On Images of Algebraic Series

Juha Honkala
Department of Mathematics
University of Turku
SF-20500 Turku, Finland
jhonkala@sara.cc.utu.fi

Abstract: We show that it is decidable whether or not the set of coefficients of a given Q -algebraic sequence is finite. The same question is undecidable for Q -algebraic series. We consider also prime factors of algebraic series.
Category: F.4.3

1 Introduction

Formal power series play an important role in many diverse areas of theoretical computer science and mathematics, see [Berstel and Reutenauer 88], [Kuich and Salomaa 86] and [Salomaa and Soittola 78]. The classes of power series studied most often in connection with automata, grammars and languages are the rational and algebraic series.

In language theory formal power series often provide a powerful tool for obtaining deep decidability results, see [Kuich and Salomaa 86] and [Salomaa and Soittola 78]. A brilliant example is the solution of the equivalence problem for finite deterministic multitape automata given in [Harju and Karhumäki 91].

In this paper we consider decision problems concerning algebraic sequences and series. For earlier decidability results see [Kuich and Salomaa 86]. We show first that it is decidable whether or not the set of coefficients of a given Qalgebraic sequence is finite. We show that the same question is undecidable for series in $\mathbf{N}^{\text {alg }} \ll X^{*} \gg$. Next we consider algebraic series with commuting variables. We show that it is decidable, given a positive integer k and a series $r \in \mathrm{Q}^{\text {alg }} \ll X^{\oplus} \gg$, whether or not the set of coefficients of r has cardinality at most k. (Here X^{\oplus} is the free commutative monoid generated by X.) We also apply the methods of our decidability proofs to study the prime factors of Q-algebraic series.

The questions studied in this paper are closely related to the study of thin and slender languages and their generalizations, see [Andraşiu, Dassow, Păun and Salomaa 93], [Păun and Salomaa 92], [Păun and Salomaa 93], [Păun and Salomaa 95], [Dassow, Păun and Salomaa 93], [Ilie 94], [Raz 00], [Nishida and Salomaa 00] and [Honkala 00].

Standard terminology and notation concerning formal languages and power series will be used in this paper. Whenever necessary, the reader may consult [Salomaa 73], [Salomaa and Soittola 78], [Kuich and Salomaa 86] and [Berstel and Reutenauer 88].

2 Images of algebraic series

Let X be an alphabet. The free monoid (resp. the free commutative monoid) generated by X is denoted by X^{*} (resp. X^{\oplus}). The set of Q -rational (resp. \mathbf{Q}-algebraic) series with noncommuting variables in X is denoted by $\mathbf{Q}^{\text {rat }} \ll$ $X^{*} \gg$ (resp. $\mathrm{Q}^{\text {alg }} \ll X^{*} \gg$). (Here \mathbf{Q} is the field of rational numbers.) We consider also \mathbf{Q}-rational and \mathbf{Q}-algebraic series with commuting variables in X. The corresponding sets are denoted by $\mathrm{Q}^{\text {rat }} \ll X^{\oplus} \gg$ and $\mathrm{Q}^{\text {alg }} \ll X^{\oplus} \gg$, respectively. Furthermore, denote by c the canonical morphism $c: \mathbf{Q} \ll X^{*} \gg \rightarrow$ $\mathrm{Q} \ll X^{\oplus} \gg$. Hence,

$$
\mathbf{Q}^{\mathrm{rat}} \ll X^{\oplus} \gg=\left\{c(r) \mid r \in \mathbf{Q}^{\mathrm{rat}} \ll X^{*} \gg\right\}
$$

and

$$
\mathrm{Q}^{\mathrm{alg}} \ll X^{\oplus} \gg=\left\{c(r) \mid r \in \mathrm{Q}^{\text {alg }} \ll X^{*} \gg\right\}
$$

By definition, the image of a series is the set of its coefficients. Hence, if $r=\sum(r, w) w \in \mathbf{Q} \ll X^{*} \gg$, the image of r equals the set

$$
\left\{(r, w) \mid w \in X^{*}\right\}
$$

The following basic decidability result concerning images of Q-rational series was established in [Jacob 78].

