′ end up state saturated inGi+1 which is
sufficient. Leaving aside the phenomenon of root quiescence for the moment, there are
three cases. Case (a): in-arcs of nodes ingi′(χ) ⊆ gi′(Act) which are not redirected.
These are unchanged by redirection, and have their child nodes activated during activa-
tion, restoring state saturatedness to case (a) nodes. Case (b): in-arcs of nodesy which
are redirected. Let (xk, y) be a redirected arc, withgi′(a) = y and (a, b) ∈ Red. If σ(b)
∈ V or µ(gi′(b)) ≠ ε, then (thegi′′ copy of) (xk, gi′(b)) is state saturated. In case not, we
know b ∈ Act by (3) above. Thus the activation phase, makingGi+1, will make
µ(gi+1(b)) = ∗ by definition 3.9.(4). This restores state saturatedness to all case (b)
nodes. Case (c): in-arcs of all other nodes. These are state saturated inGi′ and do not
suffer redirection. They remain state saturated throughout the redirection and activation
phases.

Finally we return to the root, to deduce that root quiescence cannot destroy state satu-
ratedness. Ifgi′′(root) has any in-arcs, it must have been the target of a redirection and
thus eitherµ(gi+1(root)) = ∗ or σ(gi+1(root)) ∈ V by (3). Alternatively ifgi′′(root)
wasn’t the target of any redirection, it hasn’t any in-arcs by (2), and so is state saturated
trivially.

It is not hard to check that all our example rules so far have been both balanced and state
saturated, provided we have {Busy, Var} ⊆ V. (Later we will also wantFree ∈ V, for
other reasons.)

Together, balancedness and state saturatedness serve to exercise control over dependen-
cies of related subcomputations. Suspension chains must be mediated by suitably
marked nodes and arcs, and must end, either in pending subcomputations, or in nodes
labelled specially for the purpose byV. This will prove to be important later on.

177Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

5 GARBAGE AND STANDARD REDEXES

By now the reader will be keenly aware that no node is ever destroyed during an exe-
cution step. Therefore the graphs in an execution tend to accumulate more and more
nodes which have long since ceased to be useful. These are garbage nodes, and any
genuine implementation will need to collect such garbage if it is to be capable of any-
thing other than trivial computations. Our treatment of garbage in this section is thus
geared towards implementation models as discussed later in this paper.

In reality many different notions of liveness and garbage may be imposed on the ab-
stract rewriting model described in [Section 3]. Here is the one we will use.

Definition 5.1 LetG be a graph, andx a node ofG. Thenx is live iff it can be proved
so on the basis of the following rules of inference:

(1) If σ(x) is a special symbolRoot, thenx is live.

(2) If µ(x) = ∗, thenx is live.

(3) If p is live and (pk, x) is an idle arc, thenx is live.

(4) If c is live and (xk, c) is a notification arc, thenx is live.

Definition 5.1 is nothing more than a proof system. (We will use an obvious sequent
notation where appropriate below.) Thus by clauses (1) and (2),Root-labelled and ac-
tive nodes form base cases of (axioms for) proofs of liveness; and liveness is propagated
down normal arcs and up notification arcs (which makes clauses (3) and (4) into ana-
logues of modus ponens). In the case of notification arcs, this squares well with the idea
that nodes which are suspended waiting for some notification, should not be regarded
as redundant.

Definition 5.2 LetG be a graph. The set of live nodes ofG is denoted Live(G), and
NG – Live(G) is denoted Gar(G), the garbage set ofG. An arc (pk, c) of G is live iff both
p andc are live; otherwise it is garbage. Note that the inference rules in definition
5.1.(3) and 5.1.(4) give “local” means of proving the liveness of any given live arc
(pk, c) even if both parent and child can be proved live without mentioning (pk, c), as a
byproduct of some connectivity properties of the graphG.

Definition 5.3 The live subgraph of a graphG, LSG(G), consists of the live nodes and
live arcs ofG.

Note that the live subgraph need not be a graph in the sense that it satisfies all the in-
variants implied by definition 3.1, since a live node may have a garbage notification out-
arc to a garbage child node. Live nodes may also have garbage normal in-arcs from gar-
bage parent nodes, though this does not threaten the invariants of definition 3.1.

The most important thing about garbage is its persistence. Once a node of an execution
graph is proclaimed garbage, no execution step should cause it to be capable of being
proved live ever again. In this respect, our definition is lacking.

Counterexample 5.4 [Fig. 9] shows a case in which a garbage node is made live by
rewriting. The redex is the whole of the illustratedGi. The nodeA is thus garbage. The
action of the rule is merely to create theRoot node as another parent ofA, and to redi-
rect bothF andG to Root. By parts (1) – (3) of definition 5.1,A becomes live inGi+1.
Thus definition 5.1 is not directly useful without additional conditions.

178 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Definition 5.5 With the usual terminology, a matchingg : L → G is a standard redex,
iff the follwing hold.

(1) g(root) is active.

(2) For all explicit nodesx of L other thanroot, g(x) is idle.

(3) All arcs ing(L) are normal.

Remark 5.6 For a matching to be a candidate for rewriting, definition 5.5.(1) must
hold anyway, and in a balanced graph, a redex is standard iff definition 5.5.(1) and
5.5.(2) hold.

The next theorem says that garbage remains garbage after rewrites of standard redexes.

Theorem 5.7 Letg : L → G be a standard redex, rewritten to produce a graphH by a
ruleD = (P, root, Red, Act). Then

(1) If x is a garbage node ofG, theniG,H(x) is a garbage node ofH.

(2) If (pk, c) is a garbage arc ofG, then (iG,H(p)k, rG,H(c)) is a garbage arc ofH.

Proof. It is easy to see that the whole ofg(L) for a standard redex is live. Ifq is a node
not in g(L), then if (qk, z) is a notification arc withz ∈ g(L) thenq is live; similarly if
(zk, q) is a normal arc withz ∈ g(L) thenq is live. Each proof of liveness that depends
on the liveness ofg(L) and proves the liveness of a node or arc outside ofg(L), must
involve a step like one of these two cases, shown below in [Fig. 10]. We call these the
redex-emergent steps, and the arcs involved, the redex-emergent arcs.

Consider the garbage nodex in G. There is no proof of liveness ofx in G sox ∉ g(L).
After contractum building, all proofs of liveness inG remain valid after being mapped
to G′ because of the injectioniG,G′ which preserves markings. New proofs of liveness
may have been created involving the contractum nodes, but none of them can prove
iG,G′(x) live. For suppose not. To do so such a proof would have to follow a semipath
from a contractum node toiG,G′(x). Since such a semipath must pass throughg′(L), we
would have a redex-emergent step in the proof. Since all redex-emergent steps are un-
changed fromG, the final part of such a proof would correspond with the final part of a
proof inG, andx would be live inG, a contradiction.

After redirection, all previous proofs not mentioning redex or contractum nodes remain
unchanged, since for arcs not containing a redex or contractum node,iG′,G′′ extends to

Fig. 9 A garbage node becomes live.

∗F[•]

#G[•]

A

^

F[•]

#G[•]

A

^

∗Root[•]
⇒

Gi+1Gi

179Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

a marking-preserving homomorphism. Callg′′(P) the extended redex for brevity. By
the previous remark, any proof of liveness of (theiG,G′′ image of)x in G′′ must involve
an extended-redex-emergent step. Refering to [Fig. 10], there are two cases.

The Normal Case: Here we note that a normal arc (zk, q) with z in the extended redex
must havez in g′′(L) since redirection does not affect the tails of arcs. Thus the final
part of the proof would correspond with the final part of a proof inG′, andiG,G′(x) would
be live inG′, a contradiction.

The Notification Case: Here we note that a notification arc (qk, z) in G′′ is the (iG′,G′′,
rG′,G′′) image of a notification arc (qk, z*) of G′. If z* did not get redirected, thenz* is
in g′(L) as this is the only part of the extended redex inG′ accessible from outsideg′(P).
But theng′(L) is live, and so the final part of the proof would correspond with the final
part of a proof inG′ andiG,G′(x) would be live inG′. If z* did get redirected toz, then
z* is in g′(L) since LHSs of all redirections are. Once more we would find a proof with
a redex-emergent step involving (qk, z*), showing thatiG,G′(x) was live inG′.

We conclude that theiG,G′′ image ofx remains garbage inG′′. (Note also that the redi-
rection phase might have destroyed some proofs of liveness if there were non-root re-
directions, since the LHSs of such redirections frequently become inaccessible from the
root of the redex.)

Finally the root quiescence and activation phase. Ifh(root) is idle inH, some proofs of
liveness that exist forG′′ are destroyed, which cannot make theiG,H image ofx live. If
some nodes ofh(L) are activated, some new proofs of liveness inH without counter-
parts inG′′ might be created. However, all such activated nodes are inh(L). Thus any
liveness proof utilising an extended-redex-emergent step involving such a node will
have a final part for which a corresponding liveness proof inG′ can be found, by tracing
back through the redirection phase. So whatever nodes are made live this way, theiG,H
image ofx is not one of them. We conclude thatx is garbage inH.

For a garbage arc (pk, c), we argue that at least one ofp or c is garbage and thus outside
of g(L) in G. By the preceding, itsiG,H image is still garbage inH. If p is the garbage
node, then (iG,H(p)k, rG,H(c)) is obviously garbage. Ifc is the garbage node, then be-
causec is outside ofg(L), rG,H(c) = iG,H(c), the latter of which is garbage inH, giving
the conclusion. We are done.

q live

z live (qk, z) : notif. arc

… …

… …

q live

z live (zk, q) : norm. arc

… …

… …

Fig. 10 Redex-emergent steps in proofs of liveness;
z is live because it is in the redex.

Notification CaseNormal Case

180 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

So standard redexes behave well with respect to garbage preservation. Further we have
the following result.

Theorem 5.8 LetG be a graph andt an active node ofG. Suppose a notification step
is performed att to produce graphH. Then

(1) If x is a garbage node ofG, theniG,H(x) is a garbage node ofH.

(2) If (pk, c) is a garbage arc ofG, then (iG,H(p)k, rG,H(c)) is a garbage arc ofH.

Proof. For a notification fromt, let the notification redex consists of all notification arcs
(zl, t) and their constituent nodes, since these are the only nodes and arcs manipulated
by the notification. The redex-emergent arcs are therefore normal arcs (tm, q), normal
arcs (zm, q), and notification arcs (qm, z). All such arcs are live inG sincet is active inG.

We recall that for notifications,rG,H = iG,H. InH, theiG,H image oft is idle, and theiG,H
images of all arcs (zl, t) are normal. TheiG,H images of redex-emergent arcs (zm, q) and
(qm, z) are live iff their correspondingz is live, and theiG,H images of redex-emergent
arcs (tm, q) are live iff t is live.

For a givenz, unless inG, µ(z) = # or µ(z) = ∗, whence inH, µ(iG,H(z)) = ∗, iG,H(z) will
not be live unless there is an alternative “nonlocal” proof of this, not involving the
marking oniG,H(z) or theiG,H image of the arc (zl, t). Similarly fort.

Notification may therefore destroy proofs of liveness of the redex-emergent arcs, and
thus proofs of liveness of other nodes, which depend on the liveness of the notification
redex inG. Since theiG,H images of no redex-emergent arcs are live that were not so
before, no node may be proved live that could not be proved so before, so notification
may create but not destroy garbage, and ifx, or (pk, c) was garbage inG, its iG,H image
is garbage inH.

