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Abstract: The agenda of quantum algorithmic information theory, ordered `top-down,'
is the quantum halting amplitude, followed by the quantum algorithmic information
content, which in turn requires the theory of quantum computation. The fundamental
atoms processed by quantum computation are the quantum bits which are dealt with in
quantum information theory. The theory of quantum computation will be based upon
a model of universal quantum computer whose elementary unit is a two-port interfer-
ometer capable of arbitrary U(2) transformations. Basic to all these considerations is
quantum theory, which is most conveniently expressible in Hilbert space.

1 Information is physical, so is computation

The reasoning in constructive mathematics [16, 19, 20] and recursion theory, at
least insofar as their applicability to worldly things is concerned, makes implicit
assumptions about the operationalizability of the entities of discourse. It is this
postulated correspondence between practical and theoretical objects, subsumed
by the Church-Turing thesis, which confers power to the formal methods. There-
fore, any �nding in physics concerns the formal sciences; at least insofar as they
claim to be applicable in the physical universe. In this sense one might quite jus-
ti�ably say that the Church-Turing thesis is under permanent physical attack.2

1 C. Calude (ed.). The Finite, the Unbounded and the In�nite, Proceedings of the
Summer School \Chaitin Complexity and Applications",Mangalia, Romania, 27 June
{ 6 July, 1995.

2 For an early discussion of this topic, see Davis [31, p. 11]:

\ : : : how can we ever exclude the possibility of our presented, some day (per-
haps by some extraterrestrial visitors), with a (perhaps extremely complex)
device or \oracle" that \computes" a non computable function?"

A main theme of Landauer's work has been the connections between physics and
computation; see, for example, his 1967 article [62] \Wanted: a physically possible
theory of physics," or his more recent survey [64] \Information is physical." See also
Rosen [84]. As Deutsch puts it more recently [34, p. 101],

\The reason why we �nd it possible to construct, say, electronic calculators,
and indeed why we can perform mental arithmetic, cannot be found in mathe-
matics or logic. The reason is that the laws of physics `happen to' permit the
existence of physical models for the operations of arithmetic such as addition,
subtraction and multiplication. If they did not, these familiar operations would
be non-computable functions. We might still know of them and invoke them in
mathematical proofs (which would presumably be called `non constructive') but
we could not perform them."

Journal of Universal Computer Science, vol. 2, no. 5 (1996), 311-346
submitted: 13/5/96, accepted: 13/5/96, appeared: 28/5/96  Springer Pub. Co.



Conversely, any feature of the (constructive or non-constructive [16, 19, 96])
formalism should correspond to some physically operationalizable [21] property.

Hence, any theory of information, if applicable, has to deal with entities
which are operational [21, 64, 62, 60, 65]. In Bridgman's words [22, p. V],

\the meaning of one's terms are to be found by an analysis of the op-
erations which one performs in applying the term in concrete situations
or in verifying the truth of statements or in �nding the answers to ques-
tions."

In particular, the fundamental atom of information, the bit, must be repre-
sented by whatever physical theories are available and must be experimentally
producible and manipulable by whatever physical operations are available.

The classical digital computer, at least up to �nite resources, seems to be a
canonical example for physical information representation and processing. Clas-
sical digital computers, however, are designed to behave classically. That is, if
functioning correctly, certain of their physical states can be mapped one-to-one
onto the set of classical bit states. (This is achieved by appropriately �ltering
out noise.) The set of instructions implement the classical propositional calculus
and so on.

In miniaturizing components, however, one encounters limits to the quasi-
classical domain. The alternative is either to stop miniaturization before quan-
tum e�ects become dominant, or to take the quantum domain seriously. The
latter alternative (at least to the author) seems the only progressive one, but it
results in a head-on collision with long-held classical properties. Several long-held
assumptions about the character of information have to be adapted. Further-
more, the formal computational techniques in manipulating information have to
be revised.

This can be rather negatively perceived as a failure of the old models; but
I think that we are justi�ed to think of it in very positive terms: Physics, in
particular quantum physics, stimulates us to re-consider our conceptions. We
could hope that the outcome will be new tools and technologies in computing.

Indeed, right now, we are experiencing an attack on the \Cook-Karp thesis,"
putting into question the robustness of the notion of tractability or polyno-
mial time complexity class with respect to variations of \reasonable" models of
computation. In particular, factoring may require polynomial time on quantum
computers within \reasonable statistics" [87]. I would suspect that it is wise of
mathematicians and computer scientists to keep an eye on new developments in
physics, just as we physicists are required to be open for the great advances in
the formal sciences.

2 Hilbert space quantum mechanics

\Quantization" has been introduced by Max Planck in 1900 [79]. Planck assumed
a discretization of the total energy UN of N linear oscillators (\Resonatoren"),
UN = P� 2 f0; �; 2�; 3�; 4�; : : :g, where P 2 N0 is zero or a positive integer and �
stands for the smallest quantum of energy. � is a linear function of frequency �
and proportional to Planck's fundamental constant h; i.e., � = h�. That was a
bold step in a time of the predominant continuum models of classical mechanics.
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In extension of Planck's discretized resonator energy model, Einstein [40] pro-
posed a quantization of the electromagnetic �eld. Every �eld mode of frequency
� could carry a discrete number of light quanta of energy h� per quantum.

The present quantum theory is still a continuum theory in many respects:
for in�nite systems, there is a continuity of �eld modes of frequency !. Also the
quantum theoretical coe�cients characterizing the mixture between orthogonal
states, as well as space and time and other coordinates remain continuous | all
but one: action. Thus, in the old days, discretization of phase space appeared to
be a promising starting point for quantization. In a 1916 article on the structure
of physical phase space, Planck emphasized that the quantum hypothesis should
not be interpreted at the level of energy quanta but at the level of action quanta,
according to the fact that the volume of 2f -dimensional phase space (f degrees
of freedom) is a positive integer of hf [80, p. 387],3

Es best�atigt sich auch hier wieder, da� die Quantenhypothese nicht auf
Energieelemente, sondern auf Wirkungselemente zu gr�unden ist, entsprechend
dem Umstand, da� das Volumen des Phasenraumes die Dimension von
hf besitzt.

The following is a very brief introduction to quantum mechanics for logicians
and computer scientists.4 To avoid a shock from a too early exposure to `exotic'
nomenclature prevalent in physics{the Dirac bra-ket notation{the notation of
Dunford-Schwartz [39] is adopted.5

All quantum mechanical entities are represented by objects of Hilbert spaces
[99]. A Hilbert space is a linear vector space H over the �eld � of complex numbers
(with vector addition and scalar multiplication), together with a complex func-
tion (�; �), the scalar or inner product, de�ned on H �H such that (i) (x; x) = 0
if and only if x = 0; (ii) (x; x) � 0 for all x 2 H; (iii) (x + y; z) = (x; z) + (y; z)

for all x; y; z 2 H; (iv) (�x; y) = �(x; y) for all x; y 2 H; � 2 �; (v) (x; y) = (y; x)
for all x; y 2 H (� stands for the complex conjugate of �); (vi) If xn 2 H,
n = 1; 2; : : :, and if limn;m!1(xn�xm; xn�xm) = 0, then there exists an x 2 H

with limn!1(xn � x; xn � x) = 0.
The following identi�cations between physical and theoretical objects are

made (a caveat: this is an incomplete list):

(I) A physical state is represented by a vector of the Hilbert space H. Therefore,
if two vectors x; y 2 H represent physical states, their vector sum z = x +
y 2 H represent a physical state as well. This state z is called the coherent
superposition of state x and y. Coherent state superpositions will become
most important in quantum information theory.

3 Again it is con�rmed that the quantum hypothesis is not based on energy elements
but on action elements, according to the fact that the volume of phase space has the

dimension hf .
4 Introductions to quantummechanics can be found in Feynman, Leighton & M. Sands
[44], Harris [52], Lipkin [69], Ballentine [3], Messiah [74], Dirac [38], Peres [78], von
Neumann [99], and Bell [5], among many other expositions. The history of quantum
mechanics is reviewed by Jammer [55]. Wheeler & Zurek [100] published a helpful
resource book.

5 The bra-ket notation introduced by Dirac is widely used in physics. To translate
expressions into the bra-ket notation, the following identi�cations work for most
practical purposes: for the scalar product, \h� (", \i � )", \;� j". States are
written as j  i �  , operators as hi j A j ji � Aij .
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(II) Observables A are represented by self-adjoint operators A on the Hilbert
space H such that (Ax; y) = (x;Ay) for all x; y 2 H. (Observables and their
corresponding operators are identi�ed.)
In what follows, unless stated di�erently, only �nite dimensional Hilbert
spaces are considered.6 Then, the vectors corresponding to states can be
written as usual vectors in complex Hilbert space. Furthermore, bounded
self-adjoint operators are equivalent to bounded Hermitean operators. They
can be represented by matrices, and the self-adjoint conjugation is just trans-
position and complex conjugation of the matrix elements.
Elements bi; bj 2 H of the set of orthonormal base vectors satisfy (bi; bj) =
�ij , where �ij is the Kronecker delta function. Any state x can be written as
a linear combination of the set of orthonormal base vectors fb1; b2; � � �g, i.e.,
x =

PN
i=1 �ibi, where N is the dimension of H and �i = (bi; x) 2 �. In the

Dirac bra-ket notation, unity is given by 1 =
PN

i=1 jbiihbij. Furthermore, any

Hermitean operator has a spectral representation A =
PN

i=1 �iPi, where the
Pi's are orthogonal projection operators onto the orthonormal eigenvectors
ai of A (nondegenerate case).
As in�nite dimensional examples, take the position operator x= x = (x1; x2; x3),

and the momentum operator px = ~
i
r = ~

i

�
@
@x1

; @
@x2

; @
@x3

�
, where ~ = h

2�
.

