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1 Overview of Lectures

The following topics will be discussed in this paper.

— Goals of this paper

— What is AIT?

— Some important pre-AIT Ideas

— Fundamental Concepts of AIT

— Introduction to the Logo Programming Language
— The Uncomputability of H

— The Hacker’s Problem

— The Halting Problem

— Definition of Omega

— The Ultimate Uncomputability of Omega
— Random Strings

— Some Implications of AIT

— Teaching AIT

2 Goals of This Paper

The following are the goals that this paper has.

— To provide a historical context for AIT.

— To provide the basic concepts necessary to understand the more advanced
material presented during this short course.

— To provide an introduction to functional programming via the Logo program-
ming language.

— To provide examples to help understand the fundamental concepts of AIT.

— To provide an overview of some key results in AIT.

— To provide some insight into the delicate details that make actually make

AIT work.

This paper grew out of a short course on AIT that Greg Chaitin presented
in June 1994, at the University of Maine. I helped with the course, and observed
some of the topics that proved most difficult for students. These lectures are
designed to fill-in some of the gaps in people’s backgrounds that T observed in
1994. The material in these lectures is based on the work of Greg Chaitin.

L C. Calude (ed.). The Finite, the Unbounded and the Infinite, Proceedings of the
Summer School “Chaitin Complexity and Applications”, Mangalia, Romania, 27 June
— 6 July, 1995.
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3 What 1s AIT?

AIT, of course, stands for Algorithmic Information Theory. The nformation
part of the name comes from Shannon’s information theory, that first proposed
measuring the amount of information. The algorithmic part of the name comes
from the fact that algorithms (programs) are used for measuring information
content. We will discuss the basis of AIT in more detail throughout the remainder
of this paper.

4 Some Important pre-AIT Ideas

This section discusses some of the important ideas that are intimately related to

AIT.

4.1 The Concept of an Algorithm

A very interesting discussion of this i1s found in Volume 1 of Knuth’s The Art
of Computer Programming. After dismissing several earlier derivations, Knuth
presents what he claims is the correct derivation. He notes that even as late as
1957 the word did not appear in Webster’s New World Dictionary.

The closest word to appear in dictionaries of that time was algorism which
means the process of doing arithmetic using Arabic numerals. The word algorithm
appeared as the result of confusing the word arithmetic with the name of the Per-
sian mathematician Abu Jafar Mohammed ibn Miisa al-Khowarizmi (c. 825). The
word was probably first widely used for Euclid’s GCD algorithm, before it came
to have its present meaning of a well-defined procedure for computing something.
The 1971 edition of The Compact Edition of the Ozford English Dictionary gives
the following definition for algorithm: “erroneous refashioning of algorism”.

4.2 The History of Entropy

Nicolas Leonard Sadi Carnot (1796-1832) was an engineer who was interested in
understanding how much work can be produced by heat engines such as steam
engines. He introduced many important concepts into physics (thermodynamics)
including those of reversible and irreversible engine.

Building upon his work, Rudolf Clausius introduced the concept of entropy:
“I propose to name the magnitude S the entropy of the body from the Greek
word ‘n Tpown, a transformation. I have wntentionally formed the word entropy
so as to be as similar as possible to the word energy, since both these quantities,
which are to be known by these names, as so nearly related to each other in
their physical significance that a certain stmilarity in their names seemed to me
advantageous. . .”

Further contributions to the field were made by Kelvin, Boltzmann and Gibbs.
The last two connected entropy to statistical mechanics and showed that it can
be viewed as a measure of the randomness of a collection of entities such as
molecules.

The work of Boltzmann and Gibbs lead to the following expression for en-
tropy: —cX;p;logp; where c is some constant > 0 and the p; are probabilities of
various states.



Markowsky G.: Introduction To Algorithmic Information Theory 247

4.3 Information Theory

The work of Claude Shannon showed the connection between the entropy of ther-
modynamics and the entropy of information theory. Many of the ideas of inform-
ation theory were in the air when Claude Shannon wrote his two classic papers
on information theory in 1948. Shannon showed that it made sense to measure
the information content of messages and how to transmit messages correctly in
the presence of noise. The importance of this work cannot be overestimated.

Shannon derived the connection between the entropy of thermodynamics and
the information-theoretic entropy that he used in his theory. It is interesting
to note that information-theoretic entropy is the unique function on probability
vectors (vectors of non-negative numbers that sum to 1) that satisfies three very
simple conditions.

4.4 The Foundations of Mathematics

George Cantor did much work to develop set theory as we know it today. He also
discovered the diagonal argument that laid the foundation for Godel’s work and
ATIT. T will give you two flavors of the diagonal argument.

First, we will show that it 1s impossible to assign natural numbers to infinite
binary sequences. On the contrary, assume that an assignment is possible that
matches each natural number to some infinite string of Os and 1s in such a way
that all the natural numbers and the sequences are matched. This might be
illustrated as in the following table.

0101010001010. ..
010100110101. ..
2|110010101010. ..

—_

Note that the sequence s = 001... is not in the table, if it is formed so that
the i-th digit is the complement of the i-th digit in the i-th row of the table. In
other words,; s cannot be found in row 0, since it differs from the sequence found
there in the first position. It cannot be in row 1 since it differs from the sequence
found there in the second position. It cannot be in row 1 since it differs from the
sequence found there in the i-th position.

Using a similar argument, shows that it is impossible to associate the elements
of a set with the set of all subsets of the set. This argument goes as follows.
Assume the contrary, then there would be a bijection between elements of the set
and subsets of the set. Such a bijection might be represented by the following
table.

X| Sy
Sy
S

2

e

Now let W = {e|e is not a member of S.}. Note that W cannot be in the
listing. If it were, we would have W = S}, for some element h in the set. If h were
in W, then h would be in 53, but W is exactly the set of elements such e is not
in Se. If h were not in W, then h would not be in S}, so it would have to be in

W by the definition of W!
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4.5 The Berry Paradox

In the Principia Mathematica, Russell and Whitehead describe an interesting
paradox that lies at the bottom of AIT and provides the key insight into many
of its results. To start off, first note that there are only finitely many English
phrases not exceeding a certain length in words. Some of these phrases will
define positive integers unambiguously. Make a list of these phrases of twenty
words or less. (Alternatively, you can also limit the number of characters.)