Theorem 5.9 Executions whose steps consist only of rewrites of standard redexes, and
of notifications, preserve garbage.

We see therefore the importance of standard redexes. The semantic models we will con-
sider later in this investigation, are such that only standard redexes are ever rewritten.

The fact that garbage is regarded as computationally irrelevant means that we can con-
struct an equivalence relation on graphs, such thatG1 andG2 are equivalent iff their live
subgraphs are isomorphic. This gives us one of many possible notions of equivalence
for finite executions; viz. [G0, G1…] and [G′0, G′1…] are equivalent provided their final
graphs have isomorphic live subgraphs. This is a fairly coarse equivalence, and many
finer ones, based on various notions of bisimulation, are of course possible. We will not
pursue these further at this point.

Returning to the running example of [Section 3], we see that [Fig. 3] contains no gar-
bage, but that rewriting creates some garbage by the time we reach [Fig. 7]. Removing
the garbage (which in fact does not cause any loss of conformance to definition 3.1),
results in [Fig. 11]. We can also easily check that the redex in the running example was
indeed a standard redex.

We end this section with a couple of lemmas that will be useful in the next section.

181Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Lemma 5.10 (Overwriting lemma) Let G be a balanced graph, and letg : L → G be
a standard redex for a ruleD = (P, root, Red, Act). Denoting the result of contractum
building using a prime, as usual, let

Redg = {(g′(a), g′(b)) | (a, b) ∈ Red, g′(a) ≠ g′(b)}

Let (g′(a), g′(b)) ∈ Redg and suppose

(1) σ(a) ≠ Root.

(2) There is no (g′(c), g′(d)) ∈ Redg with g′(d) = g′(a).

(3) g′(a) ∉ g′(Act).

Thenh(a) is garbage in the graphH produced by the rewrite.

Proof. By (1),σ(g′(a)) ≠ Root, whenceh(a) in H cannot be proved live by clause (1)
of definition 5.1. Sinceg′(a) is redirected,a is explicit whenceg′(a) is either idle or the
root of the redex inG′ since the redex is standard. Thus by (3),µ(h(a)) ≠ ∗ in H whence
h(a) cannot be proved live by clause (2) of definition 5.1. Because by (2),g′(a) is the
LHS but not the RHS of a redirection,h(a) has no in-arcs (normal or otherwise) inH,
hence cannot be proved live by clause (3) of definition 5.1. Finally, sincea is explicit,
the redex is standard, andG is balanced,g(a) is not suspended inG, sog(a) has no no-
tification out-arcs inG, henceh(a) has none inH andh(a) cannot be proved live by
clause (4) of definition 5.1.

Lemma 5.11 (Moving lemma) LetG be a balanced graph, and letg : L → G be a stan-
dard redex for a ruleD = (P, root, Red, Act). Denoting the result of contractum building
using a prime, as usual, letRedg be as in lemma 5.10 and let (g′(a), g′(b)) ∈ Redg satisfy

(2) There is no (g′(c), g′(d)) ∈ Redg with g′(d) = g′(a).

Thenh(a) has no in-arcs inH.

Proof. Part and parcel of the previous proof.

2 ∗Nil

#Q[•]

^

Root[•]

#G[• •]

∗SUCCEED

^

Fig. 11 Garbage collection in the running example.

182 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

6 ABSTRACT PACKET STORE REWRITING,
AND OVERWRITING

In the previous sections, we discussed some properties of our graph rewriting model at
what could be called an abstract syntax level. In this section we move closer to a ma-
chine representation, though still a representation more suited to a serial execution mod-
el than the distributed store model we are ultimately interested in.

Definition 6.1 We assume given a storeΣ consisting of store locations ranged over by
l etc. Each store locationl may contain a packet. A packet at locationl may be regarded
as a data structure, containing

(1) a node markingµ(l), as for graph nodes,

(2) a symbolσ(l), taken fromS,

(3) a sequence of itemsα(l), each item being either a store locationl′, or BLANK ,

(4) a set of return addressesρ(l), each return address (or reversed pointer), being a
pair consisting of a store locationl′ together with an indexk into the sequence of
itemsα(l′), and writtenl′.k.

The correspondence between term graphsG, and packet store representationsΠ(G) is
straightforward enough. In words, node markings and symbols have direct analogues
in packets. Normal arcs correspond to items of a packet, or forward pointers, pointing
at other store locations; while notification arcs correspond to reversed pointers pointing
at aBLANK item in the parent packet, and residing in the return address set of the child
packet. The essential difference between the graph and packet worlds is thus the treat-
ment of notification arcs. Here is the formal statement.

Definition 6.2 A packet store contains a simple representation of a graphG = (N, σ,
α, µ, ν) iff there is an injective mapπ : NG → Σ : x |→ π(x) such that there is a packet
at each location in rng(π) such that

(1) µ(π(x)) = µ(x).

(2) σ(π(x)) = σ(x).

(3) For allk ∈ A(x),
α(π(x))[k] = If ν(x)[k] = ε Then π(α(x)[k])

Else BLANK

(4) l′.k ∈ ρ(π(x)) ⇔ there is az ∈ N such thatπ(z) = l′, α(z)[k] = x, ν(z)[k] = ^.

To enable the smooth implementation of rewriting below, we introduce a new node
symbolInd, not inS, (extending the signature ofσ above toS ∪ { Ind}), and use it as
the label for an indirection packet, transparent (when idle) to any pointer tracing mech-
anisms in the packet store. In this section,Ind packets will always be idle, and have
empty return address sets. Chains of suchInd packets, even chains that merge, are per-
fectly permissible provided they do not loop. We do not write down the obvious invari-
ant for this. To fully dereference anInd chain we introduce the notationα+ defined by

α+(l)[k] = If σ(α(l)[k]) = Ind Then α+(α(l)[k])[1] Else α(l)[k]

183Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

which is well founded because there are noInd loops. When representations of graphs
might contain suchInd packets, we no longer call them simple.

[Fig. 12] illustrates a graph and a non-simple packet store representation of it. Note that
we draw the return address set near the front of the packet, so that it occurs in a fixed
place in each packet, for convenience.

Note that the reversed pointer representation of notification arcs in the packet store is
ideally suited to the needs of a mark-scan garbage collector designed to implement the
notion of liveness in definition 5.1. (The mark phase of such a collector is of course
nothing more than the animation of an adequately large set of possible proofs of live-
ness in an execution graph. More specifically, the packet store structure explains why
we do not deduce liveness of notification arcs from parent to child rather than the con-
verse (or both); a packet store collector would have no means of locating such a child
from the parent.)

If garbage is to be collected in the packet store, we need only represent the live subgraph
of any particular graph. Since our implementation of rewriting in a packet store is in-
tended to reuse certain garbage packets when it is safe to do so, we will adhere to this
view subsequently. A notion of representation that is restricted to the live subgraph
might thus go as follows.

Fig. 12 A graph and a non-simple packet store representation.

#F[• •] ∗G[• •]

A B

^ ^

F ∅ • – ∗ G ∅ – •

ε Ind ∅ •

ε A ••

ε B ∅

184 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Definition 6.3 A packet store contains a live representation of a graphG = (N, σ, α, µ,
ν) iff there is an injective mapπ : NLSG(G) → Σ : x |→ π(x) such that there is a packet at
each location in rng(π) such that

(1) µ(π(x)) = µ(x).

(2) σ(π(x)) = σ(x).

(3) For allk ∈ A(x),
α+(π(x))[k] = If ν(x)[k] = ε Then π(α(x)[k])

Else BLANK

(4) l′.k ∈ ρ(π(x)) ⇔ there is az ∈ N such thatπ(z) = l′, α(z)[k] = x, ν(z)[k] = ^.

Note that this is almost identical to definition 6.2. The admittance ofInd chains is re-
vealed by the + superscript in clause (3), (omitting this superscript gives the definition
of simple live representations). Also the correspondence works well because proofs of
liveness follow normal arcs (forward pointers) from parent to child, and notification
arcs (reversed pointers) from child to parent, as already noted. Obviously, possibilities
between definitions 6.2 and 6.3, corresponding to choosing various subsets of Gar(G)
to be represented along with LSG(G), exist.

Our translation of rewriting will attempt to manipulate only packets belonging to the
redex itself, to avoid having to alter distant parts of the packet store, perhaps not easily
located. It will also reuse as many redex packets as possible to minimise the creation
of garbage. Of course such a strategy cannot yield a complete absence of garbage in the
packet store, as knowing exactly which redex packets become garbage during a rewrite
is impossible without a global search of the store; after all, a given redex packet may
have many or no live pointers (perhaps reversed) to it from outside the redex. Thus a
genuine implementation will need to incorporate a garbage collector, but this is outside
the scope of papers in this series.

Avoiding global searches of the packet store during rewriting, or avoiding the elaborate
caching mechanisms that might obviate the need for such searches, will be thus be sub-
optimal. However, we can regard the implementation of notification arcs by reversed
pointers, as a caching mechanism designed for the benefit of notification steps in defi-
nition 6.4 below if we wish.

To ensure that we only need to manipulate the redex packets, we will need to restrict to
the rewriting of standard redexes in balanced graphs, and insights such as the overwrit-
ing lemma 5.10, will prove invaluable. Of course the fact that a redex is standard and
balanced, means that all of it can be located straightforwardly by following forward
pointers from the root, an important aspect for a genuine implementation.

As a matter of notation we distinguish the various maps of different packet store repre-
sentations by subscripting in the obvious way, eg.πG : NG → Σ andπH : NH → Σ, for
representations of a graphG and (say) the result of a rewriteH.

We warm up with the much simpler construction for notifications. Here all we need to
do is reverse the return addresses in the notifying node, and change some packet mark-
ings.

185Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Definition 6.4 LetG be a graph andt ∈ G be an active node where notification is per-
formed yielding graphH. Let Π(G) contain a packet store representation of at least
LSG(G). DefineΠ(H) as follows.

Π(H) is asΠ(G) (in particular insofar asπG : NG → Σ = πH : NH → Σ, allowing us to
drop the subscripts onπ), except that:

(1) µH(π(t)) = ε.

(2) ρH(π(t)) = ∅.

(3) For alll.k ∈ ρG(π(t)),

(a) µH(l) = If µG(l) = # Then ∗
Else If µG(l) = #n (with n ≥ 1) Then #n–1

Else µG(l)

(b) αH(l)[k] = π(t)

Theorem 6.5 Definition 6.4 provides a correct implementation of notifications in that
if Π(G) contains a packet store representation of LSG(G), thenΠ(H) contains a packet
store representation of LSG(H).

Proof. Fairly self-evident given the simple nature of notifications.

Before we give the construction for rewriting, some descriptive motivation is in order.

We wish to avoid having to change distant parts of the packet store representation of a
graph during rewriting. Therefore, where a pointer of some sort (either forwards or re-
versed), points at a location in the store, and the node the location represents is to be
redirected, it is preferable that the packet representing the RHS of the redirection be
made to overwrite the packet representing the LHS. In general this is impossible as the
following non-balanced example shows.

Example 6.6 (Bottom Avoiding Merge) Consider the rules shown in [Fig. 13] within a
packet store representation. From an examination of the contractum part of these rules,
we see that typically, aBAM node is created singly suspended on a pair of notification
arcs. Thus as soon as either of these arcs notifies, theBAM node is active and can re-
write, despite having another out-arc which is a notification arc, and which in principle
could notify at any moment. In general, theBAM nodes will also have normal in-arcs
from other parts of the graph, which wish to consume the lists being nondeterministi-
cally merged.