The scalar product is given by (x;y) = �3(x�y) = �(x1�y1)�(x2�y2)�(x3�
y3). The non-relativistic energy operator (Hamiltonian) is H = pp

2m
+V (x) =

� ~2

2m
r2 + V (x).

Observables are said to be compatible if they can be de�ned simultaneously
with arbitrary accuracy; i.e., if they are \independent." A criterion for com-
patibility is the commutator. Two observables A;B are compatible, if their
commutator vanishes; i.e., if [A;B] = AB � BA = 0. For example, po-

sition and momentum operators7 [x; px] = xpx� pxx = x~
i
@
@x

� ~
i
@
@x
x =

i ~ 6= 0 and thus do not commute. Therefore, position and momentum of
a state cannot be measured simultaneously with arbitrary accuracy. It can
be shown that this property gives rise to the Heisenberg uncertainty rela-

tions �x�px � ~
2
, where �x and �px is given by �x =

p
hx2i � hxi2 and

�px =
p
hp2xi � hpxi2, respectively. The expectation value or average value

h�i is de�ned in (V) below.
It has recently been demonstrated that (by an analog embodiment using
particle beams) every self-adjoint operator in a �nite dimensional Hilbert
space can be experimentally realized [82].

(III) The result of any single measurement of the observable A on a state x 2 H
can only be one of the real eigenvalues of the corresponding Hermitean oper-
ator A. If x is in a coherent superposition of eigenstates of A, the particular
outcome of any such single measurement is indeterministic; i.e., it cannot be

6 In�nite dimensional cases and continuous spectra are nontrivial extensions of the
�nite dimensional Hilbert space treatment. As a heuristic rule, it could be stated that
the sums become integrals, and the Kronecker delta function �ij becomes the Dirac
delta function �(i � j), which is a generalized function in the continuous variables

i; j. In the Dirac bra-ket notation, unity is given by 1 =
R
+1

�1
jiihij di.

7 the expressions should be interpreted in the sense of operator equations; the operators
themselves act on states.

314 Svozil K.: Quantum Information Theory



predicted with certainty. As a result of the measurement, the system is in
the state which corresponds to the eigenvector an of A with the associated
real-valued eigenvalue �n; i.e., Ax = �nan (no summation convention here).
This \transition" x! an has given rise to speculations concerning the \col-
lapse of the wave function (state)." But, as has been argued recently [50], it
is possible to reconstruct coherence; i.e., to \reverse the collapse of the wave
function (state)" if the process of measurement is reversible. After this re-
construction, no information about the measurement must be left, not even
in principle. How did Schr�odinger, the creator of wave mechanics, perceive
the  -function? In his 1935 paper \Die Gegenw�artige Situation in der Quan-
tenmechanik" (\The present situation in quantum mechanics" [85, p. 53]),
Schr�odinger states,8

Die  -Funktion als Katalog der Erwartung: : : : Sie [[die  -Funktion]]
ist jetzt das Instrument zur Voraussage der Wahrscheinlichkeit von
Ma�zahlen. In ihr ist die jeweils erreichte Summe theoretisch begr�undeter
Zukunftserwartung verk�orpert, gleichsamwie in einemKatalog niedergelegt.
: : : Bei jeder Messung ist man gen�otigt, der  -Funktion (=dem Vo-
raussagenkatalog) eine eigenartige, etwas pl�otzliche Ver�anderung zuzuschreiben,
die von der gefundenen Ma�zahl abh�angt und sich nicht vorherse-
hen l�a�t; woraus allein schon deutlich ist, da� diese zweite Art von
Ver�anderung der  -Funktion mit ihrem regelm�a�igen Abrollen zwis-
chen zwei Messungen nicht das mindeste zu tun hat. Die abrupte
Ver�anderung durch die Messung : : : ist der interessanteste Punkt
der ganzen Theorie. Es ist genau der Punkt, der den Bruch mit
dem naiven Realismus verlangt. Aus diesem Grund kann man die
 -Funktion nicht direkt an die Stelle des Modells oder des Reald-
ings setzen. Und zwar nicht etwa weil man einem Realding oder

einem Modell nicht abrupte unvorhergesehene �Anderungen zumuten
d�urfte, sondern weil vom realistischen Standpunkt die Beobachtung
ein Naturvorgang ist wie jeder andere und nicht per se eine Unter-
brechung des regelm�a�igen Naturlaufs hervorrufen darf.

It therefore seems not unreasonable to state that, epistemologically, quan-
tum mechanics is more a theory of knowledge of an (intrinsic) observer rather
than the platonistic physics \God knows." The wave function, i.e., the state
of the physical system in a particular representation (base), is a representa-
tion of the observer's knowledge; it is a representation or name or code or
index of the information or knowledge the observer has access to.

8 The  -function as expectation-catalog: : : : In it [[the  -function]] is embodied the
momentarily-attained sum of theoretically based future expectation, somewhat as
laid down in a catalog. : : : For each measurement one is required to ascribe to the
 -function (=the prediction catalog) a characteristic, quite sudden change, which
depends on the measurement result obtained, and so cannot be foreseen; from which
alone it is already quite clear that this second kind of change of the  -function
has nothing whatever in common with its orderly development between two mea-
surements. The abrupt change [[of the  -function (=the prediction catalog)]] by
measurement : : : is the most interesting point of the entire theory. It is precisely the
point that demands the break with naive realism. For this reason one cannot put
the  -function directly in place of the model or of the physical thing. And indeed
not because one might never dare impute abrupt unforeseen changes to a physical
thing or to a model, but because in the realism point of view observation is a natural
process like any other and cannot per se bring about an interruption of the orderly

ow of natural events.
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(IV) The probability Py(x) to �nd a system represented by state x in some

state y of an orthonormalized basis is given by Py(x) = j(x; y)j2.
(V) The average value or expectation value of an observable A in the state x is

given by hAix =
PN

i=1 �ij(x; ai)j2.
(VI) The dynamical law or equation of motion can be written in the form

x(t) = Ux(t0), where U
y = U�1 (\y stands for transposition and complex

conjugation) is a linear unitary evolution operator.

The Schr�odinger equation i~ @
@t
 (t) = H (t) is obtained by identifying U

with U = e�iHt=~, where H is a self-adjoint Hamiltonian (\energy") opera-
tor, by di�erentiating the equation of motion with respect to the time vari-
able t; i.e., @

@t
 (t) = � iH

~
e�iHt=~ (t0) = � iH

~
 (t). In terms of the set of

orthonormal base vectors fb1; b2; : : :g, the Schr�odinger equation can be writ-

ten as i~ @
@t
(bi;  (t)) =

P
j Hij(bj ;  (t)). In the case of position base states

 (x; t) = (x;  (t)), the Schr�odinger equation takes on the form i~ @
@t
 (x; t) =

H (x; t) =
� pp
2m

+ V (x)
�
 (x; t) =

h
� ~2

2m
r2 + V (x)

i
 (x; t).

For stationary  n(t) = e�(i=~)Ent n, the Schr�odinger equation can be brought
into its time-independent form H  n = En  n. Here, i~

@
@t
 n(t) = En  n(t)

has been used; En and  n stand for the n'th eigenvalue and eigenstate of H ,
respectively.
Usually, a physical problem is de�ned by the Hamiltonian H . The problem
of �nding the physically relevant states reduces to �nding a complete set
of eigenvalues and eigenstates of H . Most elegant solutions utilize the sym-
metries of the problem, i.e., of H . There exist two \canonical" examples,
the 1=r-potential and the harmonic oscillator potential, which can be solved
wonderfully by these methods (and they are presented over and over again
in standard courses of quantum mechanics), but not many more. (See, for
instance, [33] for a detailed treatment of various Hamiltonians H .)

For a quantum mechanical treatment of a two-state system, see appendix A.
For a review of the quantum theory of multiple particles, see appendix B.

3 Quantum information theory

The fundamental atom of information is the quantum bit, henceforth abbrevi-
ated by the term `qbit'. As we shall see, qbits feature quantum mechanics `in a
nutshell.'

Classical information theory (e.g., [51]) is based on the classical bit as funda-
mental atom. This classical bit, henceforth called cbit, is in one of two classical
states t (often interpreted as \true") and f (often interpreted as \false"). It is
customary to code the classical logical states by ptq = 1 and pfq = 0 (psq stands
for the code of s). The states can, for instance, be realized by some condenser
who is discharged (� cbit state 0) or charged (� cbit state 1).

In quantum information theory [1, 34, 43, 6, 7, 35, 36], the most elementary
unit of information is the quantum bit, henceforth called qbit. Qbits can be phys-
ically represented by a coherent superposition of the two orthonormal9 states t

9 (t; t) = (f; f) = 1 and (t; f) = 0.
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and f . The qbit states
x�;� = �t+ �f (1)

form a continuum, with j�j2 + j�j2 = 1, �; � 2 C.