This list will define a finite set of integers, so some positive integers will not
be on the list. Let Q be the smallest positive integer not on the list. Now consider
the following phrase: “the smallest positive integer that cannot be defined in less
than twenty words”. This is a phrase of 13 words!

4.6 Undecidability

Hilbert was of the opinion that eventually algorithms would be found to solve all
outstanding problems in mathematics and some of his famous problems presented
at the International Mathematical Congress of 1900 tried to direct research at
finding these algorithms. In 1931 Kurt Godel published a paper showing that any
systemn of mathematics complicated enough to include arithmetic must contain
problems undecidable from the basic axioms in that system.

In 1937 (a year before he got his Ph.D), Turing published the paper in which
he introduced “Turing machines” and showed that the Halting Problem, decid-
ing whether a Turing machine running on a particular input would halt or not.
Turing’s work 1is of critical importance in computer science and significantly sim-
plified the demonstration that there are undecidable problems in formal systems.

4.7 Credit for AIT Discoveries

Three people are generally credited with co-discovering some of the basic ideas
of AIT: Chaitin, Kolmogorov and Solomonoff. Solomonoff published some defin-
itions several years before Chaitin and Kolmogorov. Chaitin has contributed the
largest body of work to AIT and continues to extend the field at the present
time. There is a tendency on the part of some writers to attach Kolmogorov’s
name to everything in the field. This makes little sense and is obviously unfair
to other researchers.

A curious justification for this is stated on page 84 of An Introduction to
Kolmogorov Complerity and Its Applications (by Li and Vitanyi):

This partly motivates our choice of associating Solomonoff’s name with
the universal distribution and Kolmogorov’s name with algorithmic com-
plexity, and, by extension, with the entire area. (Associating Kolmogorov’s
name with the complexity may also be an example of the “Matthew Ef-
fect” first noted in the Gospel according to Matthew, 25:29-30, “For to
every one who has more will be given, and he will have in abundance;
but from him who has not, even what he has will be taken away. And
cast the worthless servant into the outer darkness; there men will weep
and gnash their teeth.”)
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5 Some Fundamental Concepts

I will loosely define the algorithmic complexity of a string as the size of the
smallest program that generates that particular string. More generally, one can
define the complexity of any object as the size of the smallest program that
generates 1t. These definitions are loose because they leave out some key details:

— What language are we using?

— What does generate mean?

— How do we measure program size?

— What exactly constitutes a program?

To simplify the discussion I will fix a particular programming language (Logo)
and work with it. There are a variety of clarifications needed when working with
a “real” language.

Note that the algorithmic complexity always exists because there are only
finitely many programs having a size less than or equal to a given number.
Knowing that something exists and finding it are two, sometimes, very different
things. There are other sorts of complexity and even variations of Algorithmic
Complexity. Since these notes are an introduction to AIT, I will just present one
version of complexity.

It is important to realize that the complexity of most strings cannot be sub-
stantially shorter than the string itself. To make this statement more precise, let’s
assume that we are using an alphabet with @ letters, and that this alphabet is
used for both the strings of interest and for writing programs. Thus there are Q"
strings of length n.

Suppose that we assume that to each “program” we associate at most one
string that 1t produces. It is possible that no string is produced if the program
goes into an infinite loop. Since programs are also strings, it is easy to see that
the number of programs having length < n 1s bounded above by

Q"+Q' + .. +Q" =(@"-1/(@-1)<Q"/(@-1)

Thus at most 1/(Q—1) of all strings of length n can be expressed by programs
that are shorter. Thus, at least (@@ —2)/(Q —1) of all strings of length n require a
program of length at least n to generate. Let’s use H(s) to denote the program-
size complexity of s.

6 An Introduction to Logo

I will now discuss the language Logo and some of the questions that come up
when dealing with trying to actually compute the complexity of a string. More
specifically, I will discuss WinLogo, a public domain Logo, which comes with a
very extensive help file.

Logo was developed by Seymour Papert and his colleagues at MIT and Bolt,
Beranek and Newman. Its purpose is to serve as a programming language that is
easy enough for kids to learn, but which is, nevertheless, powerful. Logo has been
mistyped as a kid’s language and most people don’t realize that it is actually
LISP dressed up so it can be seen out on the street!
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Rather than give you lots of details about Logo, I will give a very brief over-
view and then begin using it. Most of the terms in the language come directly
from English so the language is easy to understand. BASIC was designed to
provide a simple introduction to programming using numbers and to some ex-
tent strings. Logo was designed to provide a simple introduction to programming
using strings and lists. There are various versions of Logo that differ slightly in
the details. As stated earlier, I will base my discussion on WinLogo.

Like most programming languages Logo has variables for storing data. Logo
allows any variable to store any legal Logo object and to change the type of object
that is stored. Logo does not require declarations of variables. All variables are
global unless they are specifically declared to be local.

Logo has great flexibility in what it allows as variable names. This great flex-
ibility can cause some confusion. For example, Logo treats numbers as strings
that happen to have special properties. However, you can, if you wish, use num-
bers as variable names!

Logo 1s generally an interpreted language — this means that you can type
individual commands and see what Logo will do. Some Logos are case-sensitive
and some are not. Also, even the case sensitive Logos often are case-insensitive
when dealing with the Logo primitives

Logo has a command PRINT which displays objects and does what you
expect it to, except that when it prints lists it omits the outside pair of delimiters.
I will illustrate and explain this soon. If you give the command PRINT 2 + 2 to
the interpreter, you will get back 4 as you would expect.

If X is a variable, you must use the construction :X to tell Logo that you
want to reference its value. The colon (:) is necessary because a name appearing
without the : is assumed to be a function. It is possible for the same string to
be a function and also store a variable. If Logo spots a name around that is not
quoted or preceded by :, it assumes the name represents a function call.

Thus, the statement MAKE "2 3 assigns the value 3 as the value of the variable
2. When you give the command PRINT 2 + 2, the 2s are interpreted as functions
that return the value 2. If you give the command

PRINT :2 4 :2

you will get 6!