In a packet store representation, aBAM packet will thus have both forwards and re-
versed pointers pointing at it. Consider aBAM rewrite. In order that distant forwards
pointers directed at the LHSBAM node do not need to be altered, the contractumCons
packet, to which the LHSBAM packet is redirected, should overwrite the LHSBAM
packet. However, in order that distant reversed pointers directed at the LHSBAM do
not need to be altered, the contractumBAM packet, to which they should point after the
rewrite, should overwrite the LHSBAM. Clearly we can’t have both of these possibil-
ities. Restricting to standard redexes in balanced graphs avoids these problems, as there
are never any reversed pointers targeted at any redirectable node (i.e. LHS of a redirec-

186 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

tion). This opens the door to definition 6.7. (How to do bottom avoiding merges under
such restrictions will be described later.)

First some more preamble. Consider the redirectionsRed, of a ruleD = (P, root, Red,
Act). Given a nodea ∈ L, eithera is redirected (i.e. (a, b) ∈ Red for someb) or not. If
so, thenb is either redirected or not, and so on. In general starting witha, we generate
a maximal chain of redirections. If this chain is finite, it either ends with a contractum
node, or with a LHS node which is not itself redirected. If the chain is infinite, we have
a cycle of redirections (assumingP is finite). Examples are given in [Fig. 14.(a1) – (c1)]
of each of the cases, showing the structure of a sample set of redirections inRed. Con-
tractum nodes are shown open while LHS nodes are shown filled in; and an arrow rep-
resents a redirection, eg. the node represented by the packetA at store location1, is to
be redirected to the node represented by packetB at store location2.

Assume the redex is standard and balanced and for simplicity that the matching is in-
jective. Thus we know that there are no reversed pointers pointing at any of the LHSs
of redirections, as all arcs of the redex are normal.

Fig. 13 Bottom Avoiding Merge.

BAM[• •]

Cons[• •]

∗Cons[• •]

#BAM[• •]

Any ∗Any ∗Any

^
^

BAM[• •]

Cons[• •]

∗Cons[• •]

#BAM[• •]

∗Any Any ∗Any

^

^

187Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

1 2 3 4

5

6

7

A B C D

E

F

G

1 2 3 4

5

6

7

A B C D

E

F

G

1 2 3 4

5

6

7

A B C D

E

F

G

1 2 3 4

5

6

7

B C D

E

1 2 3

5

6

7

B C D

E

J

H

I

K

L

8

10

9

11

12

1 2 3 4

5

6

7

B C H

E

D

I

J
8

10

9

11

12

Fig. 14 Some multiple redirections: (a1) – (c1), before; (a2) – (c2), after.

(a1) (a2)

(b1) (b2)

(c1)

(c2)

188 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Consider Fig. [14.(a1)]. To redirectC to D, it is sufficient to overwrite location3 with
D right away instead of allocating location4 toD. To redirectA toB, it is likewise suf-
ficient to overwrite location1 with B, given thatB is itself to be redirected. Since both
B andE are to be redirected toC, it is not clear which of locations2 or 5 should be
overwritten withC. Doing both is not a good idea as it destroys the injectivity of the
representation of (live sub)graphs. To overcome this we overwrite location2 with C,
and location5 with anInd packet, pointing at location2. Forward pointers pointing at
5 will be deflected to2 where they will findC as required. RedirectingF andG to E is
similar. Note that overwriting7, 6, 1 with Ind, E, B respectively, relies crucially on the
overwriting lemma 5.10. (We assume that all the hypotheses for 5.10 are in fact satis-
fied).

We remark that this takes care of forward pointers pointing atA, B, etc. but not of re-
versed pointers inA, B etc. pointing at other nodes. IfX is redirected toY, the reversed
pointers ofX must be accumulated into the return address set ofY. Similarly when sev-
eral nodes are redirected toY, all of their reversed pointers must be accumulated inY.
If Y is simultaneously to be redirected toZ, Y’s original reversed pointers must be
moved toZ, beforeY acquiresX’s reversed pointers.

Now consider [Fig. 14.(b1)] and the redirection ofC to D. BothC andD are existing
packets and may have forwards pointers directed at them. There are two possibilities.
One could overwrite4 with anInd pointing at3 and overwrite3 with D; or one could
overwrite3 with anInd pointing atD, given thatC is to overwrite2. The latter of these
has one crucial advantage.D may be a packet representing a node matched to an im-
plicit node of the left subpattern of the rule. Even in a standard redex of a balanced
graph such a packet could be suspended and have reversed pointers targeted at it. So
we want to leaveD where it is. The rest of [Fig. 14.(b1)] can be dealt with similarly to
[Fig. 14.(a1)], including the accumulation of reversed pointers, which all end up at the
representative of the RHS of the redirection.

[Fig. 14.(c1)] involves a cycle of mutually targeted redirections. To deal with this, we
move the packets in the cycle back one place in the cycle; thusD is to be found at10,
J at9 etc. Ind packets must be targeted at the new locations ofD andI from locations
3 and11, 12 respectively, to handle redirections toD andI from outside the cycle. Re-
versed pointers are handled in the usual manner.

In [Fig. 14.(a2) – (c2)], we show the result of these implementation decisions. A square
with a dashed out-arc represents anInd packet, and the reversed pointer manipulations
are not shown.

The above assumed that the redex was injective. If not, we must take care not to over-
write a location with anInd pointing (directly or via otherInds) to itself, as this would
yield a packet store which did not represent any (live sub)graph. The above arguments
and insights must thus be applied to the set {(g′(a), g′(b)) | (a, b) ∈ Red, g′(a) ≠ g′(b)}
as in lemma 5.10.

Going further, we notice that if a node is the LHS but not the RHS of a redirection, but
that it is not garbaged by virtue of being either activated, or beingRoot-labelled, then
in the result of a rewrite of a standard redex, it gets left with no in-arcs by the moving
lemma 5.11. We can exploit this in the packet store in the presence of overwriting, by
moving the corresponding packet before it gets overwritten; i.e. we allocate a fresh lo-

189Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

cation for it and copy the packet contents (except for the return address set), allowing
its original location to be reused as if the packet were indeed garbaged.

The following unusually long definition describes a packet store transformation that is
intended to implement a rewrite taking on board all of our preceding insights.

Definition 6.7 Begin Let g : L → G be a standard redex in a balanced graphG, of a
ruleD = (P, root, Red, Act). Using a prime to indicate the result of the contractum build-
ing stage of a rewrite as usual, let

Redg = {(g′(a), g′(b)) | (a, b) ∈ Red, g′(a) ≠ g′(b)} ,
Actg = {g′(a) | a ∈ Act},
Remg = {g′(a) | g′(a) ∈ Lg, and there is no (g′(c), g′(d)) ∈ Redg with g′(d) = g′(a),

and eitherσ(a) = Root or g′(a) ∈ Actg}.

Let Π(G) be a packet store representation of at least the live subgraph ofG.

We will give the rather imperative-looking description of the transormation in two phas-
es. Phase 1 will deal with contractum building and redirection, and will be split into
three subphases. Phase 2 will deal with root quiescence and activation. Phase 1 will
generate the packet storesΠ1.1, Π1.2, Π1.3, while Phase 2 will generate the packet store
Π2.

Phase 1.

Informally, the three subphases of Phase 1 are as follows. In the first, we allocate loca-
tions to all contractum nodes which are not the RHS of a redirection, but leave the pack-
ets at those locations partly incomplete; also we allocate new locations for nodes in
Remg, which cannot be garbaged, and copy the relevant packet contents. In the second,
we deal with all nodes involved in redirection, again leaving some packets incomplete.
In the third, we complete the incomplete packets left over from the first two subphases.

Subphase 1. For each contractum nodep say, ofg′(P) which is not the RHS of a redi-
rection inRedg, choose a distinct unused store locationl say, and create a packet there.
The packet marking and symbol are taken from the nodep. The sequence of items will
be filled in later, and the return address set is initialised to∅. Also for each node in
Remg, choose a fresh distinct unused store locationl say, and create a packet there
whose contents are identical to the existing packet which represents it in the represen-
tationΠ(G), apart from the return address set, which is assigned to∅.

Subphase 2. Define a redirection cluster to be a pair ({x1 … xn}, y) where (x1, y) …
(xn, y) ∈ Redg, and there is no other redirection inRedg with RHSy. The set {x1 … xn}
is called the LHS set of the cluster andy is called the RHS.

All redirection clusters are handled similarly and simultaneously, and there are four cas-
es depending on the nature ofy.

Case (1):y is a node in a cycle of redirections (eg.D in [Fig. 14.(c1)]). Thenx1 (say)
is also in the cycle. Ifx1 is represented by packetX1, atl1, …, xn by packetXn at ln, and
y by Y atm, then the marking, symbol and item list fromY are moved tol1, and all the
return address sets fromX1 … Xn are amalgamated with the return address set ofX1 at
l1. Locationsl2 … ln are overwritten byInd packets pointing tol1. In symbols, the
changes fromΠ1.1 are given by:

190 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

(a) µ1.2(l1) = µ1.1(m),

(b) σ1.2(l1) = σ1.1(m),

(c) α1.2(l1) = α1.1(m),

(d) ρ1.2(l1) = ∪i=1…n ρ1.1(li),

(e) Fori = 2… n : µ1.2(li) = ε, σ1.2(li) = Ind, α1.2(li) = [l1], ρ1.2(li) = ∅.

Case (2):y is a node ofg′(L) which is itself to be redirected (eg.B in [Fig. 14.(b1)]),
but which is not in a cycle of redirections. The transformation is as for case (1) except
that none of thexi’s are in a cycle either.

Case (3):y is a node ofg′(L) which is not itself redirected (eg.D in [Fig. 14.(b1)]). In
this case we overwritel1 … ln with Inds pointing tom, whereY is to remain. The return
address sets froml1 … ln are accumulated intoY. In symbols, the changes fromΠ1.1
are given by:

(a) µ1.2(m) = µ1.1(m),

(b) σ1.2(m) = σ1.1(m),

(c) α1.2(m) = α1.1(m),

(d) ρ1.2(m) = ρ1.2(m) ∪ ∪i=1…n ρ1.1(li),

(e) Fori = 1… n : µ1.2(li) = ε, σ1.2(li) = Ind, α1.2(li) = [m], ρ1.2(li) = ∅.

Case (4):y is a contractum node (eg.D in [Fig. 14.(a1)]). In this case we overwritel1
(say) with a packet representingy. The packet marking and symbol are taken from the
nodey. The sequence of items will be filled in later (although this could at a pinch be
done now). The return address set is the amalgamation of the return address sets from
l1 … ln. Locationsl2 … ln are overwritten byInd packets pointing tol1. In symbols,
the changes fromΠ1.1 are given by:

(a) µ1.2(l1) = µ(y),

(b) σ1.2(l1) = σ(y),

(c) ρ1.2(l1) = ∪i=1…n ρ1.1(li),

(d) For i = 2… n : µ1.2(li) = ε, σ1.2(li) = Ind, α1.2(li) = [l1], ρ1.2(li) = ∅.

Subphase 3. In this subphase we construct representatives of all arcs (pk, c) whose par-
ent nodep is a contractum node; represented by a packet atl by virtue of either subphase
1 or subphase 2 case (4). The child node of such an arc can be either another contractum
node or a redex node. In building the representatives of such arcs, we fill in the item
lists of representatives of contractum nodes, and insert reversed pointers into the return
address sets of representatives of both contractum nodes and redex nodes. Doing so re-
quires consideration of several cases as follows.