3.1 Coding

Cbits can then be coded by

px�;�q = (�; �) = ei'(sin!; ei� cos!) ; (2)

with !; '; � 2 R. Qbits can be identi�ed with cbits as follows

(a; 0) � 1 and (0; b) � 0 ; jaj; jbj = 1 ; (3)

where the complex numbers a and b are of modulus one. The quantum mechan-
ical states associated with the classical states 0 and 1 are mutually orthogonal.

Notice that, provided that �; � 6= 0, a qbit is not in a pure classical state.
Therefore, any practical determination of the qbit x�;� amounts to a measure-
ment of the state amplitude of t or f . Any such single measurement will be
indeterministic (provided again that �; � 6= 0). That is, the outcome of a sin-
gle measurement occurs unpredictably. Yet, according to the rules of quantum
mechanics, the probabilities that the qbit x�;� is measured in states t and f is

Pt(x�;�) = j(x�;� ; t)j2 and Pf (x�;�) = j(x�;� ; f)j2 = 1� Pt(�;�), respectively.
The classical and the quantum mechanical concept of information di�er from

each other in several aspects. Intuitively and classically, a unit of information
is context-free. That is, it is independent of what other information is or might
be present. A classical bit remains unchanged, no matter by what methods it is
inferred. It obeys classical logic. It can be copied. No doubts can be left.

By contrast, quantum information is contextual [57, 58]. A quantum bit may
appear di�erent, depending on the method by which it is inferred. Quantum
bits cannot be copied or \cloned" [102, 37, 72, 75, 46, 26]. Classical tautologies
are not necessarily satis�ed in quantum information theory. Quantum bits obey
quantum logic. And, as has been argued before, they are coherent superpositions
of classical information.

3.2 Reading the book of Nature|a short glance at the prediction
catalog

To quote Landauer [63], \What is measurement? If it is simply information
transfer, that is done all the time inside the computer, and can be done with
arbitrary little dissipation." And, one may add, without destroying coherence.

Indeed, as has been brie
y mentioned in (III), there is reason to believe
that|at least up to a certain magnitude of complexity|any measurement can
be \undone" by a proper reconstruction of the wave-function. A necessary con-
dition for this to happen is that all information about the original measurement
is lost. In Schr�odinger's terms, the prediction catalog (the wave function) can be
opened only at one particular page. We may close the prediction catalog before
reading this page. Then we can open the prediction catalog at another, com-
plementary, page again. By no way we can open the prediction catalog at one
page, read and (irreversible) memorize the page, close it; then open it at another,
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complementary, page. (Two non-complementary pages which correspond to two
co-measurable observables can be read simultaneously.)

Can we then in some sense \undo" knowledge from conscious observation?
This question relates to a statement by Wheeler [100, p. 184] that \no elementary
phenomenon is a phenomenon until it is a[[n irreversible]] registered (observed)
phenomenon." Where does this irreversible observation take place? Since the
physical laws (with the possible exception of the weak force) are time-reversible,
the act of irreversible observation must, according to Wigner [101], occur in the
consciousness, thereby violating quantum mechanics.

4 Quantum recursion theory

4.1 Reversible computation and deletion of (q)bits

As a prelude to quantum computation, we brie
y review classical reversible
computation [61, 8, 45, 9, 66]. This type of computation is characterized by a
single-valued inverse transition function. That is, logical functions are performed
which do not have a single-valued inverse, such as AND or OR; i.e., the input cannot
be deduced from the output. Also deletion of information or other many (states)-
to-one (state) operations are irreversible. Reversible calculation requires every
single step to be reversible. Figure 1 [66] draws the di�erence between one-to-
one and many-to-one computation. This logical irreversibility is associated with
physical irreversibility and requires a minimal heat generation of the computing
machine.

It is possible to embed any irreversible computation in an appropriate en-
vironment which makes it reversible. For instance, the computing agent could
keep the inputs of previous calculations in successive order. It could save all the
information it would otherwise throw away. Or, it could leave markers behind
to identify its trail, the H�ansel and Gretel strategy described by Landauer [66].
That, of course, might amount to a tremendous overhead in dynamical mem-
ory space (and time) and would merely postpone the problem of throwing away
unwanted information. But, as has been pointed out by Bennett [8], for classi-
cal computations this overhead could be circumvented by making the computer
to erase all intermediate results, leaving behind only the desired output and the
originally furnished input. Bennett's trick is to do a computation reversible, then
copy its output10 and then, with one output as input for the reversible compu-
tation, run the computation backwards. In order not to consume exceedingly
large intermediate storage resources, this strategy could be applied after every
single step. The price is a doubling of computation time, since it requires one
additional step for the back-computation.11 Since qbits cannot be copied, the
trick does not work for quantum computations.

10 Copying can be done reversible in classical physics, if the memory used for the copy
is initially blank. Quantum mechanically, this cannot be done on qbits; cf. below.

11 If an irreversible computing agent exists which computes the input from a given
output, then it is possible to translate an irreversible computation from input to
output into one which is reversible and erases everything else except the �nal output,
including the original input; i.e., that simply maps inputs into outputs. For details,
see Bennett [8, 9].
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Figure 1: The lowest \root" represents the initial state interpretable as program.
Forward computation represents upwards motion through a sequence of states
represented by open circles. Di�erent symbols pi correspond to di�erent initial
states, that is, di�erent programs. a) One-to-one computation. b) Many-to-one
junction which is information discarding. Several computational paths, moving
upwards, merge into one. c) One-to-many computation is allowed only if no
information is created and discarded; e.g., in copy-type operations on blank
memory.

4.2 Selected features of quantum computation

The following features are important, but not su�cient qualities of quantum
computers.

{ Input, output, program and memory are represented by qbits.
{ Any computation (step) can be represented by a unitary transformation of
the computer as a whole.

{ Any computation is reversible. Because of the unitarity of the quantum evo-
lution operator, a deterministic computation can be performed by a quantum
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computer if and only if it is reversible, i.e., if the program does not involve
"deletion" of information or "many-to-one" operations. Only one-to-one op-
erations are allowed. Compared to classical irreversible computation, this
may result in a space and time overheads. Furthermore, no "one-to-many"
operations are allowed. Thus, unless classical, qbits cannot be copied.

{ Unless classical, qbits are context-dependent. That is, their value may de-
pend on the method by which they have been inferred, and on the co-
measured qbits.

{ Measurements may be carried out on any qbit at any stage of the computa-
tion. But, unless classical, a qbit cannot be measured by a single experiment
with arbitrary accuracy. The computation process and the measurement have
to be repeated in order to obtain su�cient statistics.|Any such single mea-
surement will yield merely a "click" on some counter, from which information
about the qbit state must be inferred. Thereby, any single measurement is
indeterminate and coherence is destroyed. Therefore, it seems more proper
to realize that there is no such operational concept of "a single qbit." Be-
cause of complementarity, single qbits cannot be determined precisely. What
is henceforth called "determination" or "measurement" of a qbit is, in e�ect,
the observation of a successive number of such qbits, one after the other,
from "similar" computation processes (same preparation, same evolution).
By performing these measurements on "similar" qbits, one can "determine"
this qbit within an epsilon-neighborhood only. The parameter epsilon de-
pends on the number of successive measurements made.

{ Quantum parallelism: during a computation (step), a quantum computer
proceeds down all coherent paths at once. If managed properly, this may
give rise to speedups.

{ Any subroutine must not leave around any qbits beyond it's computed an-
swer, because the computational paths with di�erent residual information
can no longer interfere.

In order to appreciate quantum computation, one should make proper use
of the above features|quantum parallelism, unerasability of information, non-
copying, context-dependence and impossibility to directly measure the atoms of
quantum information, the qbits, related to quantum indeterminism.

Thereby, the \solution" to a decision problem may yield the classical bit
values at random. It may depend on other qbits of information which are inferred.
It cannot be arbitrarily copied and, in this sense, is unique.

4.2.1 Copying of quantum bits

Can a non-classical qbit be copied? No! | This answer amazes the classical
mind.12 Informally speaking, the reason is that, depending on the strategy, any
attempt to copy a coherent superposition of states results either in a state re-
duction, destroying coherence, or, most important of all, in the addition of noise
which manifests itself as the spontaneous excitations of previously nonexisting

12 Copying of qbits would allow circumvention of the Heisenberg uncertainty relation
by measuring two incompatible observables on two identical qbit copies. It would also
allow faster-than-light transmission of information, as pointed out by Herbert [53].
Herbert's suggestion stimulated the development of \no-cloning theorems" reviewed
here.

320 Svozil K.: Quantum Information Theory



�eld modes [102, 37, 72, 75, 46, 26]. Therefore, qbits can be copied if and only if
they are (known to be) classical. Only one-to-one computation processes depicted
in Fig. 1a) are allowed.

This can be seen by a short calculation [102] which requires the multi-
quantum formalism developed in appendix B. A physical realization13 of the
qbit state is a two-mode boson �eld with the identi�cations

x�;� = �f + �t ; (4)

f = j 01; 12i ; (5)

t = j 11; 02i : (6)

The classical bit states are j01; 12i (�eld mode 1 un�lled, �eld mode 2 �lled with
one quantum) and j11; 02i (�eld mode 1 �lled with one quantum, �eld mode 2
un�lled).

