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Abstract: Kraft's inequality [9] is essential for the classical theory of noiseless coding
[1, 8]. In algorithmic information theory [5, 7, 2] one needs an extension of Kraft's con-
dition from �nite sets to (in�nite) recursively enumerable sets. This extension, known
as Kraft-Chaitin Theorem, was obtained by Chaitin in his seminal paper [4] (see also,
[3, 2]). The aim of this note is to o�er a simpler proof of Kraft-Chaitin Theorem based
on a new construction of the pre�x-free code.
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1 Prerequisites

Denote by N = f0; 1; 2; : : :g the set of non-negative integers. If X is a �nite set,
then #X denotes the cardinality of X .

Fix A = fa1; : : : ; aQg; Q � 2, a �nite alphabet. By A� we denote the set
of all strings x1x2 : : : xn with elements xi 2 A (1 � i � n); the empty string
is denoted by �. For x in A�; jxj is the length of x (j�j = 0). For p 2 N,
Ap = fx 2 A� j jxj = pg is the set of all strings of length p. Fix a total ordering
on A, say a1 < a2 < � � � < aQ, and consider the induced lexicographical order
on each set Ap, p 2 N. A string x is a pre�x of a string y (we write x � y)
in case y = xz, for some string z. A set S � A� is pre�x-free if there are no
distinct strings x; y in S such that x � y. We shall use [2] for the basics on
partial recursive (p.r.) functions.

2 Main Proof

This section is devoted to a new and simpler proof of the Kraft-Chaitin Theorem.

Theorem. (Kraft-Chaitin) Let ' : N
o
! N a p.r. function having the do-

main, dom('), to be N or a �nite set f0; 1; : : : ; Ng, with N � 0. Assume that
X

i2dom(')

Q�'(i)
� 1: (1)
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There exists (and can be e�ectively constructed) an injective p.r. function

� : dom(')! A�

such that for every i 2 dom('),

j �(i) j= '(i);

and
f�(i) j i 2 dom(')g

is a pre�x-free set.
Proof. We will construct three sequences (Mn)n2dom(') (of �nite subsets of

A�), (mn)n2dom(') (of non-negative integers), (�n)n2dom(') (of strings over A)
as follows:

mn = maxfj x j j x 2Mn; j x j� '(n)g;

�n = min(Mn \ A
mn);

where min is taken according to the lexicographical order.
The sets Mn are constructed as follows: M0 = f�g, and if M1; : : : ;Mn have

been constructed and '(n+ 1) 6=1, then:

Mn+1 = (Mn n f�ng) [ Tn+1;

where
Tn+1 = f�na

j
1
ap j 0 � j � '(n)�mn � 1; 2 � p � Qg:

Finally put

�(n) = �na
'(n)�mn

1
:

The proof consists in checking, by induction on n � 0, the following �ve
conditions:

A)
P

x2Mn

Q�jxj = 1�
Pn�1

i=0 Q
�'(i):

B) For all p � 0;#(Ap \Mn) � Q� 1.
C) The string �n does exist.
D) The sets Mn and f�(0); �(1); : : : ; �(n� 1)g are disjoint.
E) The set Mn [ f�(0); �(1); : : : ; �(n� 1)g is pre�x-free.

The induction basis is very simple: M0 = f�g, so m0 = 0; �(0) = a
'(0)
1

.

Consequently,
P

x2M0
Q�jxj = 1 �

P�1

i=0Q
�'(i): For all p � 1;#(Ap \Mn) =

0 � Q� 1. Finally, �0 = � and the last two conditions are vacuously true.
Assume now that conditions A)-E) are true for some �xed n � 0 and prove

that they remain true for n+ 1.
We start by proving the formula

(Mn n f�ng) \ Tn+1 = ;: (2)

In fact, Mn \ Tn+1 = ;. Otherwise, ; 6=Mn \ Tn+1 �Mn and Mn is pre�x-free.

So, for some 0 � j � '(n)�mn� 1 and 2 � p � Q, �na
j
1
ap 2Mn\Tn+1 �Mn.

As �n 2Mn, it follows that Mn is no longer pre�x-free, a contradiction.

307Calude C., Grozea C.: Kraft-Chaitin Inequality Revisited



We continue by checking the validity of conditions A)-E). For A), using (2),
the induction hypothesis and the construction of Mn+1, we have:
X

x2Mn+1

Q�jxj =
X

x2(Mnnf�ng) [ Tn+1

Q�jxj

=
X

x2Mnnf�ng

Q�jxj +
X

x2Tn+1

Q�jxj

=
X

x2Mn

Q�jxj
�Q�mn + (Q� 1)

X

0�j�'(n)�mn�1

Q�(mn+j+1)

= 1�

n�1X

i=0

Q�'(i)
�Q�mn + (Q� 1)Q�mn�1

'(n)�mn�1X

j=0

Q�j

= 1�

nX

i=0

Q�'(i);

provided mn � '(n) � 1, and
X

x2Mn+1

Q�jxj =
X

x2Mn[Tn+1

Q�jxj

=
X

x2Mnnf�ng

Q�jxj +
X

x2Tn+1

Q�jxj

= 1�

n�1X

i=0

Q�'(i)
�Q�mn

= 1�

nX

i=0

Q�'(i);

in case mn = '(n) (and, consequently, Tn+1 = ;).
For B) we note that in case k < mn or k > '(n) we have