Consider a normal arc (pk, c) in g′(P).

191Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

• If c was itself a contractum node not the RHS of a redirection inRedg, thenα1.3(l)[k]
= π1.3(c) = π1.2(c) = π1.1(c), the location selected forc in subphase 1.

• If c was a contractum node that was the RHS of a redirection,α1.3(l)[k] is the location
of the packet thatc overwrote.

• If c was ing′(L) thenα1.3(l)[k] = π1.1(c), the original location ofc. (If c was redirect-
ed, either the target packet, or anInd pointing to the target will be at locationπ1.1(c), as
required. If not,c’s packet will still be where it was before.)

Now consider a notification arc (pk, c) in g′(P). In all cases,BLANK is put intoα1.3(l)[k].

• If c was itself a contractum node that was not the RHS of a redirection, then a return
addressl.k is added toρ1.2(π1.2(c)), and when all of these have been accumulated, the
result isρ1.3(π1.3(c)), whereπ1.3(c) = π1.2(c) = π1.1(c).

• If c was a contractum node that was the RHS of a redirection,l.k is added to the return
address set at the location thatc overwrote.

• If c was ing′(L), there are three subcases. Ifc was not redirected,l.k is added to
ρ1.2(π1.2(c)), whereπ1.2(c) = π1.1(c). If c was redirected, and the packet representing
the target is now atπ1.2(c) = π1.1(c), l.k is added toρ1.2(π1.2(c)). If c was redirected,
and anInd packet is atπ1.1(c), l.k is added toρ1.2(α1.2(π1.1(c))[1]), i.e. into the return
address set at the location pointed to by theInd.

Phase 2.

Phase 2 completes the new packet store representationΠ2, incorporating the effects of
root quiescence and the activations.

Let x ∈ g′(L).

If x is neither the LHS or the RHS of any redirection inRedg, then the packet locationl
representingx remains unchanged and

µ2(l) = If x ∈ Actg andµ1.3(l) = ε Then ∗
Else If x = g′(root) andx ∉ Actg Then ε
Else µ1.3(l)

If x is the LHS but is not the RHS of any redirection inRedg, then if all the hypotheses
of the overwriting lemma 5.10 were satisfied forx, h(x) is garbage in the graphH pro-
duced by the rewrite, so thatx need not have a representing packet in the resulting pack-
et store, and indeedπ1.1(x) has already been overwritten in subphase 1.2, so we need do
nothing. Otherwise, ifx ∈ Remg, then prior to overwriting, a copy was made in sub-
phase 1.1 ofπG(x) at say locationl′ = π2(x). We merely need to perform the root qui-
escence and activations at this new location viz.

µ2(π2(x)) = If x ∈ Actg andµ1.3(l′) = ε Then ∗
Else If x = g′(root) andx ∉ Actg Then ε
Else µ1.3(π2(x))

Finally if x is the RHS but is not the LHS of any redirection inRedg, then our imple-
mentation strategy left its locationl unchanged; therefore

192 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

µ2(l) = If x ∈ Actg andµ1.3(l) = ε Then ∗
Else If x = g′(root) andx ∉ Actg Then ε
Else µ1.3(l)

Apart from the changes mentioned directly or indirectly above, the packet store is to re-
main unaltered.

End (of definition 6.7).

Theorem 6.8 LetD = (P, root, Red, Act) be a rule andg : L → G be a standard redex
in a balanced graphG. Suppose a rewrite of the redex by the rule produces a graphH.
Then definition 6.7 provides, up to garbage, a correct implementation of rewriting in the
sense that ifΠ(G) is a correct representation of at least LSG(G) in a packet store, then
the construction in definition 6.7 generatesΠ(H), a correct representation of at least
LSG(H) in the packet store.

Proof. If Π(G) is a correct representation of LSG(G), then

(1) For each nodex of LSG(G), there is a distinct representativeπG(x), with appro-
priate marking and label.

(2) For each normal arc (pk, c) of LSG(G), there is a (possibly trivial) indirection

chain, starting atπG(p), such thatα+
G(πG(p))[k] = πG(c).

(3) For each notification arc (pk, c) of LSG(G), there is a reversed pointerπG(p).k in
ρG(πG(c)), andαG(πG(p))[k] = BLANK .

We have to sure the same holds forΠ(H). This reduces to a particularly uninspiring
case analysis of all the possible ways that live nodes and arcs arise inH, and we will
omit the details, hoping that readers are sufficiently convinced by the description and
examples above. Save for the following comments.

On the whole, definition 6.7 follows the abstract definition of rewriting, except where
redirections are concerned. Since we take care to detect and not implement identity re-
directions (whether given already at the syntactic level, or merely generated as a
byproduct of a noninjective redex matching), the mechanism of overwriting the LHS
packet of a redirection with the target, or with anInd that points to it, will not yield a
cycle ofInds provided the representation of LSG(G) was correct. On this basis, the im-
plementation of the various cases for redirection clusters in definition 6.7 can be shown
to yield a correct representation of redirection, given that a representation of a balanced
standard redex has no reversed pointers pointing at any of its packets, except perhaps
for some packets matched to implicit nodes of the pattern.

Accepting that contractum building and redirection are correctly implemented, it is easy
to check that root quiescence and activation are also correctly implemented.

Of course it must not be supposed that the construction of definition 6.7 is the only, or
the most efficient possible one for implementing rewriting, though it is intended to be
reasonably efficient; there are a few optimisations that one may consider including.
However all of them increase the complexity beyond its already substantial level.

Example 6.9 In [Fig. 15] we show how the construction of definition 6.7 implements
the Fac[5] rewrite illustrated as the first step of [Fig. 1.(b)]. [Fig. 15.(a)] shows the

193Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

starting packet store, [Fig. 15.(b)] shows the situation after subphase 1.1, i.e. after allo-
cation of packets to contractum nodes not involved in redirection, [Fig. 15.(c)] shows
the situation after subphase 1.2, i.e. after a contractum packet has overwritten the LHS
root packet, and [Fig. 15.(d)] shows the situation after subphase 1.3, i.e. after forwards
and reversed pointers representing contractum nodes’ arcs have been fixed up. There
are no activations in this rewrite, and as the root packet has been destroyed, root quies-
cence is null. Hence phase 2 is vacuous and is not shown.

∗ Fac ρ •1 :

ε 5 ∅2 :

Fig. 15.(a) Starting packet store for theFac[5] rewrite.

∗ Fac ρ •1 :

ε 5 ∅2 :

Fac ∅3 :

∗ Sub ∅4 :

ε 1 ∅5 :

Fig. 15.(b) After subphase 1.1; allocation of certain contractum packets.

194 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

7 VOLATILE PACKETS, PACKET MOBILITY,
AND THE FIREWALL PRINCIPLE

In this section we describe some features of packet store rewriting which are extremely
useful when we consider a distributed packet store and a more finegrained rewriting
model. For technical convenience, we express such features in the flat packet store and
coarse grained rewriting world of [Section 6] whenever we can.

Suppose there is a packet at locationt ∈ Σ such that no forward or reversed pointer
points to it. Then the packet can be moved to some other unused locationt′ ∈ Σ say,
without destroying the correctness of the representation of any graph that the store rep-
resents. Packets with this property are called volatile since they are free to move

Mul ρ • –1 :

ε 5 ∅2 :

Fig. 15.(c) After subphase 1.2; overwriting of the root packet.

Fac ∅3 :

∗ Sub ∅4 :

ε 1 ∅5 :

Mul ρ • –1 :

ε 5 ∅2 :

Fac • –3 :

∗ Sub • • •4 :

ε 1 ∅5 :

Fig. 15.(d) After subphase 1.3; pointer fixup for contractum packets.

195Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

around. (The reader will notice that we have exploited this property already in the pack-
et store implementation of [Section 6] via the moving lemma 5.11.)

The easy movement of packets around the packet store is clearly very beneficial when
the packet store is fragmented, as it would be in a distributed system, so we examine
techniques for packet movement in a little more detail.

In general, unless access to the packet store is strictly via a sequence of non-overlapping
atomic actions, and global pointer fix-ups can be done cheaply, arbitrary movement of
packets around the store can be extremely expensive in terms of synchronisation costs
and pointer adjustments. So we look to exploit special cases, where these costs can be
reduced.

The main reason for wanting to move packets in a distributed packet store, is to distrib-
ute work to idle processors. Therefore the main candidates for movement are active
packets at the roots of redexes, and perhaps the packets that they might need for rewrit-
ing. Suppose we want to move an active packet at locationt. If it is volatile, we just
move it. If not, and we are determined to move it anyway for whatever reason, then we
can leave behind anInd packet to act as target for the packet’s incoming pointers. This
is viable provided the packet was balanced to start with (i.e. had no incoming reversed
pointers). Furthermore, to minimise pointer fixup, we can make theInd suspended and
make the connection to the newly volatilised packet via a reversed pointer from the
packet. The transformation is shown in [Fig. 16], for an active packet labelled with a
symbolF.

Note that the original return address set remains at locationt. This is a design decision
which is somewhat arbitrary at this stage, but leads to the question of what happens
when the suspendedInd is notified. However, if we allow such anInd to become active,
and then to behave like any other packet for which there are no rewrite rules, i.e. to no-
tify in its own turn, then notifications reach the original intended recipients, and sus-
pendedInds act as intermediaries for reversed pointers in just as natural a manner as
idle Inds act as intermediaries for forwards pointers. Note the crucial role played by
balancedness in all of this. The situation is illustrated in [Fig. 17].

Fig. 16 Volatilising a non-volatile active packet

∗ F •• … • • …t : # Ind •• –t :

∗ F • … • • …m :

⇒

196 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Our design for volatilising an active packet has the following side effect. Referring to
[Fig. 16], the volatile version of the packet at locationm can no longer be found by
searching along pointers directed att, since there is no pointer fromt to m. This means
that some atomic action which needed to access the packet att, can no longer do so once
the packet has been volatilised. Since we do not wish the semantics of a rewrite system
to depend on whether packets are moved around using previously agreed mechanisms
designed specifically for this purpose, we are led to enunciate the:

FIREWALL PRINCIPLE :

Non-idle packets are to be regarded as inaccessible by rewriting primitives for
which they are not the root packet, (with the exception of a few specific cases).

The kind of exceptions we envisage above, are eg. the initial contact that a rewriting
agent makes with a packet, that establishes that the packet is indeed non-idle. Obvious-
ly this must be regarded as a form of access to the packet that is unavoidable, even if a
decision not to access the packet further is taken subsequently.

The firewall principle is really a design objective for semantic models for packet store
rewriting. Clearly the original DACTL semantics, when translated to a packet store, vi-
olates it since it permits the rewriting of non-standard redexes. One of the goals of this
series of papers is to design alternative semantic models that respect the principle, with-
out destroying correctness with respect to DACTL semantics. Pursuing this train of
thought further casts the firewall principle in the role of provider of opportunities for
alternative semantic models. If a semantic model wishes to avail itself of some action
that would temporarily destroy correctness with respect to eg. DACTL semantics, then
perhaps if the action is concealed behind a firewall of non-idle packets, the violation of
correctness can be hidden from view until it has completed. Packet volatilisation above,
may be viewed in this light; and a further most important instance of the exploitation of
the principle will be described in [Section 9].