Theorem 1. (Jacob) It is decidable whether or not a given rational series $r \in$ $\mathrm{Q}^{\text {rat }} \ll X^{*} \gg$ has a finite image.

In this paper we discuss the possibilities to generalize this result to \mathbf{Q} algebraic series. We first establish a lemma concerning Q-algebraic series with commuting variables. Its proof relies heavily on earlier deep results in [Kuich and Salomaa 86] and [Semenov 77].

If $w \in X^{*}$ (or $w \in X^{\oplus}$), the Parikh vector $\psi(w)$ of w is defined by

$$
\psi(w)=\left(\#_{x_{1}}(w), \ldots, \#_{x_{n}}(w)\right)
$$

Here $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\#_{x}(w)$ stands for the number of occurrences of the letter x in w.
Lemma 2. If $r \in \mathbf{Q}^{\text {alg }} \ll X^{\oplus} \gg$ has a finite image, then r is a finite \mathbf{Q}-linear combination of series in $\mathbf{N}^{r a t} \ll X^{\oplus} \gg$ of the form $u v_{1}^{*} \ldots v_{m}^{*}$ with pairwise disjoint supports. Here $u, v_{1}, \ldots, v_{m} \in X^{\oplus}$ and the Parikh vectors $\psi\left(v_{1}\right), \ldots, \psi\left(v_{m}\right)$ are linearly independent over \mathbf{Q}. In particular, if $r \in \mathbf{Q}^{\text {alg }} \ll X^{\oplus} \gg$ has a finite image then $r \in \mathbf{Q}^{r a t} \ll X^{\oplus} \gg$.

Proof. Suppose that $r \in \mathrm{Q}^{\text {alg }} \ll X^{\oplus} \gg$ has a finite image. Without loss of generality we assume that r is quasiregular. Because r has a finite image there exists a positive integer $a \in \mathbf{N}$ such that $a r \in \mathbf{Z} \ll X^{\oplus} \gg$. By Corollary 16.11 in [Kuich and Salomaa 86] there exists a nonzero polynomial $P\left(x_{1}, \ldots\right.$, $\left.x_{n}, y\right) \in \mathbf{Z}<(X \cup y)^{\oplus}>$ such that

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{n}, a r\right)=0 \tag{1}
\end{equation*}
$$

(Here $X=\left\{x_{1}, \ldots, x_{n}\right\}$.) Next, fix an integer j and denote

$$
D_{j}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in \mathbf{N}^{n} \mid\left(a r, x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}\right)=j\right\} .
$$

To study the properties of the set D_{j} choose a large prime p and denote by ν the canonical morphism

$$
\nu: \mathbf{Z} \ll X^{\oplus} \gg \rightarrow \mathbf{Z}_{p} \ll X^{\oplus} \gg
$$

Define the sequence $s: \mathbf{N}^{n} \rightarrow \mathbf{Z}_{p}$ by

$$
s\left(i_{1}, \ldots, i_{n}\right)=\left(\nu(a r), x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}\right)
$$

It follows from (1) that

$$
\nu(P)\left(x_{1}, \ldots, x_{n}, \nu(a r)\right)=0
$$

or

$$
\nu(P)\left(x_{1}, \ldots, x_{n}, \sum_{i_{1}, \ldots, i_{n} \geq 0} s\left(i_{1}, \ldots, i_{n}\right) x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}\right)=0 .
$$

Hence the sequence s is p-algebraic. By Theorem 5.1 in [Bruyère, Hansel, Michaux and Villemaire 94] the sequence s is p-recognizable. Consequently, the set D_{j}^{\prime} defined by

$$
D_{j}^{\prime}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in \mathbf{N}^{n} \mid\left(a r, x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}\right) \equiv j \quad(\bmod p)\right\}
$$

is a p-recognizable subset of \mathbf{N}^{n}. Because p is large, $D_{j}=D_{j}^{\prime}$. Hence D_{j} is a p-recognizable subset of \mathbf{N}^{n}.