Logo, like LISP, is a functional programming language. This means that you
can string long sequences of functions together and Logo takes care of any tem-
porary space that is needed to link the function calls. Functions can be created
using the command

TO F-NAME :VARI1 :VAR2 ... :VARk

which invokes a very primitive facility for entering the function line by line. Once
a line is entered, it cannot be edited when using TO.
If you give the command

EDIT "F-NAME

most Logos will invoke a more powerful editing facility, although what you get
varies considerably among the implementations. For details consult the appropri-
ate reference materials.
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All Logo functions must end with the END statement. Let’s look at some
simple Logo functions to generate particular strings. This will get us started in
Logo and also return us back to AIT.

Consider the following Logo function (program):

TO ANYSTRING
PRINT "ANY_STRING
END

Now simply giving Logo the command ANYSTRING will produce the indicated
string.

Note that unlike most programming languages, Logo only requires a single
double-quote to indicate a string. Strings end when a blank has been encountered,
unless the blank is to be part of the string which is indicated by using an escape
character of some sort. WinLogo uses \. If you include a closing ” it will be
wncluded as part of the string.

ANYTHING is certainly not the shortest Logo function that can generate the
indicated string. For one thing, you can pick a shorter title than ANYSTRING,
such as X. Furthermore, Logo recognizes PR as an abbreviation for PRINT so
we can shorten the program further.

When determining program size, there are some non-obvious problems. In
particular, what exactly do we count? Clearly, we need to count the letters in
the function definitions, but each line in an ASCII file generally ends with two
invisible characters — a carriage return and a line feed. Do we include these
characters in arriving at the program size? We will soon see that Logo offers an
alternative function representation, that might produce slightly different counts,
so we need to decide exactly what we want to count.

Using ANYSTRING, we see that for most strings,

H(s) <2|s|+C

where C'is a constant that depends on exactly what we count. If we count hidden
characters we would get C' = 27 (if T counted correctly!).

You might wonder why we have 2|s|, where |s| is the length of s, rather than
just |s|. The reason for this is that some characters in Logo, such as spaces, are
delimiters and will separate a string into pieces rather than be included in the
string. Such characters must be preceded by \ to be included in the string. If
you have a string consisting entirely of special characters, you would need a \
for each character, which would double the length of the string needed in the
program.

Since every function begins with TO and ends with END there is little reason
to include them, and in fact the WinLogo interpreter displays them for the benefit
of the user, but does not include them in the representation. One needs to come
to some decision about these points, but many of the choices will not affect the
final results significantly.

There 1s another important point to consider: as written above, the function
ANYSTRING prints the string, but this means that no other function can use
the string that is produced by ANYSTRING. We can adopt the convention that
we will use printing only for illustrative or debugging purposes but that we want
our functions to output the string. Logo provides an OUTPUT function that can
be used for this purpose. OUTPUT can be abbreviated OP.

Thus, the general string generating function can be written as:
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TO X
OP "ANY_STRING
END

If we ignore TO and the line containing END, but count the two invisible
characters per line, we get that for most strings

H(s) <2|s|+9

which means roughly that the length of a string is an upper bound on its program
size complexity. If we include many special characters such as blanks in the string,
we might need twice the length of the string + 9 as a bound if we do things the
simple way. The earlier result shows that for most strings we cannot do better
than the length of the string itself.

LISP is notorious for the number of parentheses required by its syntax. It is
sometimes claimed that LISP stands for Lots of Irritating and Stupid Parentheses.
Logo works to minimize parentheses but using prefix notation and not requiring
parentheses if the default number of parameters are used. For example, SUM
and LIST normally take two parameters. Thus, in Logo one can write without
ambiguity the following command:

(LISTSUM 126 (SUM456) )
to produce the list
[3615]

6.1 Lists in Logo

Lists in Logo are represented by using square brackets at the start and finish.
Thus, [ ] represents the empty list and

[ 1 Hello [ 4 5 [6]] Goodbye]

represents a list of 4 elements, the third of which is also a list. The convention
in Logo is that if you write out a list explicitly, all strings within that list are
quoted.

Probably the main reason that PR does not show the outside parentheses of
list is that you can give the command

PR [Hello World]

and just get the phrase Hello World printed. The WinLogo primitive SHOW
displays a list with its outermost brackets intact.
Logo has a variety of commands for manipulating lists:

— FIRST LIST returns the first element of a list. Thus, FIRST [ a b ¢] returns

a.

LAST LIST returns the last element of a list. Thus, LAST [a b ¢] returns c.

— BUTFIRST LIST (BF) returns a copy of a list consisting of everything ex-
cept for the first element. Thus, BF [a b ¢] returns [ b ¢ ].

— BUTLAST LIST (BL) returns a copy of a list consisting of everything except
for the last element. Thus, BL [ab ¢ ] returns [a b ].
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— SENTENCE LIST1 LIST2 (SE) takes two lists and returns a list which res-
ults from joining copies of the original two lists into one. Thus, SE [a b ]
[abc] returns [abcabec].

— FPUT ELEMENT LIST inserts the element at the beginning of a list. Thus,
FPUT ”a[bc]returns [abc].

— LPUT FLEMENT LIST inserts elements at the end of a list. Thus, LPUT "c [a b ]
returns [a b ¢ ].

— ITEM NUMBFER LIST returns the indicated item from the list. Thus, ITEM 2 [a b ¢ ]
returns b.

— COUNT OBJECT returns the “size” of a Logo object. For lists, this is the
number of elements in the list. Thus, COUNT [a b ¢ ] returns 3.

6.2 String Operations in Logo

Some of the list operations apply equally well to strings. These are FIRST, LAST,
BF, BL, ITEM and COUNT. ITEM can be used to select particular characters
and COUNT returns the number of characters in a string.

The general operator for concatenating strings together is:

WORD Stringl String2

returns a string that is the concatenation of the two indicated strings. Thus
WORD ”abc ”def returns abcdef.

FPUT, LPUT and SE should not be used with strings. The strings “True”
and “False” represent the Boolean truth values. By default, WinLogo is not case-
sensitive. By convention, most Logo Predicates (functions that return “True” or
“False”) end with the letter P.

6.3 Recursion

Much of Logo’s power comes from its ready facility with recursion and the fact
that both strings and lists are recursive data types. For people unfamiliar with
recursion, I should note that the basic form of a recursive program is

if Base-Case [Do Some Direct Calculation]
Reduce Complex Cases to Simpler Cases

In Logo you can use the constructions

IF CONDITION [Instructions]
or

IFELSE COND [Inst1][Inst2]

Long lines may be continued by using ™ at the end of the line.