8 COPYING AND STATE SATURATEDNESS,
CONSTRUCTORS AND STATEHOLDERS

Now we examine another problem arising from distributed implementations but which
is expressible in the flat packet store world. Suppose an active packet at the root of a
standard redex wishes to pattern match its explicit argument packets. Suppose some of

Ind •• –t : ∗ Ind •• •t : ε Ind ∅ •t :⇒ ⇒

Fig. 17 Notification via a suspendedInd.

197Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

them are not on the same processor as the root (suppose they occur distributed over sev-
eral processors).

Since the redex is standard, we know that the arguments are idle, so moving them to-
wards the root using the mechanism of [Section 7] is not possible; at least not without
some additional threat to correctness, as leaving a non-idleInd in place of a previously
idle packet creates a firewall where there was none before, which exceeds the provisions
of the previously announced firewall principle. Moving the root to the arguments is not
possible in general either, since there may be several distinct processors holding the ar-
guments. To avoid global pointer fixup problems we can try to copy the required argu-
ments to the processor containing the root; but for this to work, we need to take a couple
of precautions.

The first is that we must be sure that the argument packet will not occur as the LHS of
a redirection performed by some concurrent rewriting agent. If it did, then the original
packet and the copy would get out of step, leading to great problems in ensuring seman-
tic consistency of the overall execution sequence. The copied argument must thus be a
constructor. For simplicity, we can demand that all constructor packets be recognisable
as such from an examination of the symbol labelling them, and we further stipulate that
there are no rules for constructor symbols. So we designate a subset ofS namedC, as
the set of constructor symbols.

The second precaution concerns the return address set of the argument packet. If this is
non-empty, possible problems arise if the argument receives an activation. Either we
take measures to always direct the activation at the original packet, a nuisance if there
is a local copy available; which following the notification by the constructor prompted
by the activation, would again get out of step with the original. Or we forbid idle con-
structors to have non-empty return address sets. We have already studied a mechanism
that enables us to ensure this. We just ensure that all execution graphs are state saturated
by using theorem 4.4. This again makes use of a subset of symbols, the stateholders or
variablesV, the only symbols permitted to label packets which are both idle, and have
non-empty return address sets. We achieve our objective by stipulating that

C ∩ V = ∅

While we are about it, we stipulate that there are no rules for stateholder symbols either.
Thus the only distinction between constructors and stateholders is that stateholders can
have non-empty return address sets while idle, and that they are redirectable, though
only at non-root positions of a redex. Because of the latter fact, stateholders are of
course not copyable.

Forbidding constructors to have non-empty return address sets when idle has a further
beneficial consequence. In a balanced graph, a packet which is idle but has a non-empty
return address set is really encoding the state of a synchronisation primitive, as any sus-
pended parent will not be notified, and thus will not be able to rewrite, until the idle
packet has been activated by some other subcomputation. Aesthetically, this is not a
task one would normally give to a constructor, so we restrict this role to stateholders,
whose advertised properties make them fit for the job.

198 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

9 REDEX SIZE, STATEHOLDERS, AND
THE MONSTR PRINCIPLE

This section explores the problem of redex size and structure, an issue that is only prob-
lematic in a concurrent distributed implementation. We use the word “redex” in the
general sense to describe the set of packets needed for a given atomic action of a rewrit-
ing model, eg. notification.

The DACTL model makes no restrictions on the size of the LHS of a rule; the left sub-
pattern can be abitrarily large. For standard redexes, this raises no problem in a flat
packet store world with a serial execution model, but in a concurrent and distributed im-
plementation, obvious problems occur when redexes with fairly arbitrary structure
overlap. In general, prohibitive synchronisation costs must be paid in order to guaran-
tee adherence to DACTL semantics in such an environment.

We wish to avoid such costs, and look for ways of circumventing them, bearing in mind
also that a genuine implementation might choose to provide some hardware support for
pattern matching of redex packets.

We note that the redex structure for a notification is fairly simple already. We just have
an active root packet, and a number of waiting arguments, accessible from it by reversed
pointers. One could almost call this a standard redex. In a balanced graph, the argu-
ments are to be converted from one non-idle state to another, and we can exploit the fire-
wall principle to hide the change of state and the precise moment it takes place from
unwelcome eyes. Notification can therefore be implemented by sending suitable mes-
sages to the waiting arguments and the latency incurred thereby can be hidden from
view. In a later paper in this series dealing with fine grained rewriting in detail, the
above will be shown more formally. For now we say nothing more about notifications.

For rewrites, we have made some progress in permitting idle constructors to be copied
to the root of the redex before matching. Presumably some caching mechanism retains
a reference to the original location of a copy, to enable true graph matching to be per-
formed. Allowing redexes of arbitrary depth entails several phases of copying, as pack-
ets at deeper levels can only be located when their parents have been retrieved, so we
choose to allow only one level of constructor matching, hence of copying.

However the above leaves stateholders somewhat out in the cold as they cannot be cop-
ied. If there are several stateholder children of the root, then we have an impasse, since
if they are distributed over several processors, there is no single place that all the re-
quired packets could meet. If there is only one though, we could exploit the volatilisa-
tion trick of [Section 7] to move the root of the rewrite to the processor containing its
stateholder child, and only then proceed with the copying of constructors. This is the
“most important example of exploitation of the firewall principle” mentioned at the end
of [Section 7].

We have by the above argument, arrived at the essential structure of MONSTR patterns,
to be described more formally in [Section 11], and at the intended method of dealing
with them at the lower level of granularity of packet store rewriting whose understand-
ing is our ultimate goal. We can encapsulate this in:

199Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

THE MONSTR PRINCIPLE:

A root of a rewrite is permitted to require at most one stateholder child and per-
haps several constructor children for pattern matching. All other nodes of the left
subpattern must be implicit. The intended mechanism for matching is to move
the root to the stateholder, and then to copy the constructors.

Incidentally, this also explains the MONSTR acronym: a Maximum of One Non-root
STateholder per Rewrite. [Fig. 18] shows a typical MONSTR redex.

To maximise the opportunities for hardware support during pattern matching, we will
further insist that all rules for a symbol must match the same argument positions; and
that any stateholder argument is likewise present in a fixed position. Thus effort is not
wasted on accessing arguments that might not be needed, or on trying to establish where
the stateholder argument might be. This will be formalised in the definition of [Section
11].

The scenario sketched above is the most we can accomplish without contravening the
precepts described previously. If we were to permit ourselves to wander beyond the
confines of the firewall prinicple as described in [Section 7], by moving idle statehold-
ers, say leaving suspendedInds in their place, a much larger class of patterns would be-
come available to us. The price to be paid would be a greater risk of deadlock during
pattern matching, as previously accessible packets were replaced by suspendedInds,
blocking other accesses by the firewall principle, perhaps rather indiscriminately. The
correctness problems caused by such a rewriting model would prove greater, and the
costs of the hardware support for making such pattern matching efficient would proba-
bly not be justified in terms of any imagined indispensability of the expressivity of pat-
tern matching gained thereby.

∗ F ρ • • • •

ε Constructor ε Constructorε Stateholder

Any

AnyAnyAnyAnyAnyAny

Fig. 18 The structure of a typical MONSTR redex.

200 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

10 MESSAGES, ATOMICITY, AND
FINEGRAINED REWRITING

In a genuine distributed system, many tasks are accomplished using message passing.
In the context of a distributed packet store a message can be viewed as a special kind of
volatile packet, typically one with exactly one forwards pointer and exactly one re-
versed pointer. Whether the direction of travel of the message is along the forwards
pointer or along the reversed pointer will depend on the purpose of the message.

At higher levels of abstraction, the indivisible atomic actions of a rewrite model of com-
putation will often involve several packets. In a distributed packet store, there is no
guarantee that all the packets for a given action will be in the same processor, so, ignor-
ing for the moment issues of correctness, it is necessary to break such actions down into
smaller subactions involving only one packet at a time, and to connect the subactions
using messages.

We give an example of this process in [Fig. 19] and [Fig. 20]. In [Fig. 19], we show a
higher level atomic action involving two packets, both of which are altered by the ac-
tion. Typically one of the packets will be the instigator of the action, say it isroot.

We break the action down into smaller pieces in [Fig. 20]. Thus as the instigator of the
action, the root packet will send out a message to its argument, instructing it to change
appropriately. [Fig. 20.(a)] shows the message on its way. On arrival, the appropriate
change in the argument takes place, and a response message is sent back to the root, il-
lustrated in [Fig. 20.(b)]. [Fig. 20.(c)] shows the end result.

Two points emerge from this. Firstly, since messages can be regarded as volatile pack-
ets, low level rewriting can be modelled by a suitable suite of primitives in our higher
level flat packet store world. This is useful for studying such low level systems. And
secondly, since the root started out active, and was suspended during the course of the
intermediate actions, the firewall principle enables us to conceal some of the lower level
actions from undue interference by other unrelated actions. (However, since the argu-
ment was idle, this concealment is not a perfect guarantee of correctness with respect to
higher levels of abstraction).

∗ A … • …root :

ε B …arg :

⇒
ε A′ … • …root :

ε B′ …arg :

Fig. 19 A coarsegrained atomic action.

201Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

A′ … – …root :

ε B …arg :

∗ Message • •mess :

Fig. 20 A finegrained version of the atomic action of [Fig. 19].

Fig. 20.(a) The root sends out a message in the direction shown.

A′ … – …root :

ε B′ …arg :

∗ Response • •mess :

Fig. 20.(b) The message arrives at the argument; a response is sent out.

ε A′ … • …root :

ε B′ …arg :

Fig. 20.(c) The response arrives and the action completes.

202 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

With this preamble, we are now able to sketch informally the low level distributed pack-
et store rewriting model for what will be the MONSTR sublanguage of DACTL. The
detailed study of the low level model will appear in a later paper in the series.

As before, the main tasks are the implementation of rewrites and notifications. We start
with the notifications which are simpler and consist of the following two kinds of ac-
tion.

Notification_Send. An active packet which is to notify, sayX at locationl, changes its
marking toε and sends out a Notification message to each return addressp.k in its return
address set. The message contains a pointer tol as well as the return addressp.k.

Notification_Receive. A Notification message with return addressp.k and pointerl ar-
rives at its destination packetP at locationp. The pointerl from the message is installed
in thek’th item ofP, and ifP is suspended, its suspension marking is decremented; be-
ing changed to∗ if the decrement removes the last suspension.

The combination of these two kinds of action is clearly a fragmenting of the more coar-
segrained notion of notification in [Section 6]. Rewrites require a more complex break-
ing up into the following actions.

Move_to_Stateholder. On the assumption that the root packet of the rewrite has a
stateholder argument (to be determined syntactically by the definition in [Section 11]),
and the stateholder is in a remote processor, the root is volatilised and moved to that pro-
cessor. Otherwise a null action.

Constructor_Request. For each constructor argument of the root such that the argu-
ment is in a remote processor, (which arguments these are, is again determined syntac-
tically by the definition in [Section 11]), a Constructor_Request message is sent to the
argument. The root becomes suspended on the requisite number of replies. Each mes-
sage contains the pointer whose constructor is sought, and the return address of the root
item whence it originated.

Constructor_Suspend. A Constructor_Request message arrives at its destination,
which it finds to be a non-idle packet. The message packet itself becomes suspended,
its pointer becoming a return address which is added to the return address set of the non-
idle destination.

Constructor_Resume. A suspended Constructor_Request message is notified. It sub-
sequently tries to reaccess the destination. (This action is really just like a Notification_-
Receive action).