An ideal ampli�er, denoted by A, should be able to copy a classical bit state;
i.e., it should create an identical particle in the same mode

Aij01; 12i ! Af j01; 22i ; Aij11; 02i ! Af j21; 02i : (7)

Here, Ai and Af stand for the initial and the �nal state of the ampli�er.
What about copying a proper qbit; i.e., a coherent superposition of the cbits

f = j01; 12i and t = j11; 02i? According to the quantum evolution law, the
corresponding ampli�cation process should be representable by a linear (unitary)
operator; thus

Ai(�j01; 12i+ �j11; 02i)! Af (�j01; 22i+ �j21; 02i) : (8)

Yet, the true copy of that qbit is the state

(x�;�)
2 j 01; 02i = (� ay2 + � ay1)

2 j 01; 02i

=
h
�2 (ay2)

2 + �� (ay2a
y
1 + ay1a

y
2) + �2 (ay1)

2
i
j 01; 02i

=
h
�2 (ay2)

2 + 2�� ay2a
y
1 + �2 (ay1)

2
i
j 01; 02i

= �2j01; 22i+ 2��j11; 12i+ �2j21; 02i : (9)

By comparing (8) with (9) it can be seen that a reasonable (linear unitary
quantum mechanical evolution for an) ampli�er which could copy a qbit exists
only if the qbit is classical.

A more detailed analysis (cf. [72, 75], in particular [46, 26]) reveals that the
copying (ampli�cation) process generates an ampli�cation of the signal but nec-
essarily adds noise at the same time. This noise can be interpreted as spontaneous
emission of �eld quanta (photons) in the process of ampli�cation.

One application of this feature is quantum cryptography [13, 12, 11]. Thereby,
the impossibility to copy qbits is used for a cryptographic communication via
quantum channels.

13 the most elementary realization is a one-mode �eld with the symbol 0 corresponding
to j 0i (empty mode) and 1 corresponding to j 1i (one-quantum �lled mode).
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4.2.2 Context dependence of qbits

This section could be skipped at �rst reading.
Assume that in an EPR-type arrangement [41] one wants to measure the

product
P = m1

xm
2
xm

1
ym

2
ym

1
zm

2
z

of the direction of the spin components of each one of the two associated parti-
cles 1 and 2 along the x, y and z-axes. Assume that the operators are normalized

such that jmj
i j = 1, i 2 fx; y; zg, j 2 f1; 2g. One way to determine P is mea-

suring and, based on these measurements, \counterfactually inferring" [78, 73]
the three \observables"m1

xm
2
y, m

1
ym

2
x and m

1
zm

2
z. By multiplying them, one ob-

tains +1. Another, alternative, way to determine P is measuring and, based on
these measurements, \counterfactually inferring" the three \observables"m1

xm
2
x,

m1
ym

2
y and m1

zm
2
z. By multiplying them, one obtains �1. In that way, one has

obtained either P = 1 or P = �1. Associate with P = 1 the bit state zero 0
and with P = �1 the bit state 1. Then the bit is either in state zero or one,
depending on the way or context it was inferred.

This kind of contextuality is deeply rooted in the non-Boolean algebraic
structure of quantum propositions. Note also that the above argument relies
heavily on \counterfactual reasoning," because, for instance, only two of the

six observables mj
i can actually be experimentally determined. Here, the term

\counterfactual reasoning" [78, 73] stands for arguments involving results of
incompatible experiments, i.e., experiments which could never be performed si-
multaneously, since the associated operators do not commute. The results thus
have to be inferred rather than measured, and the existence of such \elements
of physical reality" thus have to be tacitly assumed [41].

4.3 Universal quantum computer based on the U(2)-gate

The \brute force" method of obtaining a (universal) quantum computer [6, 34,
66] by quantizing the \hardware" components of a Turing machine su�ers from
the same problem as its classical counterpart{it seems technologically unreason-
able to actually construct a universal quantum device with a \scaled down" (to
nanometer size) model of a Turing machine in mind.

We therefore pursue a more fundamental approach [94, 95]. Recall that an
arbitrary quantum time evolution in �nite-dimensional Hilbert space is given by
x(t) = Ux(t0), where U is unitary.

It is well known that any n-dimensional unitary matrix U can be composed
from elementary unitary transformations in two-dimensional subspaces of Cn.
This is usually shown in the context of parameterization of the n-dimensional
unitary groups (cf. [76, chapter 2] and [82, 81]). Thereby, a transformation in
n-dimensional spaces is decomposed into transformations in 2-dimensional sub-
spaces. This amounts to a successive array of U(2) elements, which in their
entirety forms an arbitrary time evolution U(n) in n-dimensional Hilbert space.

Hence, all quantum processes and computation tasks which can possibly
be executed must be representable by unitary transformations. Indeed, uni-
tary transformations of qbits are a necessary and su�cient condition for quan-
tum computing. The group of unitary transformations in arbitrary- but �nite-
dimensional Hilbert space is a model of universal quantum computer.
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Unitary quantum mechanical operations are a natural extension of Turing's
\simple" classical paper and pencil operations on a sheet of (one-dimensional)
paper [97, section 9.I]. If one wants to extend that notion further, one would
have to extend physical theory, in particular quantum theory. However, at the
moment, such a further extension (beyond quantum mechanics) seems only a
remote possibility.

It remains to be shown that the universal U(2)-gate is physically operational-
izable. This is done in appendix D in the framework of Mach-Zehnder interferom-
etry. Note that the number of elementary U(2)-transformations is polynomially

bounded and does not exceed

�
n
2

�
= n (n� 1)=2 = O(n2).

4.4 Other models of universal quantum computation

Deutsch [35] has proposed a model of universal computation based on quantum
computation networks. Thereby, the states in a 2n-dimensional Hilbert space are
constructed as the product state of n particles in two-dimensional Hilbert space.
A set of gates that consists of all U(2) (one-bit) quantum gates and the two-bit
exclusive-or gate (that maps Boolean values (x; y) to (x; x � y)) is universal in
the sense that all unitary operations on arbitrarily many bits n (U(2n)) can be
expressed as compositions of these gates [4].

This approach should be distinguished from the interferometric approach
using U(2)-gates discussed before, which is based on single particle states in
2n-dimensional Hilbert space. In the product state model, the addition of one
particle e�ectively doubles the dimensionality of the associated Hilbert space. In
the interferometric model, this could only be achieved by doubling the number of
input and output ports. This could give rise to non-polynomial space overhead.
In the case of the product state model, in order to obtain a mixing between
di�erent particle states, xor-gates are needed. The interferometric approach does
not need xor-gates explicitly.

It has been claimed [87, 30] that certain supposedly NP -hard problems such
as factoring can be solved in polynomial time on quantum computers. However,
it should be noted that this result faces di�culties. For, it might not be easy
to keep the quantum computer in a coherent superposition state over su�cient
time and space scales in order to be able to execute tasks which are hard to
do classically|the computation may \decohere," reducing the qbits to classical
ones [59]. Furthermore, in order to obtain su�cient statistical data, a \great"
(non-polynomially bounded) number of single particles may be needed [91]. We
shall not pursue these matters further [36, 14, 15, 6, 27, 87].

4.5 Nomenclature

Consider a (not necessarily universal) quantum computer C and its ith pro-
gram pi, which, at time � 2 Z, can be described by a quantum state C(�; pi).
Let C(p) = s stand for a computer C with program p which outputs s in
arbitrary long time. In what follows we shall assume that the program pi is
coded classically. That is, we choose a �nite code alphabet A and denote by A�

the set of all strings over A. Any program pi is coded as a classical sequence
ppiq = s1is2i � � � sni 2 A�, sji 2 A. Whenever possible, ppiq will be abbreviated
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by pi. We assume pre�x coding [51, 29, 28, 92, 23]; i.e., the domain of C is
pre�x-free such that no admissible program is the pre�x of another admissible
program. Furthermore, without loss of generality, we consider only empty input
strings. jpj stands for the length of p.

4.6 Diagonalization

This is neither the place for a comprehensive review of the diagonalization
method [83, 77], nor su�ces the author's competence for such an endeavor.
Therefore, only a few hallmarks are stated. As already G�odel pointed out in
his classical paper on the incompleteness of arithmetic [47], the undecidability
theorems of formal logic [31] (and the theory of recursive functions [83, 77]) are
based on semantical paradoxes such as the liar [2] or Richard's paradox. A proper
translation of the semantic paradoxes results in the diagonalization method. Di-
agonalization has apparently �rst been applied by Cantor to demonstrate the
non-enumerability of real numbers [25]. It has also been used by Turing for a
proof of the recursive undecidability of the halting problem [97].

A brief review of the classical algorithmic argument will be given �rst. Con-
sider a universal computer C. For the sake of contradiction, consider an arbitrary
algorithm B(X) whose input is a string of symbols X . Assume that there exists
a \halting algorithm" HALT which is able to decide whether B terminates on X
or not. The domain of HALT is the set of legal programs. The range of HALT are
cbits (classical case) and qbits (quantum mechanical case).