6.4 Church’s Thesis

All our results are stated using Logo so they might be accessible to as wide an
audience as possible. The reader should note that Church’s Thesis, a principle
which I will paraphrase as “anything that can be computed using one computer
language can be computed using any other computer language”. Thus, we can
draw universal conclusions even though we are using Logo to achieve our results.
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6.5 The Size of a Logo Program

Now let’s consider how to compute the size of a Logo function (program). Logo
has the function TEXT F-Name that gives the representation of the function
F-Name. For Example, TEXT ”X where X is as above returns the following:

[[][OP ”ANY_STRING ] ]

(T have added some extra spaces to make the result easier to read).

Note that TO and END are missing. The first empty list is a list of the
parameters (when present, these appear without the : even though they appear
with a colon in the original definition). You can’t immediately apply COUNT to
TEXT, because that would only tell you how many lines you have and not how
many characters. Let’s look at a complete function that calculates function size.

The following two functions provide the muscle needed to compute the size
of a “program”. Notice how we have written the functions separately for easier
comprehension.

TO PROGSIZE :PROG
0P SUM COUNT :PROG SIZE TEXT :PROG
END

PROGSIZE basically just adds the length of the name to the number returned
by SIZE, which is described below. Note how the input parameter is indicated

by :prog.

TO SIZE :0BJ

IF NOT LISTP :0BJ [OP COUNT :0BJ]

IF EMPTYP :0BJ [OP 2]

IF 1=COUNT :0BJ [0OP 2 + SIZE FIRST :0BJ]
OP (SUM 1 SIZE FIRST :0BJ SIZE BF :0BJ)
END

SIZE illustrates many aspects of Logo programming. Built-in Logo predicates
generally end in P. Thus, LISTP OBJECT tells if OBJECT 1is a list, while
EMPTYP OBJECT tells if OBJECT is empty (either string or list).

Logo also provides some infix operators such as =, +, * -, but you will
sometimes have problems with these. If you do, use the Logo prefix operators
EQUALP, SUM, PRODUCT, DIFFERENCE, etc.

SIZE works as follows. If the object is not a list (we are ignoring the possibility
that the object can be an array because most Logos don’t have arrays), COUNT
returns its size. Note that once OP is invoked, the function returns a value and
that particular call ceases so you can often use IFs rather than IFELSEs.

If we get past the first line, we must be dealing with a list. The next line checks
whether it is the empty list. If 1t is, the empty list it has a size of 2 because it
consists just of two brackets.

The next case considered is a list of just a single item. Here the size is just 2
+ the size of the item, since a pair of brackets is added to the item.

The last case considered is that of a list with several items. Here we must
allow for the single blank that is put between every pair of objects.

The fact that Logo encourages users to break their work into separate func-
tion definitions now complicates our attempt to produce a program-size measure.
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Since functions can call other functions, just measuring the size of the calling func-
tion need not give a true measure of its complexity since much of its functionality
might be buried inside another function.

For example, PROGSIZE has most of its complexity buried in SIZE so simply
asking for PROGSIZE "PROGSIZE will give a misleading result. What we are
aiming at is to define the program size as the size of the master program and all
its subprograms together with any data that is defined. This is complicated by a
feature that we now discuss.

WinLogo and most other Logos use a workspace which stores function defin-
itions, global variable definitions and other information. Any Logo function can
access any of this information, so you must be careful when you measure program
size.

If you use functions not defined in the workspace, WinLogo automatically
searches in various places for the definition (the details are in the extensive on-
line help that comes with WinLogo). Thus, if you are not careful you can be
invoking much Logo code by a function that is quite short.

There are at least two ways to get around these various problems and get a
measure of the complexity size. One way, is to pick a suitably “clean” computer
with no hidden Logo definitions, identify which function in the workspace pro-
duces the result and then measure the workspace in bytes. This solution 1s simple
to understand, but unfortunately it forces us out of Logo and into the domain
of the operating system. Ideally, we could do all of this work in Logo. I will now
describe how to do this.

We have seen how the TEXT command returns the body of a function. The
command

DEFINE F-NAME BODY

goes from the representation of a function to its definition. BODY should have
the same format as produced by TEXT.
Below we show how to rewrite PROGSIZE so it is completely contained.

TO PROGSIZEX :FUN
DEFINE "SIZEX [[OBJ] -
[ IF NOT LISTP :0BJ [OP COUNT :0BJ]] ~
[IF EMPTYP :0BJ [OP 2]] ~
[IF 1=COUNT :0BJ [0P 2 + SIZE FIRST :0BJ]] -
[0OP (SUM 1 SIZE FIRST :0BJ SIZE BF :0BJ)]]
OP SUM COUNT :FUN SIZEX TEXT :FUN
END

Recall, that the character ™ is used to continue a line.

6.6 A More Formal Definition of H

We are now ready to more formally define what we mean by H(s) where s is a
string or any other Logo object for that matter. We first create a workspace on
a computer that does not have access to any other Logo workspaces.
Furthermore, the workspace we work in must contain only one function which
has no input parameters, so that all input has to be included in the function.
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If any additional functions need to be defined, this must be done as indicated
above by PROGSIZEX 1in the body of the lone function. When this lone function
executes, 1t produces the desired object s. To actually measure the function cor-
rectly we must measure it before it runs since running the function can introduce
new functions and variables as well as erase functions and variables.

I stress these points so you can better appreciate Greg Chaitin’s “Toy” LISP
— it will clarify why he needs to do things in a certain way.

I should note that WinLogo does not always perform correctly when you
define functions in the body of a function, in particular you sometimes have to
run the function twice for it to work correctly. I will ignore this little problem
and assume that it all works well enough for our purposes.

6.7 Some Examples

Now that we have discussed some of the fine points of measurement, we can
write our functions in a more relaxed style knowing that we can always cram
everything together into one bundle if necessary for measurement.

Consider the following function:

TO P2 :STR
IF EMPTYP :STR [OP "X]
LOCAL "J

MAKE "J P2 BF :STR
OP WORD :J :J
END

If you input a string of length N, you get a string of 2V Xs as output. Now
consider the following Logo function.