Constructor_Respond. A Constructor_Request message arrives at its destination,
which it finds to be an idle packet. A Constructor_Response message is formed. It con-
tains a pointer to the destination and a reversed pointer to the originating root item, and
travels back to the root. The body of the message contains either a copy of the argument
if the argument is a constructor, orNONCONSTRUCTOR if the argument proved to be
something other than a constructor.

Constructor_Receive. A Constructor_Response message arrives back at the root. The
body of the message is cached locally, and the root is notified. If the last suspension on
the root is removed thereby, the root is ready to perform the rewrite proper.

203Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Stateholder_Suspend. A root of a rewrite is on the same processor as its one potential
stateholder argument, and it has local copies of any other constructors (orNONCON-
STRUCTORs) required at other argument positions. The root attempts to lock the argu-
ment at the stateholder position but finds it non-idle. The root suspends waiting for the
argument to notify.

Stateholder_Resume. A root of a rewrite which is waiting for the argumented at its
stateholder position to notify, is notified. (Once more like a Notification_Receive ac-
tion).

Perform_Rewrite. A root of a rewrite is on the same processor as its one potential
stateholder argument, and it has local copies of any other constructors (orNONCON-
STRUCTORs) required at other argument positions. The root attempts to lock the argu-
ment at the stateholder position and finds it idle. The lock succeeds. The root then
pattern matches its explicit arguments to select an appropriate rule. Once the rule is se-
lected, contractum building and redirection are performed essentially according to the
recipe in [Section 6]; also root quiescence if necessary. If (exceptionally), the root is in
the activation set of the rule, the activation is done there and then on the root packet.
Otherwise, for each full pattern arc of the rule governing the rewrite whose child node
is in the activation set of the rule, an Activation message is sent to the requisite packet
representative in the redex. An Activation message contains a pointer to the destination
packet, and if the arc to which it corresponds, is a notification arc from a contractum
node, the message also contains a reversed pointer to the contractum packet item in
question. (Clearly this can result in several Activation messages being sent to the same
packet). The lock on the stateholder argument is released.

Activation_Receive. An Activation message arrives at its destination. If the message
contains a reversed pointer, it is inserted into the return address set of the destination.
If the destination packet is idle, its marking is changed to active.

The fragmenting of rewrites into the finegrained atomic actions above, clearly leads to
substantial correctness problems, since in general, there is nothing to prevent non-seri-
alisable schedules of low level primitives from arising in an execution sequence. By a
non-serialisable schedule, we mean one whose constitutent finegrained atomic actions
cannot be reordered into an order consistent with a sequence of coarsegrained rewrite
and notification actions performed according to the prescriptions in [Section 6], without
changing the result of the execution.

Having described MONSTR rewriting at both the coarsegrained and finegrained levels,
it is instructive to see that both models display the essential features of “interaction”
[Lafont (1990)]. In an interaction system, computation takes place only when two
agents meet each other at their “principal ports”; whereupon a graph rewrite (of a kind
different to those described in this paper) takes place. It is interesting that consider-
ations of locality on the one hand (for MONSTR), and of cut elimination on the other
(for interaction systems) led to such superficially similar looking solutions.

At the coarsegrained MONSTR level, one can view a MONSTR rewrite as an interac-
tion between the root packet and the stateholder, the fixed stateholder position of the
root serving as its principal port, and the locking of the stateholder itself acting to select
which in-arc will serve as the stateholder’s principal port for the rewrite. The admit-
tance of constructors into the scheme of things can be viewed as a mild generalisation
of the interaction paradigm, or as something that can be translated away at the coarseg-

204 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

rained level, by preceding the interaction with the stateholder by a sequence of interac-
tions with the constructors. See also [Banach and Papadopoulos (1996b)].

At the finegrained level proper, we see the correspondence with the interaction para-
digm even more clearly. Most of the atomic actions can be viewed as interactions be-
tween a packet and a message. Those that are not, are the initiating actions, which could
be manipulated into interactions between packets and Activation messages if required,
and the Perform_Rewrite actions which could be changed so that each preceding Con-
structor_Receive action was a separate interaction with the root, and encoded its data
directly into the root packet, leaving the Perform_Rewrite action as simply an interac-
tion between root and stateholder. Generally speaking, similar “linear” ideas have
gained popularity in many spheres of contemporary computing research; and it is curi-
ous to note that the historical roots of both the present work (see references cited al-
ready), and of interaction nets (linear logic, the precursor of interaction net theory [see
Girard (1987)]), both date back to around the same time.

11 THE MONSTR SUBLANGUAGE

In preceding sections we have identified a number of properties of graphs, rewrites and
execution sequences, that singly and in combination, have appeared desirable for vari-
ous reasons, but particularly for our lower level finegrained concurrent distributed
packet store rewriting model. Here they are.

(1) Balancedness.

(2) State Saturatedness.

(3) The Overwriting Lemma.

(4) The MONSTR Principle.

(5) The Firewall Principle.

(6) Standard Redexes.

(7) Finegrained Rewrites and Notifications.

The first four of these can be addressed by simple syntactic restrictions, and these are
the design desiderata that determine the definition of the MONSTR sublanguage de-
fined below. The last three are semantic issues that contravene the semantics of
DACTL rewriting and generate much more intricate correctness problems to be studied
in depth subsequently.

The syntax of MONSTR is defined by a series of restrictions on alphabets, symbols,
rules and systems as follows.

Restriction 11.1 (Alphabets) The alphabet of symbolsS, is the disjoint union of three
subalphabets

S = F ∪ C ∪ V

F is the alphabet of function symbols. A function symbol may label the root of the left
subpatternL of a rule, but not any subroot node ofL. Function symbols may label the
LHS of a redirection.

205Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

C is the alphabet of constructor symbols. A constructor symbol may label a subroot
node of the left subpattern of a rule, but not the root. Constructors may not label the
LHS of a redirection.

V is the alphabet of stateholders, or variables. A stateholder symbol may label a subroot
node of the left subpattern of a rule, but not the root. Stateholders may label the LHS
of a redirection.

The above formalises our previous remarks aboutC andV, and also introducesF, the
functions, which are the only symbols for which there are rules. The restrictions sepa-
rate the possible behaviours at root and at subroot nodes: the functions act as instigators
of rewrites, the constructors encode immutable values, while the stateholders are able
to model notions of updatable state, and to play a central role in the coding of synchro-
nisation primitives.

Restriction 11.2 (Symbols)

(1) For eachS ∈ S, there is a set of natural numbersA(S), in every case an initial
segment of the naturals from 1, or empty.

(2) For eachF ∈ F, there is a subset ofA(F), Map(F).

(3) For eachF ∈ F, there is a subset of Map(F), State(F), in every case either a sin-
gleton or empty.

(4) Root ∈ C.

The above maps each symbolS to its arityA(S). The intention is that allS-labelled
nodes are to have the same arity. For functionsF, Map(F) is the set of argument posi-
tions at which all normal rules forF (see below), will always need to pattern match.
Similarly State(F), if non-empty, contains the position at which any stateholder argu-
ment ofF must occur in a normal rule forF. Clause (4) states thatRoot is a constructor,
assuring one of the hypotheses of the overwriting lemma 5.10.

Definition 11.3 (Normal and Default Rules) LetF ∈ F. A rule forF such that each
child of the root is a distinct implicit node is called a default rule forF. Otherwise the
rule is a normal rule.

Note that with fixed arities, a default rule forF will always succeed in matching its left
subpattern to any activeF-labelled node of a graph, precisely because no-non trivial
conditions need to be satisfied by the children of the root of the redex.

Restriction 11.4 (Rules) Let D = (P, root, Red, Act) be a rule with left subpatternL.
Then

(1) Each node has the arity dictated by its symbol, i.e.

For allx ∈ P, A(x) = A(σ(x))

(2) Each normal rule for a symbol matches the same set of arguments of the root, i.e.
if σ(root) = F, andD is a normal rule then

α(root)[k] is explicit ⇔ k ∈ Map(F)

206 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

(3) A rule for a function may match at most one stateholder, and then only in a fixed
position; all other explicit arguments must be constructors, i.e. ifσ(root) = F, and
D is a normal rule then

σ(α(root)[k]) ∈ V ⇒ k ∈ State(F)

(4) All grandchildren of the root are implicit, i.e. for allk ∈ A(σ(root)), andj ∈
A(σ(α(root)[k]))

α(α(root)[k])[j] is implicit

(5) Implicit nodes of the left subpattern have only one parent in the left subpattern,
i.e. if y ∈ P is implicit, there is precisely onex ∈ L such that for somek ∈ A(x),
y = α(x)[k].

(6) Everyx ∈ P is balanced, i.e.

µ(x) = #n (for n ≥ 1) ⇔ |{ k | ν(x)[k] = ^} | = n

(7) Every arc (pk, c) of P is either state saturated or activated, i.e.

ν(p)[k] = ^ andµ(c) = ε ⇒ σ(c) ∈ V or c ∈ Act

(8) The root is always redirected, i.e. for someb ∈ P

(root, b) ∈ Red

(9) No arc can lose state saturatedness through redirection, i.e.

(a, b) ∈ Red andµ(b) = ε ⇒ σ(b) ∈ V or b ∈ Act

(10) A node which is the LHS but not the RHS of a redirection should be garbaged by
a rewrite whenever possible, i.e.

(b, c) ∈ Red andb ∈ Act ⇒ there is ab ≠ a ∈ L such that (a, b) ∈ Red

Theorem 11.5 (Desirable Properties) When all rules used, conform to Restriction
11.4, induction over executions yields many desirable properties. (We do not show
these in detail, given the theorems already proved in preceding sections.)

Restriction 11.4.(1) makes all execution graph nodes respect the arities of their symbols.

Restrictions 11.4.(2) and (3) make sure that the pattern matching requirements of each
redex, depend solely on the symbol at the root.

Restriction 11.4.(4) prevents children of the root occurring as children of their siblings
in the rule. (N.B. This prevents a finegrained packet rewriting model from having to
check whether grandchild pointers point to the correct packet in a second phase of pat-
tern matching. From a theoretical viewpoint though, the condition could be weakened
to asserting that every non-root node of the left subpattern was accessible as either a
child or grandchild of the root, permitting the above.)

Restriction 11.5.(5) ensures that not even pointer equivalence is required for matching
any redex node that is not determined by Map(σ(root)).

Restriction 11.4.(6) yields balancedness of execution graphs via theorem 4.2.

Restrictions 11.4.(7) – (9) yield state saturatedness of execution graphs via theorem 4.4.

207Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Restriction 11.4.(10) ensures that the overwriting lemma 5.10, applies to most redirec-
tions in practice, enabling the representation of rewriting by the packet store manipula-
tions of [Section 6], with minimal need for the weaker moving lemma 5.11.

Restriction 11.6 (Systems, Rule Selection) For eachF ∈ F there is a pair of sets (N F,
DF), whereN F consists of normal rules forF, andDF is non-empty and consists of just
default rules forF. In an execution, when a chosen roott is identified and it is labelled
by F ∈ F, rule selection is performed according to the following procedure:

If some rule fromN F matches the chosen roott

Then Sel = {D ∈ N F | D matches att}

Else Sel = DF

Choice of rule fromSel is nondeterministic as before.