Using HALT(B(X)) we shall construct another deterministic computing agent
A, which has as input any e�ective program B and which proceeds as follows:
Upon reading the program B as input, A makes a copy of it. This can be readily
achieved, since the program B is presented to A in some encoded form pBq,
i.e., as a string of symbols. In the next step, the agent uses the code pBq as
input string for B itself; i.e., A forms B(pBq), henceforth denoted by B(B). The
agent now hands B(B) over to its subroutine HALT. Then, A proceeds as follows:
if HALT(B(B)) decides that B(B) halts, then the agent A does not halt; this can
for instance be realized by an in�nite DO-loop; if HALT(B(B)) decides that B(B)
does not halt, then A halts.

The agent A will now be confronted with the following paradoxical task: take
the own code as input and proceed.

4.6.1 Classical case

Assume that A is restricted to classical bits of information. To be more speci�c,
assume that HALT outputs the code of a cbit as follows (" and # stands for
divergence and convergence, respectively):

HALT(B(X)) =

�
0 if B(X) "
1 if B(X) # : (10)

Then, whenever A(A) halts, HALT(A(A)) outputs 1 and forces A(A) not to
halt. Conversely, whenever A(A) does not halt, then HALT(A(A)) outputs 0 and
steers A(A) into the halting mode. In both cases one arrives at a complete
contradiction. Classically, this contradiction can only be consistently avoided by
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assuming the nonexistence of A and, since the only nontrivial feature of A is the
use of the peculiar halting algorithm HALT, the impossibility of any such halting
algorithm.

4.6.2 Quantum mechanical case

Recall that a quantum computer C evolves according to a unitary operator U
such that (� stands for the discrete time parameter) C(�; pi) = UC(� � 1; pi) =
U tC(0; pi).

As has been pointed out before, in quantum information theory a qbit may
be in a coherent superposition of the two classical states t and f . Due to this
possibility of a coherent superposition of classical bit states, the usual reduc-
tio ad absurdum argument breaks down. Instead, diagonalization procedures in
quantum information theory yield qbit solutions which are �xed points of the
associated unitary operators.

In what follows it will be demonstrated how the task of the agent A can be
performed consistently if A is allowed to process quantum information. To be
more speci�c, assume that the output of the hypothetical \halting algorithm" is
a halting qbit

HALT(B(X)) = h�;� : (11)

One may think of HALT(B(X)) as a universal \watchdog" computer C 0 simulating
C and containing a dedicated halting bit, which it outputs at every (discrete)
time cycle [34]. Alternatively, it can be assumed that the computer C contains its
own halting bit indicating whether it has completed its task or not. Note that the
halting qbit h�;� can be represented by a normalized14 vector in two-dimensional
complex Hilbert space spanned by the the orthonormal vectors \t" and \f ." Let
the halting state h1;0 = t (up to factors modulus 1) be the physical realization
that the computer has \halted;" likewise let h0;1 = f (up to factors modulus
1) be the physical realization that the computer has not \halted." Note that,
since quantum computations are governed by unitary evolution laws which are
reversible, the halting state does not imply that the computer does not change
as time evolves. It just means that it has set a signal | the halting bit | to
indicated that it has �nished its task. � and � are complex numbers which are a
quantum mechanical measure of the probability amplitude that the computer is
in the halting and the non-halting states, respectively. The corresponding halting
and non-halting probabilities are jaj2 and jaj2, respectively.

Initially, i.e., at t = 0, the halting bit is prepared to be a 50:50 mixture of
the classical halting and non-halting states t and f ; i.e., h1=

p
2;1=

p
2. If later C

0

�nds that C converges (diverges) on B(X), then the halting bit of C 0 is set to
the classical value t (f).

The emergence of �xed points can be demonstrated by a simple example.
Agent A's diagonalization task can be formalized as follows. Consider for the
moment the action of diagonalization on the cbit states. (Since the qbit states are
merely a coherent superposition thereof, the action of diagonalization on qbits
is straightforward.) Diagonalization e�ectively transforms the cbit value t into f
and vice versa. Recall that in equation (10), the state t has been identi�ed with
the halting state and the state f with the non-halting state. Since the halting

14 (h�;�; h�;�) = 1.
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state and the non-halting state exclude each other, f; t can be identi�ed with
orthonormal basis vectors in a two-dimensional vector space. Thus, the standard
basis of Cartesian coordinates can be chosen for a representation of t and f ; i.e.,

t �
�
1
0

�
and f �

�
0
1

�
: (12)

The evolution representing diagonalization (e�ectively, agent A's task) can
be expressed by the unitary operator D by

Dt = f and Df = t : (13)

Thus, D acts essentially as a not-gate. In the above state basis, D can be rep-
resented as follows:

D =

�
0 1
1 0

�
: (14)

D will be called diagonalization operator, despite the fact that the only nonva-
nishing components are o�-diagonal.

As has been pointed out earlier, quantum information theory allows a coher-
ent superposition h�;� = �t+ �f of the cbit states t and f . D acts on cbits. It
has a �xed point at the qbit state

h� := h 1p
2
; 1p

2

=
t+ fp

2
� 1p

2

�
1
1

�
: (15)

h� does not give rise to inconsistencies [90]. If agent A hands over the �xed
point state h� to the diagonalization operator D, the same state h� is recovered.
Stated di�erently, as long as the output of the \halting algorithm" to input
A(A) is h�, diagonalization does not change it. Hence, even if the (classically)
\paradoxical" construction of diagonalization is maintained, quantum theory
does not give rise to a paradox, because the quantum range of solutions is larger
than the classical one. Therefore, standard proofs of the recursive unsolvability
of the halting problem do not apply if agent A is allowed a qbit.

Another, less abstract, application for quantum information theory is the
handling of inconsistent information in databases. Thereby, two contradicting

cbits of information t and f are resolved by the qbit h� = (t+ f)=
p
2. Through-

out the rest of the computation the coherence is maintained. After the processing,
the result is obtained by an irreversible measurement. The processing of qbits,
however, would require an exponential space overhead on classical computers in
cbit base [42]. Thus, in order to remain tractable, the corresponding qbits should
be implemented on truly quantum universal computers.

It should be noted, however, that the �xed point qbit \solution" to the above
halting problem, as far as problem solving is concerned, is of not much practical
help. In particular, if one is interested in the \classical" answer whether or not
A(A) halts, then one ultimately has to perform an irreversible measurement
on the �xed point state. This causes a state reduction into the classical states
corresponding to t and f . Any single measurement will yield an indeterministic
result. There is a 50:50 chance that the �xed point state will be either in t or f ,
since Pt(h

�) = Pf (h
�) = 1

2
. Thereby, classical undecidability is recovered. Stated

pointedly: With regards to the question of whether or not a computer halts, the
\solution" h� is equivalent to the throwing of a fair coin.
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Therefore, the advance of quantum recursion theory over classical recursion
theory is not so much classical problem solving but the consistent representation
of statements which would give rise to classical paradoxes.

4.6.3 Proper quantum diagonalization

The above argument used the continuity of qbit states as compared to the two
cbit states for a construction of �xed points of the diagonalization operator. One
could proceed a step further and allow nonclassical diagonalization procedures.
Such a step, albeit operationalizable, has no classical operational equivalent, and
thus no classical interpretation.

Consider the entire range of two-dimensional unitary transformations [76]

U(2)(!; �; �; ') = e�i �
�
ei � cos! �e�i ' sin!
ei ' sin! e�i � cos!

�
; (16)

where �� � �; ! � �, � �
2
� �; ' � �

2
, to act on the qbit. A typical example of

a nonclassical operation on a qbit is the \square root of not" gate (
p
not

p
not =

D)
p
not =

1

2

�
1 + i 1� i
1� i 1 + i

�
: (17)

Not all these unitary transformations have eigenvectors associated with eigen-
values 1 and thus �xed points. Indeed, it is not di�cult to see that only unitary
transformations of the form

[U(2)(!; �; �; ')]�1 diag(1; ei�) U(2)(!; �; �; ') =

=

 
cos!2 + ei � sin!2 �1+ei �

2
e�i (�+') sin(2!)

�1+ei �
2

ei (�+') sin(2!) ei � cos!2 + sin!2

!
(18)

have �xed points.
Applying nonclassical operations on qbits with no �xed points

D0 = [U(2)(!; �; �; ')]�1 diag(ei�; ei�)U(2)(!; �; �; ')

=

 
ei � cos(!)

2
+ ei � sin(!)

2 e�i (�+p)

2

�
ei � � ei �

�
sin(2!)

ei (�+p)

2

�
ei � � ei �

�
sin(2!) ei � cos(!)

2
+ ei � sin(!)

2

!
(19)

with �; � 6= n�, n 2 N0 gives rise to eigenvectors which are not �xed points,
but which acquire nonvanishing phases �; � in the generalized diagonalization
process.

5 Quantum algorithmic information

Quantum algorithmic information theory can be developed in analogy to al-
gorithmic information theory [29, 28, 23, 68]. Before proceeding, though, one
decisive strategic decision concerning the physical character of the program has
to be made. This amounts to a restriction to purely classical pre�x-free programs.

327Svozil K.: Quantum Information Theory



The reason for classical programs, as well as for the requirement of instant
decodability, is the desired convergence of the Kraft sum over the exponentially
weighted program length

P
p exp(jpj log k) � 1, where jpj stands for the length

of p and k is the base of the code (for binary code, k = 2). If arbitrary qbits
were allowed as program code, then the Kraft sum would diverge.

Nevertheless, qbits are allowed as output. Since they are objects de�ned in
Hilbert space H, the basic de�nitions of algorithmic information theory have to
be slightly adapted.