TO PQ
OP P2 P2 P2 "Y
END

PQ will output a string of 16 Xs. It is clear that if we add additional instances
of P2 and a blank on the second line of PQ we get an super-exponentially increas-
ing sequence of strings. In other words, we would get strings of length a; = 16,
ay = 219 a3 = 22, .. It quickly gets beyond the capability of real computers to
produce strings of the appropriate length. By using the Ackermann function, one
can generate “really large strings.”

Notice that adding an extra P2 just increases the size of the program by 3,
but the size of the output monstrously. These simple examples show that some
extremely long strings have small H. The following shows how we could create a
self-contained function that behaves like PQ —in the future I will display functions
using the more relaxed syntax only.

TO PQX
DEFINE "P2X ~
[[STR] ~
[IF EMPTYP :STR [OP "X]] ~
[LocAL "J] ~
[MAKE "J P2X BF :STR] ~
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[OP WORD :J :J1]
OP P2X P2X P2X "Y
END

7 Actually Measuring String Complexity

I hope that the preceding discussion has given you some insight into actually
measuring H for various strings. By now, you are probably chaffing at the bit
and ready to start computing some values of H.

Unfortunately, I will now illustrate why this is more difficult that might ap-
pear. It turns out that it is impossible to compute H for more than a finite
number of strings!

7.1 The Uncomputability of H

An argument based on the Berry Paradox shows quite convincingly that H is
not computable for an infinite number of strings. Assume that we have a fixed
length function, called H, that correctly computes the complexity of infinitely
many strings. Since there are only finitely many programs less than a certain
length, any infinite collection of strings must contain strings of arbitrarily large
complexity.

Thus, going through all possible strings ensures that we will eventually find
strings of arbitrarily large complexity. The basic idea of this proof is expressed
by the following Logo functions. In particular, the person claiming that H is
computable must supply a way to compute H. We will show that the proposed
solution for H cannot be correct without examining the inner structure of H.

Theorem: No Logo function can correctly compute H for all strings.

Proof: Consider the following Logo functions.

TO FOOL
OP EXPLORE "
END

TO EXPLORE :STR

IF NOT LESSP H :STR :N [0P :STR]
0P EXPLORE NEXT :STR

END

TO H :STR

; WinLogo comments begin with a ;
; H supposedly calculates H(str)
; This has the appropriate code.
END

TO NEXT :STR

; assume only ASCII chars 33..90
; NEXT returns the 'next'" string
IF EMPTYP :STR [OP CHAR 33]

IF 90 > ASCII LAST :STR™
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[OP WORD BL :STR CHAR 1+ASCII LAST :STR]
OP WORD NEXT BL :STR CHAR 33
END

TO BASE :STR

;returns a string of !s of same length as :str
IF EMPTYP :STR [OP " ]

OP WORD CHAR 33 BASE BF :STR

END

Note that the above program will generate a string of complexity greater than
N. The only problem we have here is that the program has size

Ci4+Co+Cs+ Cy+1logN

where (1 1s the size of FOOL, Cs+log N is the size of EXPLORE, , (5 is the size
of H, and () is the size of NEXT and BASE. Note that we need log N included in
the size of EXPLORE since as we pick arbitrarily large N the size of EXPLORE
will grow logarithmically. We use abstract constants to denote the sizes of the
routines, since it is their sizes in the coded form (see the next section) that really
count rather than their sizes in the expanded form listed above.

Yet by definition, a string of complexity N or greater, can only be generated
by a program of size at least N. Clearly,

Ci1+Cy4+Cs4+Ci+1logN < N

for N arbitrarily large, which contradicts the definition of complexity N. O
You can run the above program and get a concrete realization of the Berry
Paradox, which you will see again later in this paper.

8 Programs as Lists

Logo has a RUN command that attempts to run a list of instructions. You can
feed anything to RUN and it might halt with an error message. The following
illustrates how you can put the definition of a program and its execution into a
single list. Thus,

RUN [define "hw [ [] [op "hello\ world ] ] hw]

outputs the string hello world. (\ includes a blank in the string).

This approach is somewhat more elegant than the one we have been using
earlier because it includes the execution of the function along with the definition.

I will refer to expressions of the form above as functional expressions. In other
words, a functional expression is a Logo list that produces something (maybe an
error message) when executed with the RUN command. We can now define the
complexity of a string as the size of the smallest functional expression that can
produce the string.

Note that 1t 1s easy to go from standard function definitions to functional
expressions. Unfortunately, WinLogo does not always correctly run the functional
expression the first time.
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Note that the size of the functional expression can vary significantly from
the size of the function definition because it might include an extra copy of the
function’s name, which could be arbitrarily long.

9 Properties of H

As we have seen, H 1s not computable. Nevertheless we can derive some of its
properties. The following is an example of this.

H(s1 +s2) < H(s1) + H(s2) +C

where + between strings indicates concatenation. I will now give the proof of
this, which is straightforward.

Let F1 be a functional expression that evaluates to s;, and 5 a functional
expression that evaluates to s9, then let E be the functional expression:

[WORD RUN :El1 RUN :E2]

In this case, C = 16 ( 2 for extra brackets, 4 for WORD, 6 for the two RUNs, 4
for the blanks).

10 More on Functional Expressions

For the “hello world” example concatenated to itself we would have that E looks
like the following:

[word run [ define "hw [ [ ] [op "hello\ world ] ] hwl
run [ define "hw [ [ ] [op "hello\ world ] ] hw]

The difficulty of reading functional expressions explains why I stress the less
formal, conventional description of programs. It is important to understand how
functional expressions can be constructed from more conventional programs and
how they operate.

11 Converting Lists to Strings

It is easy to write a Logo function, List2String that will convert Logo lists to
strings. List2String can be based on the SIZE function described above. Writing
such a function is left to you as an exercise (see the exercise section).

Thus, any function can be converted into a string by using TEXT to create its
list representation and then using List2String to create the string representation.
One can also write a string parsing function that will convert strings into lists
where this make sense. You might expect this to be quite a bit more complicated
than List2String.

WinLogo has a command called PARSE that converts strings into lists. Un-
fortunately, the version PARSE that I have does not permit embedding blanks
into strings since it uses them as separators. You can get around this by creating
a function that concatenates strings together with a blank between them or you
can write a different parser as an exercise. I will just use - to represent embedded
blanks in the following example.