Now, by replacing in the argument above the prime p by another large prime q it follows that D_{j} is also q-recognizable. Therefore, by a deep result of Semenov (see [Semenov 77]), the set D_{j} is a rational subset of \mathbf{N}^{n}. Denote

$$
E_{j}=\left\{x_{1}^{i_{1}} \ldots x_{n}^{i_{n}} \mid\left(i_{1}, \ldots, i_{n}\right) \in D_{j}\right\} .
$$

Clearly, E_{j} is a rational subset of X^{\oplus}. Because X^{\oplus} is a commutative monoid, E_{j} is an unambiguous rational subset of X^{\oplus} (see [Eilenberg and Schützenberger 69]). It follows that

$$
\operatorname{char}\left(E_{j}\right) \in \mathbf{N}^{\mathrm{rat}} \ll X^{\oplus} \gg
$$

Hence $\operatorname{char}\left(E_{j}\right)$ is a finite \mathbf{N}-linear combination of series of the form $u v_{1}^{*} \ldots v_{m}^{*}$ with pairwise disjoint supports, where $u, v_{1}, \ldots, v_{m} \in X^{\oplus}$ and the Parikh vectors $\psi\left(v_{1}\right), \ldots, \psi\left(v_{m}\right)$ are linearly independent over \mathbf{Q}. Because ar has a finite image, ar is a finite \mathbf{Z}-linear combination of series $\operatorname{char}\left(E_{j}\right)$, where j is an integer. This implies the claim.

In the next theorem, $x \in X$ is a letter.
Theorem 3. It is decidable whether or not a given sequence $r \in \mathbf{Q}^{\text {alg }} \ll x^{*} \gg$ has a finite image.

Proof. First, decide by the method of Theorem 16.13 in [Kuich and Salomaa 86] whether r belongs to $\mathrm{Q}^{\text {rat }} \ll x^{*} \gg$. If not, Lemma 2 implies that the image of r is infinite. If $r \in \mathbf{Q}^{\text {rat }} \ll x^{*} \gg$, the finiteness of the image can be decided by Theorem 1.

Theorem 3 cannot be extended to alphabets with more than one letter.
Theorem 4. Let X be an alphabet with at least two letters. It is undecidable, given a series $r \in \mathbf{N}^{\text {alg }} \ll X^{*} \gg$, whether or not r has a finite image.
Proof. Let $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ be two lists of words over an alphabet Σ determining an instance PCP of the Post Correspondence Problem. Choose new letters a, b, c, d and define the series r by

$$
\begin{aligned}
r & =\sum_{k \geq 1,1 \leq i_{1}, \ldots, i_{k} \leq n} b a^{i_{1}} b a^{i_{2}} \ldots b a^{i_{k}} c u_{i_{k}} \ldots u_{i_{2}} u_{i_{1}} d \\
& +\sum_{k \geq 1,1 \leq i_{1}, \ldots, i_{k} \leq n} b a^{i_{1}} b a^{i_{2}} \ldots b a^{i_{k}} c v_{i_{k}} \ldots v_{i_{2}} v_{i_{1}} d .
\end{aligned}
$$

Consider the series r^{+}. Clearly r^{+}is \mathbf{N}-algebraic. Now, if PCP has a solution, at least one term of r has coefficient 2. Hence r^{+}has an infinite image. On the other hand, if PCP does not possess a solution the set

$$
\begin{aligned}
& \left\{b a^{i_{1}} b a^{i_{2}} \ldots b a^{i_{k}} c u_{i_{k}} \ldots u_{i_{2}} u_{i_{1}} d \mid k \geq 1,1 \leq i_{1}, \ldots, i_{k} \leq n\right\} \\
& \cup\left\{b a^{i_{1}} b a^{i_{2}} \ldots b a^{i_{k}} c v_{i_{k}} \ldots v_{i_{2}} v_{i_{1}} d \mid k \geq 1,1 \leq i_{1}, \ldots, i_{k} \leq n\right\}
\end{aligned}
$$

where the union is disjoint, is a prefix code. Therefore, each coefficient of r^{+} equals 0 or 1 , and the image of r^{+}is finite. Consequently, the image of r^{+}is finite if and only if PCP does not possess a solution.