Mn+1 \ A
k =Mn \ A

k:

For k = mn,
#(Mn+1 \ A

k) = #(Mn \ A
k)� 1;

so in all these situations B) is true by virtue of the inductive hypothesis.
In case

mn + 1 � k � '(n); (3)

we have
Mn+1 \ A

k = Tn+1 \ A
k: (4)

Indeed, if x 2 Ak and k satis�es (3), then x 62Mn. For such a k,

Mn+1 \A
k = ((Mn n f�ng) [ Tn+1) \A

k

= ((Mn n f�ng) \ A
k) [ (Tn+1 \ A

k)

= (Mn \ A
k) [ (Tn+1 \ A

k)

= Tn+1 \ A
k:
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In view of (4),

#(Mn+1 \ A
k) = #(Tn+1 \ A

k) = Q� 1:

For C), �n+1 does exist if inMn+1 we can �nd at least one string of length less
or equal than '(n+1). To prove this we assume, for the sake of a contradiction,
that every string in Mn has length greater than '(n+ 1). We have:

X

x2Mn+1

Q�jxj =

1X

p=0

X

x2Mn+1\Ap

Q�jxj

=

1X

p='(n+1)+1

X

x2Mn+1\Ap

Q�jxj

<

1X

p='(n+1)+1

Q�p(Q� 1)

= Q�'(n+1);

as Mn+1 \ Ap = ;, for almost all p 2 N, and by B), #(Mn+1 \ Ap) � Q � 1.
From A) we get

1�

nX

i=0

Q�'(i) =
X

x2Mn+1

Q�jxj < Q�'(n+1);

which contradicts the hypothesis (1), thus concluding the existence of �n+1.
In proving D) we write Mn+1\f�(0); �(1); : : : ; �(n)g as a union of four sets:

(Mn n f�ng) \ f�(0); �(1); : : : ; �(n� 1)g

Tn+1 \ f�(0); �(1); : : : ; �(n� 1)g

(Mn n f�ng) \ f�(n)g

Tn+1 \ f�(n)g

each of which will be shown to be empty. Indeed, the �rst set is empty by virtue
of the induction hypothesis. For the second set we notice that in case �(i) 2 Tn+1

(for some 0 � i � n� 1), then �(i) = �na
j
1
ap, for some 0 � j � '(n)�mn � 1

and 2 � p � Q. So, �n � �(i), and, as �n 2Mn �Mn[f�(0); �(1) : : : �(n�1)g
{ which is pre�x-free by induction hypothesis { we arrive to a contradiction.
Further on we have �(n) 62 Mn n f�ng as �n � �(n), �n 2 Mn and Mn is
pre�x-free. Finally, �(n) 62 Tn+1 by virtue of the construction of �(n) and Tn+1.

For E) we write

Mn+1[f�(0); �(1); : : : ; �(n)g = (Mnnf�ng)[f�(0); �(1); : : : ; �(n�1)g[Tn+1[f�(n)g:

The set Mn [ f�(0); �(1); : : : ; �(n � 1)g is pre�x-free by induction hypothesis;
Tn+1 [ f�(n)g is pre�x-free by construction. To �nish, four cases should be
analyzed:

{ The set (Mnnf�ng)[f�(n)g is pre�x-free as �n � �(n) andMn is pre�x-free.
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{ The set (Mn n f�ng) [ T (n + 1) is pre�x-free as �n � x, for each string
x 2 T (n+ 1) and Mn is pre�x-free.

{ To prove that the set Tn+1[f�(0); �(1); : : : ; �(n�1)g is pre�x-free we have
to consider two cases:

� if x � �(i), for some x 2 T (n+1) and 0 � i � n�1, then �n � x; �n 2
Mn � Mn [ f�(0); �(1); : : : ; �(n � 1)g, a pre�x-free set (by induction
hypothesis), which is impossible;
� if �(i) � x, for some x 2 T (n+1) and 0 � i � n�1, then �(i) = �na

t
1
,

for some t > 0 (the case t = 0 implies �(i) � �n which is impossible).
This implies that �n � �(i), which is also impossible.

{ To show that the set f�(0); �(1); : : : ; �(n � 1); �(n)g is pre�x-free we have
to consider again two cases:

� if �(n) � �(i), for some 0 � i � n� 1, then �n � �(i) (as �n � �(n)),
which is a contradiction;
� if �(i) � �(n), for some 0 � i � n � 1, then �(i) = �na

t
1
, for some

t > 0 (the case t = 0 is impossible), so �n � �(i), a contradiction.

The injectivity of � follows directly from E). Hence, the theorem has been proved.

3 Comments

A careful examination of the procedure used in the above proof shows that it
produces the same code strings as Chaitin's original algorithm [4]:

Start with �(0) = a
'(0)
1

, and if �(1); : : : ; �(n) have been constructed and
'(n+ 1) 6=1, then:

�(n+ 1) = minfx 2 A'(n+1) j x 6� �(i); �(i) 6� x; for all 0 � i � ng;

where the minimum is taken according to the lexicographical order.
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