Consider the following sequence of instructions: which produce the string
hello-world as an output.
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make "x "define\ "hw\ \[\[\J\[op\ "hello-world\]\]hw
make '"xp parse :x
run :xp

Note how the backslash (\) needs to be used to include characters such as
brackets in the string. Each new refinement makes the functions less readable, so
I will continue to work with the standard programming notation. The important
thing 1s to note that we can move from strings to lists and lists to strings.

12 The Hacker’s Problem

Closely related to the problem of computing H is the Hacker’s Problem: how
can you show that a given program is the shortest program that can generate a
particular result? Greg Chaitin refers to such programs as elegant programs.

My name for the problem comes from the book Hackers by Stephen Levy
which details how many hackers were on an endless quest to find the shortest
program to accomplish some task. The hackers were never able to prove that
some program was the shortest. We will now see why this is no accident. Greg
Chaitin participated in such a quest when he was learning programming while
in high school.

In view of the uncomputability of H, you might suspect that the Hacker’s
Problem is also not solvable. We will now see how to apply essentially the Berry
Paradox argument to this problem.

Usually, when people talk about proving something they imply that one must
use an axiomatic system of some type. The same object can be achieved by
thinking of an axiomatic system as a computer program that can correctly decide
a certain question.

You will soon see that it is impossible for a any program to correctly decide
for infinitely many programs that they are minimal programs. Furthermore, the
complexity of the algorithmic system bounds the complexity of the programs
for which minimality can be demonstrated. Thus, the checking program cannot
correctly decide whether programs sufficiently larger than itself are minimal!

Theorem: The Hacker’s Problem cannot be solved in general, i.e., there are
only finitely many provably elegant programs.

Proof: Suppose that there was a Logo function that could correctly analyze
functional expressions given as strings and decide correctly whether or not they
were minimal. Consider the following Logo routines.

TO FOOL
OP EXPLORE "
END

TO EXPLORE :STR

IF NOT LEGALFEP :STR [OP EXPLORE NEXT :STRI]
IF LESSP COUNT :STR :N [0OP EXPLORE NEXT :STRI]
IF NOT ELEGANTP :STR [OP EXPLORE NEXT :STRI]
OP RUN PARSE :STR

END
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TO LEGALFEP :STR

;TELLS IF :STR IS A LEGAL
; FUNCTIONAL EXPRESSION
END

TO ELEGANTP :STR

; SUPPOSEDLY TELLS IF :STR IS ELEGANT
0P "TRUE

END

The size of the program above is
Ci+Co+logN +Cs+Cy

where (] is the size of FOOL, C5+41log N 1s the size of EXPLORE, Cj is the size
of LEGALFEP and ELEGANTP, and C} is the size of NEXT and BASE (which
were used earlier). FOOL, however, produces strings of complexity N, where N
1s arbitrary.

ELEGANTP represents the elegance detector which we are assuming exists.
LEGALFEP is a function that can be built which determines whether a given
string can be made into a legal functional expression. For compiled languages,
the compiler is the arbiter who decides whether the input is a legal program
for a particular language. Interpreted languages tend not to have comprehensive
syntax checking as a feature, but there is no reason why it can’t be done. Of
course, this is not a trivial task. I will assume that such a program can be
written for Logo.

PARSE is used to represent a function that converts strings to functional
expressions when possible. It can be replaced by something more accurate.

Thus, we have for all N,

Cr+Cy4+C3+Cy+1logN >N

which is impossible. O
We can draw some additional information from this argument. In particular,
we have that

CgZN—(Cl+Cz+C4—|—10gN)

Recall that C'5 included the size of the elegance-recognition program. The
conclusion here is that any program that can prove that a program of size N is
elegant, essentially must have size at least N itself. Thus, programs cannot prove
the elegance of programs that are substantially larger than they are themselves.

13 The Halting Problem

I will now show how our inability to compute H(s) or to solve the Hacker’s
Problem implies that the Halting Problem (telling whether a given program will
halt) is not solvable. In both cases, the argument is almost the same.

First, let’s show that if the Halting Problem is solvable by a computer pro-
gram, we could construct a computer program (an extremely slow one) that could
compute H (s).
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We proceed as in the Hacker’s Problem and begin going through all the
“programs”, by which I mean all functional expressions with no input parameters.
If we could tell which ones will halt and which ones won’t, we just discard the ones
that don’t halt and run the ones that will halt and collect the results. We create
a list of all “program” outputs arranged by size of the functional expressions.

Now to compute H (s) just read through the list until you first spot s. It has
to appear at least once, and its first appearance is with the shortest program
that generates it.

Since we can’t compute H(s), it follows that it is impossible to solve the
Halting Problem.

We don’t really need to construct the list of all programs, since we can exam-
ine outputs “on the fly” and compare them to s. The following Logo code shows
how this can be done.

TO H :STR
OP COUNT EXPLORE :STR "
END

TO EXPLORE :STR :PRG

IF NOT LEGALFEP :PRG [OP EXPLORE :STR NEXT :PRG]

IF NOT HALTP :PRG [OP EXPLORE :STR NEXT :PRG]

IF NOT EQUALP :STR RUN PARSE :PRG [OP EXPLORE :STR NEXT :PRG]
0P :PRG

END

TO HALTP :PRG

; TELLS IF PROGRAM REPRESENTED
; BY THE STRING :PRG WILL HALT
END

Note that we use the NEXT and LEGALFEP functions that we discussed
earlier. Of course, HALTP is our hypothetical solution to the Halting Problem.

The argument based on the Hacker’s Problem is similar: by eliminating the
programs that never halt we can construct a list of all possible outputs that
match up with program size. We also check our candidate program to make sure
that it halts and produces an output.

Once such a list is constructed we can decide whether a program is elegant
by simply checking all entries that come earlier in the list — if we find the same
output earlier, we see whether the corresponding program is strictly shorter. If
it 1is, then the program being tested is not elegant. If it is the same length we
continue our search until we have examined all earlier entries.

Another proof that shows that the ability to solve the Halting Problem allows
us to solve the Hacker’s Problem, proceeds as follows. If we can solve the Halting
Problem we could compute H as shown earlier. If we can compute H, we can
solve the Hacker’s Problem using the following Logo code which uses some of the
Logo functions discussed earlier.