The canonical program associated with an object s 2 H representable as
vector in a Hilbert space H is denoted by s� and de�ned by

s� = min
C(p)=s

p : (20)

I.e., s� is the �rst element in the ordered set of all strings that is a program for C
to calculate s. The string s� is thus the code of the smallest-size program which,
implemented on a quantum computer, outputs s. (If several binary programs of
equal length exist, the one is chosen which comes �rst in an enumeration using
the usual lexicographic order relation \0 < 1.")

Let again \jxj" of an object encoded as (binary) string stand for the length
of that string. The quantum algorithmic information H(s) of an object s 2 H
representable as vector in a Hilbert spaceH is de�ned as the length of the shortest
program p which runs on a quantum computer C and generates the output s:

H(s) = js�j = min
C(p)=s

jpj : (21)

If no program makes computer C output s, then H(s) =1.
The joint quantum algorithmic information H(s; t) of two objects s 2 H

and t 2 H representable as vectors in a Hilbert space H is the length of the
smallest-size binary program to calculate s and t simultaneously.

The relative or conditional quantum algorithmic information H(sjt) of s 2 H
given t 2 N is the length of the smallest-size binary program to calculate s from
a smallest-size program for t:

H(sjt) = min
C(p;t�)=s

jpj : (22)

Most features and results of algorithmic information theory hold for quan-
tum algorithmic information as well. In particular, we restrict our attention to
universal quantum computers whose quantum algorithmic information content
is machine-independent, such that the quantum algorithmic information content
of an arbitrary object does not exceed a constant independent of that object.
That is, for all objects s 2 H and two computers C and C 0 of this class,

jHC �HC0 j = O(1) : (23)

Furthermore, let s and t be two objects representable as vectors in Hilbert
space. Then (recall that t 2 N),

H(s; t) = H(t; s) +O(1) ; (24)

H(sjs) = O(1) ; (25)

H(H(s)js) = O(1) ; (26)
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H(s) � H(s; t) +O(1) ; (27)

H(sjt) � H(s) +O(1) ; (28)

H(s; t) = H(s) +H(tjs�) +O(1) (if s� is classical) ; (29)

H(s; t) � H(s) +H(t) +O(1) (subadditivity) ; (30)

H(s; s) = H(s) +O(1) ; (31)

H(s;H(s)) = H(s) +O(1) : (32)

Notice that there exist sets of objects S = fs1; : : : ; sng, n < 1 whose algo-
rithmic information contentH(S) is arbitrary small compared to the algorithmic
information content of some unspeci�ed single elements si 2 S; i.e.,

H(S) < max
si2S

H(si) : (33)

6 Quantum omega

Chaitin's 
 [29, 28, 89, 23] is a magic number. It is a measure for arbitrary
programs to take a �nite number of execution steps and then halt. It contains
the solution of all halting problems, and hence of questions codable into halting
problems, such as Fermat's theorem. It contains the solution of the question
of whether or not a particular exponential Diophantine equation has in�nitely
many or a �nite number of solutions. And, since 
 is provable \algorithmically
incompressible," it is Martin-L�of/Chaitin/Solovay random. Therefore, 
 is both:
a mathematician's \fair coin," and a formalist's nightmare.

Here, 
 is generalized to quantum computations.15

In the orthonormal halting basis ft; fg, the computer C with classical input
pi can be represented by C(�; pi) = t (t; C(�; pi)) + f (f; C(�; pi)).

Recall that initially, i.e., at time � = 0, the halting bit is in a coherent 50:50-

superposition; i.e., in terms of the halting basis, C(0; pi) = (t + f)=
p
2 for all

pi 2 A�. This corresponds to the fact that initially it is unknown whether or
not the computer halts on pi. When during the time evolution the computer has
completed its task, the halting bit value is switched to t by some internal opera-
tion. If the computer never halts, the halting bit value is switched to f by some
internal operation. Otherwise it remains in the coherent 50:50-superposition.

Alternatively, the computer could be initially prepared in the non-halting
state f . After completion of the task, the halting bit is again switched to the
halting state t.

In analogy to the fully classical case [29, 28, 88, 23], the quantum halting
amplitude16 
 can be de�ned as a weighted expectation over all computations
of C with classical input pi (jpij stands for the length of pi)


 �
X

C(pi)2H
2�jpij=2(t; C(pi)) : (34)

15 The quantum omega was invented in a meeting of G. Chaitin, A. Zeilinger and
the author in a Viennese co�ee house (Caf�e Br�aunerhof) in January 1991. Thus,
the group should be credited for the original invention, whereas any blame should
remain with the author.

16 The de�nition of 
 and � di�er slightly from the ones introduced by the author
previously [93].
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Likewise, the halting amplitude for a particular output state s,

� (s) �
X

C(pi)=s

2�jpij=2(t; C(pi)) : (35)

For a set of output states S = fs1; s2; s3; : : : ; sng which correspond to mutually
orthogonal vectors in Hilbert space,

� (S) �
X

C(pi)2S
2�jpij=2(t; C(pi)) : (36)

Terms corresponding to di�erent programs and states have to be summed up
incoherently. Thus, the corresponding probabilities are

j
j2 =
X

C(pi)2H
2�jpijj(t; C(pi))j2 (37)

P (s) � j� (s)j2 =
X

C(pi)=s

2�jpijj(t; C(pi))j2 (38)

P (S) �
X

C(pi)2S
j� (s)j2 =

X
C(pi)2S

2�jpijj(t; C(pi))j2 : (39)

The following relations hold,

� (S) =
X
si2S

� (si) ; (40)


 = � (H) =
X
si2H

� (si) : (41)

For s � S � H,
0 � P (s) � P (S) � j
j2 � 1 : (42)

Alternatively, the quantum halting probability and the quantum algorithmic
information by the quantum algorithmic information content. That is,

P �(s) = 2�js
�j = 2�H(s) (43)

P �(S) =
X
si2S

P �(s) =
X
s2S

2�H(s) (44)

P �(H) = j
�j2 =
X
n2H

2�H(n) : (45)

j
�j2 � j
j2 ; (46)

P �(s) � P (s) ; (47)

P �(S) � P (S) : (48)

The following relations are either a direct consequence of the de�nition (43) or
follow from the fact that for programs in pre�x code, the algorithmic probability
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is concentrated on the minimal size programs, or alternatively, that there are few
minimal programs:

H(s) = � log2 P
�(s) ; (49)

H(s) = � log2 P (s) +O(1) : (50)

Notice again that, because of complementarity, single qbits cannot be deter-
mined precisely. They just appear experimentally as some clicks in a counter.
What we can e�ectively do is to observe a successive number of such qbits,
one after the other, from \similar" computation processes (same preparation,
same evolution). By performing these measurements on \similar" qbits, one can
\determine" this qbit within an "-neighborhood only.

For nontrivial choices of the quantum computer C, several remarks are in
order. (In what follows, we mention only 
, but the comments apply to � as
well.) If the program is also coded in qbits, the above sum becomes an integral
over continuously many states per code symbol of the programs. In this case, the
Kraft sum needs not converge. Just as for the classical analogue it is possible to
\compute" 
 as a limit from below by considering in the t'th computing step
(time �) all programs of length � which have already halted. (This \computation"
su�ers from a radius of convergence which decreases slower than any recursive
function.) The quantum 
 is complex. j
j2 can be interpreted as a measure for
the halting probability of C; i.e., the probability that an arbitrary (pre�x-free)
program halts on C.

Finally, any irreversible measurement of j
j2 causes a state collapse. Since
C(�; pi) may not be in a pure state, the series in (34) and (35) will not be
uniquely de�ned even for �nite times. Thus the nondeterministic character of 

is not only based on classical recursion theoretic arguments [29, 28] but also on
the metaphysical assumption that God plays the quantum dice.

Appendices

A Two-state system

Having set the stage of the quantum formalism, an elementary two-dimensional
example of a two-state system shall be exhibited ([44, pp. 8-11]). Let us denote
the two base states by 1 and 2. Any arbitrary physical state  is a coherent
superposition of 1 and 2 and can be written as  = 1(1;  ) + 2(2;  ) with the
two coe�cients (1;  ); (2;  ) 2 C.