Finally, let $h:(\Sigma \cup\{a, b, c, d\})^{*} \rightarrow X^{*}$ be an injective morphism. Such a morphism exists because X has at least two letters. By the closure properties of algebraic series, $h\left(r^{+}\right)$belongs to $\mathbf{N}^{\text {alg }} \ll X^{*} \gg$. Because the injective morphism preserves the image, the claim follows.

It is an open problem whether or not it is decidable if a given power series $r \in \mathrm{Q}^{\text {alg }} \ll X^{\oplus} \gg$ has a finite image. The following theorem solves a related problem.
Theorem 5. Given a positive integer k and a series $r \in \mathrm{Q}^{\text {alg }} \ll X^{\oplus} \gg$ it is decidable whether or not the image of r has cardinality at most k.
Proof. First, decide whether or not r belongs to $\mathbf{Q}^{\text {rat }} \ll X^{\oplus} \gg$. If not, r has an infinite image and we are done. If $r \in \mathbf{Q}^{\text {rat }} \ll X^{\oplus} \gg$ we consider two semialgorithms. The first semialgorithm computes successively the coefficients of r and tries to find $k+1$ distinct coefficients. The second semialgorithm tries to express r as a finite \mathbf{Q}-linear combination of series of the form $u v_{1}^{*} \ldots v_{n}^{*}$ with pairwise disjoint supports, where $u, v_{1}, \ldots, v_{n} \in X^{\oplus}$ and the Parikh vectors $\psi\left(v_{1}\right), \ldots, \psi\left(v_{n}\right)$ are linearly independent over \mathbf{Q}. This semialgorithm terminates, by Lemma 2, if r has a finite image. If it terminates, it can be decided whether or not the image of r has cardinality at most k.

An algorithm for Theorem 5 is now obtained by using concurrently the two semialgorithms.

3 Prime factors of algebraic series

In this section we use the methods of the previous section to study prime factors of algebraic series.

If p is a prime, the p-adic valuation ν_{p} over \mathbf{Q} is defined as follows. If $a, b \in \mathbf{Z}$, $b \neq 0$ and p divides neither a nor b, then $\nu_{p}\left(p^{n} a / b\right)=n$ for $n \in \mathbf{Z}$. Furthermore, $\nu_{p}(0)=\infty$. Now, if $r \in \mathbf{Q} \ll X^{*} \gg$ (or $r \in \mathbf{Q} \ll X^{\oplus} \gg$), the set Prime (r) of prime factors of r is defined by

$$
\begin{gathered}
\operatorname{Prime}(r)=\left\{p \in \mathbf{N} \mid p \text { is a prime number and for some } w \in X^{*}\right. \\
\text { we have } \left.\nu_{p}((r, w)) \neq 0, \infty\right\} .
\end{gathered}
$$

For the theory of prime factors of \mathbf{Q}-rational series, see [Berstel and Reutenauer 88]. By a well known theorem of [Pólya 21], the set of prime factors of a rational series $r \in \mathbf{Q}^{\text {rat }} \ll x^{*} \gg$ is finite if and only if r is the sum of a polynomial and of a merge of geometric series.

For the next theorem we need two definitions. First, a language $L \subseteq X^{*}$ is called commutatively nonrational if the commutative variant $c(L)$ of \bar{L} is not a rational subset of X^{\oplus}. Secondly, a language $L \subseteq X^{*}$ is called Parikh thin if $c\left(w_{1}\right) \neq c\left(w_{2}\right)$ whenever w_{1} and w_{2} are distinct elements of L.

Theorem 6. Suppose $r \in \mathrm{Q}^{\text {alg }} \ll X^{*} \gg$ is a Q -algebraic series. If supp(r) is commutatively nonrational and Parikh thin, there is at most one prime p such that p is not a prime factor of r.