TO ELEGANTP :PRG
IF NOT LEGALFEP :PRG [OP "FALSE]
IF NOT HALTP :PRG [OP "FALSE]
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LOCAL "X

MAKE "X RUN PARSE :PRG

IF LESSP H :X COUNT :PRG [OP "FALSE]
0P "TRUE

END

Reference [5] contains two proofs that show that being able to compute
program-size complexity would confer the ability to solve the Halting Problem.

14 Chaitin’s 2

Greg Chaitin has found an interesting way to combine his incompleteness res-
ults into one neat number which he calls Omega (£2). The bits of £2 are truly
unknowable as we will soon see.

In order to correctly define §2 we need to completely analyze a property
possessed by our functional expressions. This property, being self-delimited or
prefir-free is somewhat technical. Its main purpose is to show that the definition
of {2 makes sense.

Let’s think of a program as a string. As we have seen earlier this is a reas-
onable way to think of it, and we have gone back between string representations
and list representations of programs.

For compiled languages like C, C++ and Pascal, programs consist of multiple
files, which in theory can be combined into a single file and hence into a single
string. A program is self-delimiting (prefiz-free) if no proper prefix of it is also a
legal program.

Recall that functional expressions are Logo lists that return results when
executed with RUN. Lists are prefix-free because if you take any prefix of a list
you get an unbalanced expression! Consider the following:

[AB[C[DE]F]G H]

Thus, as long as we use lists to represent programs, the programs will be
prefix-free. You will soon see why this property is important.

Note that if you view a Logo program as a collection of functions in a file, then
programs need not be prefix-free since you can just add miscellaneous functions
to the end which do not play a role in the main computation.

Many other languages are prefix-free. For example, a Pascal program ends
when the compiler reads through a legitimate “END.”  so Pascal programs are
naturally prefix-free.

One way to make programs in many languages prefix free is to require that
their string representation end in a particular character, such as an EOF (end-
of-file) character, that may not appear anywhere else.

Chaitin calls {2 the Halting Probability and defines it as:

Z Q—size(p)
p halts

Here the sum ranges over all programs p that halt and @) 1s the size of the
alphabet.
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The simplest case to visualize is the binary case, 1.e., @ = 2. I will generally
use the considerably larger alphabet consisting of the 95 characters from ran-
ging from ASCII 32 to ASCII 126, along with the carriage return and line feed
characters. .

Let’s denote Q=512¢(P) by I'(p), and the sum of I over a set, S, by I'(S). An
important consideration is whether the above definition for {2 makes sense, i.e.,
does the sum converge to a value between 0 and 1.

If programs are prefix-free, then we will show that the sum over all programs,
not just the ones that halt, exists and does not exceed 1, so clearly §2 also exists.

Proving the existence of 2 is the only place where the prefix-free property
is used. Let’s assume for the time being that 2 exists and discuss some of its
properties.

15 Ultimate Uncomputability of £

Since the definition of £2 is bound up with knowing which programs halt it should
not be surprising to learn that {2 is very uncomputable. In general, it is easiest
to think of {2 expressed as a “decimal” in base ), in other words as a string
beginning with a decimal point and followed by a symbol representing a number
from 0 to (@ — 1).

If @ were 10, we would get the familiar decimals, while if @) is 2 we would
get binamals. All such representations suffer from the ambiguity that there are
2 ways to represent some of the numbers. For example, in decimal .*1000... and
*0999... are the same string, where * represents an arbitrary initial string. We
make the convention that we do not accept the representations that end in an
wnfinite number of Os and always use the second form.

In particular, in the binary system we would replace a number of the form
%100000. . ., we will replace this binamal expansion by .011111. ...

If you could know all the digits of £2 you would know a lot! In particular,
if you knew the first n bits of {2 you would be able to determine if a particular
n-character program halted.

The basic idea here is as follows. Imagine that you are able to run programs
until they either halt or exceed a certain time bound. Next imagine what happens
if you run the first k& programs for k& time units. As k grows you will discover
more and more programs that halt.

Thus, after step k& you can create the k-th lower bound approximation to {2
which is formed by computing

Z Q—size(p)

p halts in stage k

for all the programs that have halted up through stage k. Let’s call this quantity
2.

£2; increases as k increases since more and more programs will be found that
halt. In particular, a stage comes when all programs having n or fewer characters
(there are only finitely many of them) halt.

At this stage, let’s call it k, {25 matches {2 in the first n digits, and will only
be smaller in digits that come after these n digits.
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This means that at stage k we know that none of the programs that have n
or fewer characters (typically n < k) can halt!
The last result follows because if any new program, p, with n or fewer char-

acters Wouklhah,[Yp)::Q_Sme@)wmuklahertheﬁr%(ﬁgﬁsof!hgand}wnce
£2. Since we are assuming that we know the first n bits of {2, we must now know
all the programs with n or fewer characters that halt.

The argument we just gave is captured in the following Logo functions.

TO HALTP :PRG :0MEGA_N
IF LESSP COUNT BF :0MEGA_N COUNT :PRG™
[OP LPUT :PRG [TOO FEW DIGITS OF OMEGA FOR ]]
IF MEMBERP :PRG HaltList :0MEGA_N [OP "TRUE]
0P "FALSE
END

TO HaltList :0MEGA_N
OP HL :0OMEGA_N 1
END

TO HL :0MEGA_N :K

LOCAL "TEMP

MAKE "TEMP HALTLISTAUX :K

IF NOT LESSP FIRST :TEMP VALUE BF :0MEGA_N [0OP LAST :TEMP]
OP HL :0MEGA_N (1+:K)

END

TO HaltListAux :K
(LOCAL "LST "PRG)
MAKE "LST [ ]
MAKE "PRG NEXTPROG "
REPEAT :K [ -
IF FIRST RUN? :PRG :K [MAKE "LST LPUT :PRG :LST] ~
MAKE "PRG NEXTPROG :PRG ]
OP LIST LSUM :LST :LST
END

TO LSUM :LST

IF EMPTYP :LST [OP 0]

OP SUM POWER 95 MINUS COUNT FIRST :LST LSUM BF :LST
END

TO NextProg :PRG

MAKE "PRG NEXT :PRG

IF LegalFEp :PRG [OP :PRG]
OP NextProg :PRG

END

TO VALUE :0MN
IF EMPTYP :0MN [OP 0]
OP QUOTIENT (SUM ASCII FIRST :0MN -32 VALUE BF :0MN) 95
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END

TO RUN? :PRG :TIME

MAKE "PRG PARSE :PRG

LOCAL "RESULT

SetTimer 1 :TIME [ClearTimer 1 OP LIST "FALSE [ ] 1]
MAKE "RESULT RUN :PRG

ClearTimer 1

OP LIST "TRUE :RESULT

END

The most natural way to represent numbers in base 95 i1s to use the 95
characters as digits. To calculate the digit-value of a character, subtract 32 from
its ASCII number. Thus, blank, which is ASCII 32, will represent 0. Similarly,
$, which is ASCII 36, represents the value 4.