Let us discuss two particular types of evolutions.
First, let us discuss the Schr�odinger equation with diagonal Hamilton matrix,

i.e., with vanishing o�-diagonal elements,

Hij =

�
E1 0
0 E2

�
: (51)

In this case, the Schr�odinger equation decouples and reduces to

i~
@

@t
(1;  (t)) = E1(1;  (t)) ; i~

@

@t
(2;  (t)) = E2(2;  (t)) ; (52)
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resulting in

(1;  (t)) = ae�iE1t=~ ; (2;  (t)) = be�iE2t=~ ; (53)

with a; b 2 C, jaj2 + jbj2 = 1. These solutions correspond to stationary states
which do not change in time; i.e., the probability to �nd the system in the two
states is constant

j(1;  )j2 = jaj2 ; j(2;  )j2 = jbj2 : (54)

Second, let us discuss the Schr�odinger equation with with non-vanishing but
equal o�-diagonal elements�A and with equal diagonal elements E of the Hamil-
tonian matrix; i.e.,

Hij =

�
E �A
�A E

�
: (55)

In this case, the Schr�odinger equation reads

i~
@

@t
(1;  (t)) = E(1;  (t))� A(2;  (t)) ; (56)

i~
@

@t
(2;  (t)) = E(2;  (t))� A(1;  (t)) : (57)

These equations can be solved in a number of ways. For example, taking the
sum and the di�erence of the two, one obtains

i~
@

@t
((1;  (t)) + (2;  (t))) = (E �A)((1;  (t)) + (2;  (t))) ; (58)

i~
@

@t
((1;  (t))� (2;  (t))) = (E +A)((1;  (t)) � (2;  (t))) : (59)

The solution are again two stationary states

(1;  (t)) + (2;  (t)) = ae�(i=~)(E�A)t ; (60)

(1;  (t))� (2;  (t)) = be�(i=~)(E+A)t : (61)

Thus,

(1;  (t)) =
a

2
e�(i=~)(E�A)t +

b

2
e�(i=~)(E+A)t ; (62)

(2;  (t)) =
a

2
e�(i=~)(E�A)t � b

2
e�(i=~)(E+A)t : (63)

Assume now that initially, i.e., at t = 0, the system was in state ; 1) =;  (t =
0)). This assumption corresponds to (1;  (t = 0)) = 1 and (2;  (t = 0)) = 0.
What is the probability that the system will be found in the state 2 at the time
t > 0, or that it will still be found in the state 1 at the time t > 0? Setting t = 0
in equations (62) and (63) yields

(1;  (t = 0)) =
a+ b

2
= 1 ; (2;  (t = 0)) =

a� b

2
= 0 ; (64)
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and thus a = b = 1. Equations (62) and (63) can now be evaluated at t > 0 by
substituting 1 for a and b,

(1;  (t)) = e�(i=~)Et
�
e(i=~)At + e�(i=~)At

2

�
= e�(i=~)Et cos

At

~
; (65)

(2;  (t)) = e�(i=~)Et
�
e(i=~)At � e�(i=~)At

2

�
= i e�(i=~)Et sin

At

~
: (66)

Finally, the probability that the system is in state ; 1) and ; 2) is

j(1;  (t))j2 = cos2
At

~
; j(2;  (t))j2 = sin2

At

~
; (67)

respectively. This results in an oscillation of the transition probabilities.
Let us shortly mention one particular realization of a two-state system which,

among many others, has been discussed in the Feynman lectures [44]. Con-
sider an ammonia (NH3) molecule. If one �xes the plane spanned by the three
hydrogen atoms, one observes two possible spatial con�gurations ; 1) and ; 2),
corresponding to position of the nitrogen atom in the lower or the upper hemi-
sphere, respectively (cf. Fig. 2). The nondiagonal elements of the Hamiltonian
H12 = H21 = �A correspond to a nonvanishing transition probability from one
such con�guration into the other. If the ammonia has been originally in state ; 1),
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Figure 2: The two equivalent geometric arrangements of the ammonia (NH3)
molecule.

it will constantly swing back and forth between the two states, with a probability
given by equations (67).
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B From single to multiple quanta | \second" �eld

quantization

The quantum formalism introduced in the main text is about single quantized
objects. What if one wants to consider many such objects? Do we have to add
assumptions in order to treat such multi-particle, multi-quanta systems appro-
priately?

The answer is yes. Experiment and theoretical reasoning (the representation
theory of the Lorentz group [86] and the spin-statistics theorem [56, 71, 17, 54])
indicate that there are (at least) two basic types of states (quanta, particles):
bosonic and fermionic states. Bosonic states have what is called \integer spin;"
i.e., sb = 0; ~; 2~; 3~; : : :, whereas fermionic states have \half-integer spin;" sf =
1~
2
; 3~
2
; 5~
2
: : :. Most important, they are characterized by the way identical copies

of them can be \brought together." Consider two boxes, one for identical bosons,
say photons, the other one for identical fermions, say electrons. For the �rst,
bosonic, box, the probability that another identical boson is added increases
with the number of identical bosons which are already in the box. There is a
tendency of bosons to \condensate" into the same state. The second, fermionic
box, behaves quite di�erently. If it is already occupied by one fermion, another
identical fermion cannot enter. This is expressed in the Pauli exclusion principle:
A system of fermions can never occupy a con�guration of individual states in
which two individual states are identical.

How can the bose condensation and the Pauli exclusion principle be imple-
mented? There are several forms of implementation (e.g., fermionic behavior via
Slater-determinants), but the most compact and widely practiced form uses op-
erator algebra. In the following we shall present this formalism in the context of
quantum �eld theory [52, 69, 56, 71, 17, 54, 46].

A classical �eld can be represented by its Fourier transform (\�" stands for
complex conjugation)

A(x; t) = A(+)(x; t) +A(�)(x; t) (68)

A(+)(x; t) = [A(�)(x; t)]� (69)

A(+)(x; t) =
X
ki;si

aki;siuki;si(x)e
�i!ki t ; (70)

where � = !ki=2� stands for the frequency in the �eld mode labeled by momen-
tum ki and si is some observable such as spin or polarization. uki;si stands for
the polarization vector (spinor) at ki; si, and, most important with regards to
the quantized case, complex-valued Fourier coe�cients aki;si 2 C.

>From now on, the ki; si-mode will be abbreviated by the symbol i; i.e.,
1 � k1; s1, 2 � k2; s2, 3 � k3; s3, : : :, i � ki; si, : : :.

In (second17) quantization, the classical Fourier coe�cients ai become re-
interpreted as operators, which obey the following algebraic rules (scalars would
not do the trick). For bosonic �elds (e.g., for the electromagnetic �eld), the

17 of course, there is only \the one and only" quantization, the term \second" often
refers to operator techniques for multiquanta systems; i.e., quantum �eld theory
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commutator relations are (\y" stands for self-adjointness):h
ai; a

y
j

i
= aia

y
j � ayjai = �ij ; (71)

[ai; aj ] =
h
ayi ; a

y
j

i
= 0 : (72)

For fermionic �elds (e.g., for the electron �eld), the anti-commutator relations
are:

fai; ayjg = aia
y
j + ayjai = �ij ; (73)

fai; ajg = fayi ; a
y
jg = 0 : (74)

The anti-commutator relations, in particular fayj ; a
y
jg = 2(ayj)

2 = 0, are just a

formal expression of the Pauli exclusion principle stating that, unlike bosons,
two or more identical fermions cannot co-exist.

The operators ayi and ai are called creation and annihilation operators, re-
spectively. This terminology suggests itself if one introduces Fock states and the

occupation number formalism. ayi and ai are applied to Fock states to following
e�ect.

The Fock space associated with a quantized �eld will be the direct product
of all Hilbert spaces Hi; i.e., Y

i2I
Hi ; (75)

where I is an index set characterizing all di�erent �eld modes labeled by i.
Each boson (photon) �eld mode is equivalent to a harmonic oscillator [46, 70];
each fermion (electron, proton, neutron) �eld mode is equivalent to the Larmor
precession of an electron spin.

In what follows, only �nite-size systems are studied. The Fock states are
based upon the Fock vacuum. The Fock vacuum is a direct product of states
j 0ii of the i'th Hilbert space Hi characterizing mode i; i.e.,

j 0i =
Y
i2I

j 0ii =j 0i1
 j 0i2
 j 0i3 
 � � �

= j
[
i2I
f0igi =j f01; 02; 03; : : :gi ; (76)

where again I is an index set characterizing all di�erent �eld modes labeled
by i. \0i" stands for 0 (no) quantum (particle) in the state characterized by
the quantum numbers i. Likewise, more generally, \Ni" stands for N quanta
(particles) in the state characterized by the quantum numbers i.

The annihilation operators ai are designed to destroy one quantum (particle)
in state i:

aj j 0i = 0 ; (77)

aj j f01; 02; 03; : : : ; 0j�1; Nj ; 0j+1; : : :gi =
=
p
Nj j f01; 02; 03; : : : ; 0j�1; (Nj � 1); 0j+1; : : :gi : (78)
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The creation operators ayi are designed to create one quantum (particle) in
state i:

ayj j 0i =j f01; 02; 03; : : : ; 0j�1; 1j ; 0j+1; : : :gi : (79)

More generally, Nj operators (a
y
j)
Nj create an Nj-quanta (particles) state

(ayj)
Nj j 0i /j f01; 02; 03; : : : ; 0j�1; Nj ; 0j+1; : : :gi : (80)

For fermions, Nj 2 f0; 1g because of the Pauli exclusion principle. For bosons,
Nj 2 N0. With proper normalization [which can motivated by the (anti-)commutator

relations and by j(X;X)j2 = 1], a state containingN1 quanta (particles) in mode
1, N2 quanta (particles) in mode 2, N3 quanta (particles) in mode 3, etc., can
be generated from the Fock vacuum by

j
[
i2I
fNigi �j fN1; N2; N3; : : :gi =

Y
i2I

(ayi )
Ni

p
Ni!

j 0i : (81)

As has been stated by Glauber [46, p. 64],

: : : in quantum theory, there is an in�nite set of complex numbers which
speci�es the state of a single mode. This is in contrast to classical theory
where each mode may be described by a single complex number. This
shows that there is vastly more freedom in quantum theory to invent
states of the world than there is in the classical theory. We cannot think
of quantum theory and classical theory in one-to-one terms at all. In
quantum theory, there exist whole spaces which have no classical ana-
logues, whatever.