Restriction 11.6 gives us a simple priority mechanism that always enables a normal rule
for a symbolF to be used in preference to a default rule in situations where both would
match. That we can always rewrite at a chosen root is ensured by the non-emptiness of
DF. The full DACTL language enables similar and more sophisticated rule selection
decisions to be made by virtue of a more powerful pattern matching calculus which we
eschew.

The above list of restrictions constitutes the definition of the syntax of user-defined
MONSTR systems. We have mentioned in passing that pointer equality testing (of im-
plicit nodes) is avoided in the pattern matching repertoire of MONSTR; nevertheless it
is often desirable in many programming situations. To allow for this, MONSTR in-
cludes some builtins, namely a specific function symbolPointersEqual, with two rath-
er obvious rules. In concrete syntax, the single rule inN PointersEqual is

PointersEqual[x x] => ∗True

and the single rule inDPointersEqual is

PointersEqual[x y] => ∗False

The meaning of these rules should be obvious (and can be deduced from the comments
about concrete syntax in the examples below). In a coarsegrained implementation, the
normal rule will match iff its two pointer arguments dereference to the same node. In
a distributed finegrained implementation, messages are sent out along the two argument
pointers, and depending on the addresses of the locations that they report back, the root
is redirected toTrue or False.

Obviously these rules give a fairly weak notion of pointerinequality in the presence of
multiple concurrent agents. Given the semantics of redirection, once two pointers
dereference to the same place, that situation will persist irrespective of what happens
subsequently. But if they are reported to be different, then not much can be deduced in
general, as by the time theFalse result is inspected and some consequent action initi-
ated, some other redirection might have made them equal. See also [Lindstrom (1986)].

The above completes the definition of the syntax of MONSTR. As mentioned, MON-
STR systems may be executed according to DACTL semantics, or according to other
semantic models. The study of these other semantic models constitutes the semantic
side of the MONSTR issue, and only by exploring it can we eventually establish other

208 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

desirable properties that show correctness of executions performed according to these
other models. A brief sketch of these questions follows in the next section.

Example 11.7 (Fac Revisited) We set out theFac example of [Fig. 1], as a formal
MONSTR system. We use the concrete syntax of DACTL, explaining the possibly less
obvious features as we go.

S consists of
F = {Fac, Mul, Sub, Initial}
C = {0, 1, 2, 3, …} i.e. the naturals
V = ∅

Rules forSub

Rules inN Sub
Sub[0 0] => ∗0 |
Sub[1 0] => ∗1 |
… etc.… i.e. the normal delta rules for subtraction.

(N.B. The notation∗0 in the RHS of the first rule indicates a contractum node, to be
created active. The notation=> is a separator between LHS and RHS, and also indi-
cates that the root of the LHS is to be redirected to the first node on the RHS. The ver-
tical bar is used as a rule separator; it is DACTL’s notation for a rule separator where
there are no priorities among the rules.)

Default rule inDSub
Sub[x y] => ##Sub[^∗x ^∗y]

(N.B. The notation##Sub[^∗x ^∗y] indicates that the two implicit arguments of the
root of the redex are to be activated, and the root of the contractum is to suspend, wait-
ing for both to notify (along the notification arcs implicitly created). The rule illustrates
a typical stucture for a default rule, embodying the slogan, “if none of the normal rules
matched, attempt to induce the arguments to rewrite, in the hope that their reduced form
will match one of the normal rules”. Note the DACTL concrete syntax convention
whereby identifiers starting with a lowercase letter are node identifiers, which can be
used to express sharing as above, while identifiers starting with an uppercase letter are
node symbols. Nodes mentioned by identifier alone are assumed to be implicit, as
above.)

Rules forMul

Rules inN Mul … the normal delta rules for multiplication.

Default rule inDMul
Mul[x y] => ##Mul[^∗x ^∗y]

Rules forFac (first version)

Rule inN Fac
Fac[0] => ∗1

Default rule inDFac
Fac[n] => #Mul[n ^#Fac[^∗Sub[n 1]]]

209Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

(N.B. Note the fairly obvious notation for nesting node descriptions, using explicit node
identifiers (eg.n) only where multiple references to the same node are needed.)

Rules forFac (second version)

Rules inN Fac
Fac[0] => ∗1 |
Fac[n:1] => #Mul[n ^#Fac[^∗Sub[n 1]]] |
Fac[n:2] => #Mul[n ^#Fac[^∗Sub[n 1]]] |
… etc.…

Default rule inDFac
Fac[n] => #Fac[^∗n]

(N.B. Note that when both a node identifier and its symbol need to be quoted, the syntax
is x:S. In this version, arguments which are naturals are explicitly matched. Obviously
a more compact notation could be invented for this, eg.Fac[n:Nat], as exists in
DACTL, but we want to keep the syntax of MONSTR as light as possible in these pa-
pers.)

Rules forInitial

Default rule inDInitial
Initial => ∗Fac[5]

The rewriting of theInitial node using either set of rules forFac will clearly yield the
computation of [Fig. 1].

Example 11.7 (Bottom Avoiding Merge Revisited) This example shows how the syn-
chronisations modelled by unbalancedBAM nodes in example 6.16 can be expressed in
MONSTR. Essentially one translates the nondeterminism arising from the receipt of
individual notifications by a once suspendedBAM node, into the nondeterminism of
choice of redex to be rewritten among a family of overlapping redexes.

The scenario features aConsumer of the merged lists, and a pair ofProducers each
independently producingItems. TheProducers andConsumer interact via a state-
holder which is accessed byReader andWriter agents connected to theConsumer
andProducers respectively. The stateholder acts like a bounded buffer with one slot.
When the stateholder isFull (and contains anItem), theReader may read it for the ben-
efit of theConsumer making itEmpty, andWriters acting on behalf ofProducers
have to wait. When the stateholder isEmpty, bothWriters may attempt to write an
Item to it, making itFull, and the nondeterminism of selecting the chosen redex root,
serves as the source of nondeterminism in the merge. The merge is bottom avoiding
since aWriter will only attempt to access the stateholder when the correspondingPro-
ducer has actually generated anItem to put into it. [Fig. 21] shows a possible execution
graph of this system, omitting garbage.

S consists of
F = {Producer, Consumer, Reader, Writer, Initial}
C = {Item, Cons, Nil}
V = {Empty, Full}

210 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

Rules forProducer

Default rule inDProducer
Producer => ∗Cons[Item ∗Producer]

(N.B. A Producer generates a list ofItems.)

Rules forConsumer

Rule inN Consumer
Consumer[Cons[h t]] => #Consumer[^∗t]

(N.B. A Consumer consumes a list ofItems.]

Default rule inDConsumer
Consumer[x] => #Consumer[^x]

Rules forReader

Rules inN Reader
Reader[s:Full[x]] => ∗Cons[x #Reader[^y:Empty]] , s := ∗y |
Reader[s:Empty] => #Reader[^s]

(N.B. If the stateholder isFull, aReader can extract itsItem, making itEmpty, and
causingWriters to be subsequently notified. Otherwise it must wait. The customary
notation for assignment (:=) is used to indicate the required non-root redirection.)

Default rule inDReader
Reader[x] => #Reader[^x]

Rules forWriter

Rules inN Writer
Writer[Cons[h t] s:Empty] => #Writer[^∗t u:Full[h]] , s := ∗u |
Writer[x:Cons[h t] s:Full] => #Writer[x ^s]

(N.B. If the stateholder isEmpty, aWriter can insert anItem into it, making itFull, and
causing anyReader to be subsequently notified. Otherwise it must wait.)

Default rule inDWriter
Writer[x y] => ##Writer[^∗x ^∗y]

Rules forInitial

Default rule inDInitial
Initial => #Consumer[^#Reader[^s:Empty]] ,

x:#Writer[^∗Producer s] ,
y:#Writer[^∗Producer s]

(N.B. Initial creates the basic configuration of twoProducers and oneConsumer.)

Readers (of this paper), will quickly realise that the essential mechanism at work in this
example, is very similar to the one for semaphores given in [Fig. 2], except that trans-
mission of data is taking place here. The semaphore rules are MONSTR rules provided
we assign symbols to classesF, C, V appropriately. (This is why we previously said

211Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

that we would wantFree to be a stateholder.) Readers will further realise that similar
systems would solve many of the classical synchronisation problems, such as the read-
ers and writers problem, or the bounded buffer. Indeed it turns out that the underlying
programming pattern here is at the heart of the wide applicability of MONSTR noted at
the end of the introduction. And lastly we note that the running example of a rewrite in
[Section 2] can be viewed as a rewrite of a MONSTR rule in the same way.

12 BRIDGING THE SEMANTIC GAP — OUTLOOK

It is clear that the gap between the coarsegrained DACTL rewriting model, and the
finegrained packet store rewriting model is considerable. Rather than attempt to find a
way of bridging the gap in one span, it is best to use the divide and conquer heuristic to
break the task up into more manageable pieces. Accordingly, the study of MONSTR

∗Consumer[•] Cons[• •] Cons[• •] #Reader[•]

Item Item

Empty

^

∗Writer[• •]

Cons[• •] ∗Producer

Item
∗Writer[• •]

Cons[• •] Cons[• •] ∗Producer

Item Item

Fig. 21 A possible configuration of the MONSTR version of Bottom
Avoiding Merge. Note the two overlappingWriter redexes.

212 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

semantics will consist of the definition of a number of semantic models for executing
MONSTR systems, each embodying some feature that brings it one step closer to the
ultimate model of interest, and then of the study of the circumstances under which each
new model yields results equivalent to those of its predecessor. In this manner we grad-
ually descend from DACTL semantics to the finegrained packet store model.

Because the gap between the two semantic models is so large it is futile to hope that
everything derivable under the original DACTL semantics will be derivable in the low-
er level models; so that expecting completeness results in that sense is pointless (though
because all our models have full computational power, one can give completeness by
“coding up” DACTL behaviours using some form of simulation — but this is hardly
what we are after).

We must therefore be satisfied with soundness results, so that a lower level model ac-
curately reproduces an acceptable subset of behaviours of the higher level model. The
soundness results will normally state that under suitable syntactic constraints, the new
semantics behaves acceptably with respect to the old. The difference between such syn-
tactic restrictions and those say of [Section 11], is that the restrictions gain their effect
only in collusion with the new semantics, whereas those of [Section 11] mostly yielded
desirable results within the remit of the original semantics. We now sketch some of
these semantic models.

12.1 The Suspending MONSTR Model

Probably the easiest semantic feature in the low level model to address is the firewall
principle. This entails formalising what happens when a rewrite attempts to rewrite a
(potential) redex which is not standard, i.e. where the chosen root has some explicitly
matched arguments which are not idle. The suspending MONSTR semantic model pre-
scribes a suspension event under such circumstances. The root of the rewrite becomes
suspended on all its non-idle explicitly matched arguments, all the requisite arcs be-
come notification arcs, and the rewrite cannot retry until all the non-idle arguments have
notified. Otherwise, suspending MONSTR semantics is identical to DACTL semantics,
so the only other events the model admits are notifications, and rewrites of standard re-
dexes. It is fairly clear that the desirable syntactic properties of executions discussed in
[Section 11], are unaffected by this change.

The main problem which suspensions introduce is that of potential deadlock. Two (or
more) overlapping non-standard redexes may become suspended on each other’s non-
idle nodes and become deadlocked in a way that DACTL rewrites, insensitive to non-
root markings would not. We can borrow techniques from deadlock theory to give a
reasonable account of safe systems.