Proof. We assume without loss of generality that r is quasiregular. Because r is Parikh thin, the series r and $c(r)$ have the same prime factors. Therefore it suffices to show that there is at most one prime p which is not a prime factor of $c(r)$. Suppose p is such a prime. Denote

$$
\begin{aligned}
A & =\left\{a \in \mathbf{Q} \mid \nu_{p}(a) \geq 0\right\}, \\
I & =\left\{a \in \mathbf{Q} \mid \nu_{p}(a)>0\right\} .
\end{aligned}
$$

It is well known that A is a ring and I is a maximal ideal of A. Hence $F=A / I$ is a field with p elements. Denote by ν the canonical morphism

$$
\nu: A \rightarrow F
$$

and its extension

$$
\nu: A \ll X^{\oplus} \gg \rightarrow F \ll X^{\oplus} \gg
$$

Because p is not a prime factor of $c(r)$, we have $c(r) \in A \ll X^{\oplus} \gg$. Hence, $\nu(c(r)) \in F \ll X^{\oplus} \gg$. Furthermore, the supports of $c(r)$ and $\nu(c(r))$ are equal.

Now, by Corollary 16.12 in [Kuich and Salomaa 86], there exists a primitive polynomial $P\left(x_{1}, \ldots, x_{n}, y\right) \in \mathbf{Z}<(X \cup y)^{\oplus}>$ such that

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{n}, c(r)\right)=0 \tag{2}
\end{equation*}
$$

(Here $X=\left\{x_{1}, \ldots, x_{n}\right\}$.) Next, regard (2) as an equation in $A \ll X^{\oplus} \gg$ and apply the morphism ν. It follows that

$$
\nu(P)\left(x_{1}, \ldots, x_{n}, \nu(c(r))\right)=0
$$

Denote

$$
D=\left\{\left(i_{1}, \ldots, i_{n}\right) \mid x_{1}^{i_{1}} \ldots x_{n}^{i_{n}} \in \operatorname{supp}(c(r))\right\} .
$$

Now, it follows as in the proof of Lemma 2 that D is a p-recognizable subset of \mathbf{N}^{n}. Consequently, we have seen that if p is a prime which is not a prime factor of r, then the set D is p-recognizable.

To conclude the proof, suppose that p and q are distinct primes which are not prime factors of r. Then the set D is both a p-recognizable and a q-recognizable subset of \mathbf{N}^{n}. Hence, by the result of [Semenov 77], D is a rational subset of \mathbf{N}^{n}. Consequently, $\operatorname{supp}(c(r))$ is a rational subset of X^{\oplus}. This is not possible because $\operatorname{supp}(c(r))=c(\operatorname{supp}(r))$. Hence there cannot be more than one prime which is not a prime factor of r.

Denote by α the isomorphism $\alpha: X^{\oplus} \rightarrow \mathbf{N}^{n}$ defined by

$$
\alpha\left(x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}\right)=\left(i_{1}, \ldots, i_{n}\right)
$$

By definition, a language $L \subseteq X^{*}$ is commutatively p-recognizable if $\alpha(c(L))$ is a p-recognizable subset of \mathbf{N}^{n}.
Theorem 7. Suppose $r \in \mathrm{Q}^{\text {alg }} \ll X^{*} \gg$ is a Q -algebraic series such that $\operatorname{supp}(r)$ is Parikh thin. If supp (r) is commutatively p-recognizable for no prime p, then every prime is a prime factor of r.

Proof. The claim follows by the proof of Theorem 6.
We conclude with an example of a series satisfying the assumptions of Theorem 7.