HaltList is just a cover function that permits us to loop using HL. HL finds the
first time that approximations to §2 exceed or equal the given value and returns
a list of the functional expressions that halted in the search to this point.

Note the use of BF to eliminate the leading decimal point in :OMEGA_N.

There is a minor technical point that must be mentioned at this point. Win-
Logo takes certain liberties with strings that it can interpret as numbers. For
example, the string 0000 will be automatically converted to 0, and the string
.1000 will be displayed as .1.

Furthermore, 1t will reduce the precision of strings to the maximum precision
that it can handle. However, as long as at least one character in a string is not a
digit, Logo will treat the entire string as a string.

The functions listed here gloss over this point and I leave 1t to you to modify
the programs appropriately to handle this point if you are interested.

HaltListAux returns a list containing two elements: a lower bound for Omega
obtained by running programs 1...% for a maximum of %k time units, and a list
of the programs that have halted within the allowed time.

LSUM adds probabilities of programs in the list. The NextProg function
returns the next string that is a legal functional expression.

The Logo code presented so far assumes that we have working versions of
LegalFEp and NEXT. Earlier, a working version of NEXT was presented that
can be used here. Just to have something that can run, we can use the following
definition of LegalFEp.

TO LegalFEp :PRG
0P "true
END

The function VALUE is used to convert OMEGA_N strings to reals using
the convention that the characters of the alphabet represent the digits in base Q.
Value assumes that the decimal point has been removed from :OMN.

Logo has a limited tolerance for complex arithmetical expressions written us-
ing infix notation so you can best express these expressions using prefix notation.

Run? runs functional expressions for limited periods of time. It outputs a list
of two items [Halted Output]. If Halted is true, Output contains the output. If
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Halted is false, prg ran the designated amount of time but did not return an
answer.

Something like Run? is tricky to implement in most programming languages.
In WinLogo, one can get this effect by using the SetTimer command to interrupt
programs after a certain amount of time. After : TIME milliseconds Logo executes
the commands in the list to the right of SetTimer (Logo has many timers and we
are using number 1). ClearTimer disables the time-based interrupt.

16 The Existence of 2

We should now give some indication of why {2 exists. The key idea is based on
the Kraft inequality which says that the sum of the weights of the elements of any
prefix-set of strings is bounded above by 1. The weight of a string, s, is given by

(Q~512€(s) where ( is the number of elements in the alphabet.

We will prove this by first considering the finite case. The result we wish to
prove is the following.

Theorem (Kraft Inequality): Let S be a finite prefix-free set of strings formed
from the alphabet A, which has @ elements. Then

S <1
seS

Proof: This theorem 1s clearly true if S contains 0 or 1 element. Assume
that it is true for sets having n or fewer elements. Now consider the case where
S contains n 4+ 1 elements. Divide S into ) subsets, one for each letter of the

alphabet, so that
S=1J S

acA

where S, consists of all elements of .S that begin with the letter a (note S, could

be empty). Note that
I(S) =2 1'(S)
acA

and that each S, is prefix-free. For each a € A, let Sa be the set of strings formed
by removing the first element of each element in S,. Observe that S, must be
prefix-free, otherwise S, would not be prefix-free. Note further that

I'(8a) = QI'(Sa)
We can apply the induction hypothesis to see that
I'(S.) <1

whence

and consequently
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O

To extend this result to infinite trees note that if an infinite sum exceeds 1,
some finite subsum must also exceed 1. This would give us a finite, prefix-free
set whose I" would exceed 1, but this is impossible. Thus, the I of all programs,
which form a prefix-free set in the set of strings, is bounded by 1. It follows that
2 exists!

17 Additional Properties of 2

The preceding discussion shows that {2 is unknowable. Chaitin has discussed this
in depth and has extended these results in many different directions. I cannot
develop this theory in detail here, but will summarize some of the key results.

First, §2 is truly random when represented in any base. This means that its
sequence of digits will pass any statistical test that can be devised. I will not go
into details, but this implies, among other things, that every digit appears essen-
tially the same proportion of the time as any other digit. Similarly, all possible
pairs of digits, triples of digits, etc. appear with the expected frequency.

This last observation leads to the concept of a Chaitin-random string. A finite
string is Chaitin-random when its complexity is roughly equal to its length. An
infinite string is Chaitin-random if all of its finite prefixes are Chaitin-random.
It can be shown that Chaitin-random infinite strings are exactly those that pass
all statistical tests.

18 Some Implications of AIT

Here are a few statements that summarize the implications of AIT.

— Complexity theorists cannot live by logic alone.

— Discovery is an important tool in the complexity toolbox.

— Random searching is also an important tool.

— No current pseudo-random number generator will pass all statistical tests!
For some modeling applications, this might have serious repercussions.

19 Exercises

1. Write a Logo function called Euclid that recursively computes the GCD of

two positive integers.

. Write a Logo function to compute the Fibonacci numbers.

3. Write a function that can concatenate a list of strings into one string with

blanks separating the different entries.

. Write a Logo function that will convert a Logo list into a single string.

. Write a Logo function that correctly converts strings into lists. This should

deal correctly with embedded blanks in strings.

6. The Busy Beaver function, BB(N), calculates the length of the longest string
that can be produced by a program of length N that has no input parameters.
Show that BB(N) is not computable.

7. Write a Logo interpreter for Chaitin’s Toy Lisp.

[\]

OV

The following are sources used in preparing the preceding talk. Other books
used are referenced in the text.
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