12.2 The Finegrained MONSTR Model

The finegrained MONSTR model expresses in graph terms, the features of the low level
packet rewrite model described in [Section 10]. Remaining in the graph world is tech-
nically convenient for semantic investigations. Thus at least in principle, there are mes-
sage nodes, and special kinds of rewrite and notification for them etc. However most
of this detail can be disregarded. A typical message will only be relevant to its source
and destination nodes; and it is only the actions that take place at the source and at the
destination, the fact that they are separated in time, and the extent to which they are vis-
ible to other actions taking place in the execution graph, that makes a difference to the

213Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

result computed by an execution. The firewall principle helps a lot in reconciling com-
putations generated by the finegrained model with those generated by the suspending
model.

The main problem which the breaking up of larger atomic actions into smaller ones gen-
erates, is one of non-serialisable schedules, as has been mentioned before. Certain
schedules of finegrained actions cause changes of state incompatible with coarseg-
rained rewriting, to be visible to the computation at large, and which the firewall prin-
ciple is incapable of concealing. Controlling these in the presence of the sharing of
subgraphs can pose quite a challenge for serialisability theory.

12.3 Serialisable Weak Models

One feature that is inherent in both preceding semantic models is the accurate imple-
mentation of redirection, in particular the non-implementation of identity redirections
that arise because the LHS and RHS of a redirection match the same node. In reality
this requires an identity test, and this in turn requires access to non-Map(σ(root)) nodes
when these are the RHS of a redirection, complicating pattern matching. When concur-
rent rewriting is taking place, this has to be strengthened with some locking mechanism
to prevent cycles ofInds being generated by the simultaneous effecting of two mutually
directed redirections, eg.x := y andy := x. Doing either of these alone is safe, but doing
both simultaneously without locking, can in a packet store implementation, generate a
cycle ofInds.

This is a problem at both coarsegrained and finegrained levels of abstraction. Its study
involves looking at how data dependencies can evolve in an execution of a system, and
static analysis of a system can yield the insight that dangerous situations such as the one
described, do not arise. In reality, an architecture that truly only examines Map(σ(root))
nodes in a redex, must have some assurance that the above problems will not arise in
any rewrite with a RHS of a redirection at one of the non-Map(σ(root)) nodes of the
redex.

12.4 Coercing MONSTR Models

One can say that the suspending MONSTR model is coercing in a weak sense in that
redexes wait for the subcomputation at non-idle matched nodes to notify before pro-
ceeding. One can strengthen this behaviour so that the pattern matching process, when
it encounters an idle function, where it expects a constructor or stateholder, actually ac-
tivates the function and suspends on the subcomputation, in the hope that the subcom-
putation will reduce to constructor or stateholder form. This kind of coercing semantics
is useful in the implementation of many functional languages, which adhere to just such
a strategy. There is also some real benefit for the finegrained rewriting model, where
the coercing behaviour strengthens the hand of the firewall principle and affords con-
siderable simplification to the main soundness result.

12.5 Non-MONSTR Models

As well as semantic models expressly designed for executing MONSTR systems, we
can consider some generalisations. For instance there is the proposal at the end of [Sec-
tion 9] for dealing with larger patterns containing more than one stateholder. If we
agree that in such a model, stateholders are temporarily made non-idle during the re-

214 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

write, whether by being substituted by suspendedInds or otherwise, we can examine
the resulting semantics both at coarsegrained and at finegrained levels.

13 CONCLUSIONS

In the previous sections, we have set out the DACTL rewriting model, and the low level
packet store rewriting desiderata that led to the series of restrictions in [Section 11];
these in turn led to the possibility that the MONSTR sublanguage that they defined,
might be executable on a distributed store architecture with reasonable efficiency and
reasonable semantics. In the immediately preceding section, we outlined some aspects
of the semantic task that needs to be addressed to justify this view. Subsequent papers
in this series will grapple with the murky details.

Acknowledgements

In the early days of MONSTR, during the Flagship project, many people contributed
useful ideas that eventually evolved into the design described in this paper. MONSTR
would certainly not have happened without their contributions. It is a pleasure to ac-
knowledge Ian Watson, Paul Watson, Viv Woods, John Sargeant, Mark Greenberg, John
Glauert, Richard Kennaway, Ronan Sleep, George Papadopoulos, Nic Holt, Steve Le-
unig, Tom Thompson and Paul Townsend. Others whom fading memories have caused
to be omitted, are offered heartfelt apologies by the author.

References

[Banach (1993)] Banach R., MONSTR: Term Graph Rewriting for Parallel Machines.in: Term
Graph Rewriting: Theory and Practice, Sleep, Plasmeijer, van Eekelen (eds.), 243-252,
John Wiley, (1993).

[Banach et al. (1988)] Banach R., Sargeant J., Watson I., Watson P., Woods V., The Flagship
Project.in: Proc. UK-IT-88, (Alvey Technical Conference), 242-245, Information Engi-
neering Directorate, Department of Trade and Industry, IEE Publications, (1988).

[Banach and Watson (1989)] Banach R., Watson P., Dealing with State in Flagship: the MON-
STR Computational Model.in: Proc. CONPAR-88, Jesshope, Reinhartz (eds.), 595-604,
B.C.S. Workshop Series, Cambridge University Press, (1989).

[Banach and Papadopoulos (1993)] Banach R., Papadopoulos G., Parallel Term Graph Rewriting
and Concurrent Logic Programs.in: Proc. WPDP-93, Boyanov (ed.), 303-322, Bulgarian
Academy of Sciences, (1993); also North-Holland (to appear).

[Banach and Papadopoulos (1995a)] Banach R., Papadopoulos G., Linear Behaviour of Term
Graph Rewriting Programs.in: Proc. ACM SAC-95, 157-163, ACM Press, (1995).

[Banach and Papadopoulos (1995b)] Banach R., Papadopoulos G., A Highly Parallel Model for
Object-Oriented Concurrent Constraint Programming.in: Proc. IEEE ICA3PP-95,1, 61-
70, IEEE Computer Society Press, (1995).

[Banach and Papadopoulos (1996a)] Banach R., Papadopoulos G., Expressing Runtime Structure
and Synchronisation in Concurrent Object-Oriented Languages with MONSTR.in: Proc.
IFIP FMOODS-96, 16pp., Chapman Hall, (1996),to appear. (See also the Prelim. Proc.
pp. 373-388.)

215Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

[Banach and Papadopoulos (1996b)] Banach R., Papadopoulos G., A Study of Two Graph Re-
writing Formalisms: Interaction Nets and MONSTR.Submitted to: J. Programming Lan-
guages, (1996).

[Banach et al. (1995)] Banach R., Balazs J., Papadopoulos G., A Translation of the Pi-Calculus
into MONSTR, J.UCS1, 335-394, (1995).

[Barendregt et al. (1987)] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R Kennaway,
M.J. Plasmeijer, M.R. Sleep., Term Graph Rewriting.in: Proc. PARLE-87, de Bakker,
Nijman (eds.), LNCS259, 141-158, Springer, (1987).

[Darlington and Reeve (1981)] Darlington J., Reeve M., ALICE — A Multi-Processor Reduction
Machine for the Parallel Evaluation of Applicative Languages.in: Proc. ACM FPLCA,
ACM Press, (1981).

[FPLCA] Proceedings of various ACM FPLCA Conferences, ACM Press, 1980-1990.

[Fasel and Keller (1986)] Fasel J.H., Keller R.M. (eds.), Graph Reduction. Proc. Santa Fe Work-
shop 1986, LNCS279, Springer, (1986).

[Girard (1987)] Girard J-Y., Linear Logic, Theoretical Computer Science50, 1-102, (1987).

[Glauert et al. (1988a)] Glauert J.R.W., Kennaway J.R., Sleep M.R., Somner G.W., Final Speci-
fication of DACTL. Internal Report SYS-C88-11, School of Information Systems, Uni-
versity of East Anglia, Norwich, U.K, (1988).

[Glauert et al. (1988b)] Glauert J.R.W., Hammond K., Kennaway J.R., Papdopoulos G.A., Sleep
M.R., DACTL: Some Introductory Papers. School of Information Systems, University of
East Anglia, Norwich, U.K, (1988).

[Glauert et al. (1990)] Glauert J.R.W., Kennaway J.R., Sleep M.R., DACTL: An Experimental
Graph Rewriting Language.in: Graph Grammars and their Application to Computer Sci-
ence, Ehrig, Kreowski, Rozenberg, (eds.), LNCS532, 378-395, Springer, (1990).

[Lafont (1990)] Lafont Y., Interaction Nets.in: Proc. Seventh A.C.M. Symposium on Principles
of Programming Languages, 95-108, ACM, (1990).

[Lindstrom (1986)] Lindstrom G., Implementing Logical Variables on a Graph Reduction Archi-
tecture.in: Proc. Graph Reduction, LNCS279, 382-400, Springer, (1986).

[Lynch et al. (1994)] Lynch N., Merritt M., Weihl W., Fekete A., Atomic Transactions. Morgan
Kaufmann, (1994).

[Treleaven et al. (1982)] Treleaven P.C., Brownbridge D.R., Hopkins R.P., Data Driven and De-
mand Driven Computer Architecture. Computing Surveys14, 93-143, (1982).

[Watson and Watson (1987)] Watson P., Watson I., Evaluating Functional Programs on the Flag-
ship Machine.in: Proc. FLCA-87, Kahn (ed.), LNCS274, 80-97, Springer, (1987).

[Watson et al. (1987)] Watson I., Woods V., Watson P., Banach R., Greenberg M., Sargeant J.,
Flagship: A Parallel Architecture for Declarative Programming.in: Proc. 15th Annual In-
ternational Symposium on Computer Architecture, Hawaii, ACM, (1987).

[Watson et al. (1989)] Watson I., Sargeant J., Watson P., Woods V., The Flagship Parallel Ma-
chine.in: Proc. CONPAR-88, Jesshope, Reinhartz (eds.), 125-133, BCS Workshop Series,
Cambridge University Press, (1989).

[Woods (1986)] Woods J.V. (ed.), Fifth Generation Computer Architectures. Proc. IFIP TC 10
Working Conference, Manchester 1985, North-Holland, (1986).

216 Banach R.: MONSTR I -- Fundamental Issues and the Design of MONSTR

CORRIGENDUM: (JUCS2(4) 164-216, (1996))

MONSTR I — Fundamental Issues and the Design of
MONSTR

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk)

Definition 3.11 (Notifications) Clause (4) specifies the node marking incorrectly when
there is more than one notification arc fromx to t. It should read:

(4) µH(x) = If µG(x) = #n (with n ≥ 1) and
 0≠ m = |{ k ∈ A(x) | αG(x)[k] = t andνG(x)[k] = ^} |
Then #n–m (where#0 = ∗, and#–p = ε for p ≥ 1)
Else If x = t Then ε
Else µG(x).

Definition 6.4 (Packet Store Implementation of Notifications) Clause (3).(a) is affect-
ed by a similar problem, and should read:

(3) For alll.k ∈ ρG(π(t)),

(a) µH(l) = If µG(x) = #n (with n ≥ 1) and 0≠ m = |{ k | l.k ∈ ρG(π(t))} |
Then #n–m (where#0 = ∗, and#–p = ε for p ≥ 1)
Else µG(l)

Example 11.7 (Bottom Avoiding Merge Revisited) The default rules forConsumer
andReader each have a missing activation. They should read:

Default rule inDConsumer
Consumer[x] => #Consumer[^∗x]

Default rule inDReader
Reader[x] => #Reader[^∗x]