Example 1. Denote

$$
r=\sum_{n, m \geq 0}\left(n^{2}-m\right)^{2} a^{n} b^{m}
$$

The series r belongs to $\mathbf{Q}^{\text {rat }} \ll\{a, b\}^{*} \gg$. Clearly,

$$
\operatorname{supp}(r)=\left\{a^{n} b^{m} \mid n^{2} \neq m \text { and } n, m \geq 0\right\}
$$

Hence, $\operatorname{supp}(r)$ is Parikh thin. Also, the set $\alpha(c(\operatorname{supp}(r)))=\left\{(n, m) \mid n^{2} \neq\right.$ m and $n, m \geq 0\}$ is p-recognizable for no prime p. Indeed, if $\alpha(c(\operatorname{supp}(r)))$ were p recognizable so would be the sets $\left\{(n, m) \mid n^{2}=m\right.$ and $\left.n, m \geq 0\right\}$ and $\left\{n^{2} \mid n \geq 0\right\}$. However, the last set is a well known example of a set which is not p-recognizable for any p. Hence r satisfies the assumptions of Theorem 7. Obviously each prime is a prime factor of r.

References

[Andraşiu, Dassow, Păun and Salomaa 93] Andraşiu, M., Dassow, J., Păun, G. and Salomaa, A.: "Language-theoretic problems arising from Richelieu cryptosystems"; Theoret. Comput. Sci. 116 (1993) 339-357.
[Berstel and Reutenauer 88] Berstel, J. and Reutenauer, C.: "Rational Series and Their Languages"; Springer, Berlin (1988).
[Bruyère, Hansel, Michaux and Villemaire 94] Bruyère, V., Hansel, G., Michaux, C. and Villemaire, R.: "Logic and p-recognizable sets of integers"; Bull. Belgian Math. Soc. 1 (1994) 191-237.
[Dassow, Păum and Salomaa 93] Dassow, J., Păun, G. and Salomaa, A.: "On thinness and slenderness of L languages"; EATCS Bulletin 49 (1993) 152-158.
[Eilenberg and Schützenberger 69] Eilenberg, S. and Schützenberger, M. P.: "Rational sets in commutative monoids"; J. Algebra 13 (1969) 173-191.
[Harju and Karhumäki 91] Harju, T. and Karhumäki, J.: "The equivalence problem of multitape finite automata"; Theoret. Comput. Sci. 78 (2) (1991) 347-355.
[Honkala 00] Honkala, J.: "On Parikh slender languages and power series"; J. Comput. System Sci., to appear.
[Ilie 94] Ilie, L.: "On a conjecture about slender context-free languages"; Theoret. Comput. Sci. 132 (1994) 427-434.
[Jacob 78] Jacob, G.: "La finitude des representations lineaires des semi-groupes est decidable"; J. Algebra 52 (1978) 437-459.
[Kuich and Salomaa 86] Kuich, W. and Salomaa, A.: "Semirings, Automata, Languages"; Springer, Berlin (1986).
[Nishida and Salomaa 00] Nishida, T. and Salomaa, A.: "Slender 0L languages"; Theoret. Comput. Sci., to appear.
[Păum and Salomaa 92] Păum, G. and Salomaa, A.: "Decision problems concerning the thinness of DOL languages"; EATCS Bulletin 46 (1992) 171-181.
[Păum and Salomaa 93] Păum, G. and Salomaa, A.: "Closure properties of slender languages"; Theoret. Comput. Sci. 120 (1993) 293-301.
[Păum and Salomaa 95] Păum, G. and Salomaa, A.: "Thin and slender languages"; Discrete Appl. Math. 61 (1995) 257-270.
[Pólya 21] Pólya, G.: "Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen"; J. Reine Angew. Math. 151 (1921) 1-31.
[Raz 00] Raz, D.: "Length considerations in context-free languages"; Theoret. Comput. Sci., to appear.
[Salomaa 73] Salomaa, A.: "Formal Languages"; Academic Press, New York (1973).
[Salomaa and Soittola 78] Salomaa, A. and Soittola, M.: "Automata-Theoretic Aspects of Formal Power Series"; Springer, Berlin (1978).
[Semenov 77] Semenov, A. L.: "Presburgerness of predicates regular in two number systems" (in Russian); Sibirsk. Mat. Zh. 18 (1977) 403-418. English translation: Siberian Math. J. 18 (1977) 289-299.