C Quantum interference

In what follows, we shall make use of a simple \toolbox"-scheme of combining
lossless elements of an experimental setup for the theoretical calculation [49].
The elements of this \toolbox" are listed in Table 1. These \toolbox" rules can
be rigorously motivated by the full quantum optical calculations (e.g., [103, 24])
but are much easier to use. In what follows, the factor i resulting from a phase
shift of �=2 associated with the re
ection at a mirrorM is omitted. However, at
a half-silvered mirror beam splitter, the relative factor i resulting from a phase
shift of �=2 is kept. (A detailed calculation [18] shows that this phase shift
of �=2 is an approximation which is exactly valid only for particular system

parameters). T and R =
p
1� T 2 are transmission and re
ection coe�cients.

Notice that the \generic" beam splitter can be realized by a half-silvered mirror
and a successive phase shift of ' = ��=2 in the re
ected channel; i.e., a !
(b + ic)=

p
2 ! (b+ ie�i�=2c)=

p
2 ! (b + c)=

p
2. Note also that, in the \second

quantization" notation, for i < j,

j ii j ji � ayia
y
j j 0i =j ii
 j ji =j 01; 02; 03; : : : ; 0i�1; 1i; 0i+1; : : : ; 0j�1; 1j ; 0j+1; : : :i :

(82)
In present-day quantum optical nonlinear devices (NL), parametric up- or down-
conversion, i.e., the production of a single quant (particle) from two �eld quanta
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physical process symbol state transformation

re
ection at mirror a! b = ia
a

b

M

\generic" beam splitter a! (b+ c)=
p
2

PPP
��

�a b

c

transmission/re
ection a! (b+ ic)=
p
2

by a beam splitter a! Tb+ iRc,
(half-silvered mirror) T 2 +R2 = 1, T;R 2 [0; 1]

b

c

S1

a

phase-shift ' a! b = aei''
a b

parametric down-conversion jai ! �jbijci

NL
b

c

a

parametric up-conversion jai j bi ! �jci

NL
ca

b

ampli�cation Aia! jb;G;Ni
G;N

a b

Table 1: \Toolbox" of lossless elements for quantum interference devices.
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(particles) and the production of two �eld quanta (particles) from a single one
occurs at the very low amplitude rate of � � 10�6.

In what follows, a lossless Mach-Zehnder interferometer drawn in Fig. 3 is
discussed. The computation proceeds by successive substitution (transition) of

L��
��

�
	
D1

c

S1

S2

a

'P

d


 	D2

e

b M

M

Figure 3: Mach-Zehnder interferometer. A single quantum (photon, neutron,
electron etc) is emitted in L and meets a lossless beam splitter (half-silvered
mirror) S1, after which its wave function is in a coherent superposition of b and
c. In beam path b a phase shifter shifts the phase of state b by '. The two beams
are then recombined at a second lossless beam splitter (half-silvered mirror) S2.
The quant is detected at either D1 or D2, corresponding to the states d and e,
respectively.

states; i.e.,

S1 : a! (b+ ic)=
p
2 ; (83)

P : b! bei' ; (84)

S2 : b! (e+ id)=
p
2 ; (85)

S2 : c! (d+ ie)=
p
2 : (86)

The resulting transition is

a!  = i

�
ei' + 1

2

�
d+

�
ei' � 1

2

�
e : (87)

Assume that ' = 0, i.e., there is no phase shift at all. Then, equation (87)
reduces to a ! id, and the emitted quant is detected only by D1. Assume that
' = �. Then, equation (87) reduces to a! �e, and the emitted quant is detected
only by D2. If one varies the phase shift ', one obtains the following detection
probabilities:

PD1
(') = j(d;  )j2 = cos2(

'

2
) ; PD2

(') = j(e;  )j2 = sin2(
'

2
) : (88)

For some \mindboggling" features of Mach-Zehnder interferometry, see [10].
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D Universal 2-port quantum gate

The elementary quantum interference device Tbs
21 depicted in Fig. (4.a) is just a

beam splitter followed by a phase shifter in one of the output ports. According
to the \toolbox" rules of appendix C, the process can be quantum mechanically
described by18

P1 : 0! 0ei�+� ; (89)

P2 : 1! 1ei� ; (90)

S : 0! T 10 + iR00 ; (91)

S : 1! T 00 + iR10 ; (92)

P3 : 0
0 ! 00ei' : (93)

If 0 � 00 �
�
1
0

�
and 1 � 10 �

�
0
1

�
and R(!) = sin!, T (!) = cos!,

then the corresponding unitary evolution matrix which transforms any coherent
superposition of 0 and 1 into a superposition of 00 and 10 is given by

Tbs
21(!; �; �; ') =

�
ei �

�
i ei(�+') sin! ei� cos!
ei' cos! i sin!

���1

= e�i �
�
�i e�i(�+') sin! e�i' cos!

e�i� cos! �i sin!

�
: (94)

The elementary quantum interference device TMZ
21 depicted in Fig. (4.b)

is a (rotated) Mach-Zehnder interferometer with two input and output ports
and three phase shifters. According to the \toolbox" rules, the process can be
quantum mechanically described by

P1 : 0! 0ei�+� ; (95)

P2 : 1! 1ei� ; (96)

S1 : 1! (b+ i c)=
p
2 ; (97)

S1 : 0! (c+ i b)=
p
2 ; (98)

P3 : c! cei! ; (99)

S2 : b! (10 + i00)=
p
2 ; (100)

S2 : c! (00 + i10)=
p
2 ; (101)

P4 : 0
0 ! 00ei' : (102)

18 Alternatively, the action of a lossless beam splitter may be described by the matrix�
T (!) i R(!)
i R(!) T (!)

�

=
�
cos! i sin!
i sin! cos!

�
. A phase shifter in a two-dimensional Hilbert

space is represented by either

�
ei' 0
0 1

�

or

�
1 0
0 ei'

�

. The action of the entire device

consisting of such elements is calculated by multiplying the matrices in reverse order
in which the quanta pass these elements [103, 24].
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Figure 4: Elementary quantum interference device. An elementary quantum in-
terference device can be realized by a 4-port interferometer with two input ports
0;1 and two output ports 00;10. Any two-dimensional unitary transformation
can be realized by the devices. a) shows a realization by a single beam splitter
S(T ) with variable transmission t and three phase shifters P1; P2; P3; b) shows
a realization with 50:50 beam splitters S1(

1
2
) and S2(

1
2
) and four phase shifters

P1; P2; P3; P4.
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When again 0 � 00 �
�
1
0

�
and 1 � 10 �

�
0
1

�
, then the corresponding unitary

evolution matrix which transforms any coherent superposition of 0 and 1 into a
superposition of 00 and 10 is given by

TMZ
21 (�; �; !; ') = �i e�i(�+!

2
)

�
�e�i (�+') sin !

2
e�i ' cos !

2

e�i � cos !
2

sin !
2

�
: (103)

The correspondence between Tbs
21(T (!); �; �; ') with TMZ

21 (�0; �0; !0; '0) in
equations (94) (103) can be veri�ed by comparing the elements of these matri-
ces. The resulting four equations can be used to eliminate the four unknown
parameters !0 = 2!, �0 = � � !, �0 = � � �=2, �0 = � � ! and '0 = ' � �=2;
i.e.,

Tbs
21(!; �; �; ') = TMZ

21 (�� �

2
; � � !; 2!; '� �

2
) : (104)

Both elementary quantum interference devices are universal in the sense that
every unitary quantum evolution operator in two-dimensional Hilbert space can
be brought into a one-to-one correspondence to Tbs

21 and T
MZ
21 ; with correspond-

ing values of T; �; �; ' or �; !; �; '. This can be easily seen by a similar calcu-
lation as before; i.e., by comparing equations (94) (103) with the \canonical"
form of a unitary matrix, which is the product of a U(1) = e�i � and of the
unimodular unitary matrix SU(2) [76]

T(!; �; ') =

�
ei � cos! �e�i ' sin!
ei ' sin! e�i � cos!

�
; (105)

where �� � �; ! � �, � �
2
� �; ' � �

2
. Let

T(!; �; �; ') = e�i �T(!; �; ') : (106)

A proper identi�cation of the parameters �; �; !; ' yields

T(!; �; �; ') = Tbs
21(! �

�

2
;��� '� �

2
; � + �+

�

2
; '� �+

�

2
) : (107)

Let us examine the realization of a few primitive logical \gates" corresponding
to (unitary) unary operations on qbits. The \identity" element I is de�ned by
0! 0, 1! 1 and can be realized by

I = T bs21 (�
�

2
;��

2
;
�

2
;
�

2
) = TMZ

21 (��; �;��; 0) =
�
1 0
0 1

�
: (108)

The \not" element is de�ned by 0! 1, 1! 0 and can be realized by

not = T bs21 (0; 0; 0; 0) = TMZ
21 (� �

2
; 0; 0;� �

2
) =

�
0 1
1 0

�
: (109)

The next element, \
p
not" is a truly quantum mechanical; i.e., nonclassical,

one, since it converts a classical bit into a coherent superposition of 0 and 1.p
not is de�ned by 0! 0+ 1, 1! �0+ 1 and can be realized by

p
not = T bs21 (�

�

4
;��

2
;
�

2
;
�

2
) = TMZ

21 (��; 3�
4
;��

2
; 0) =

1p
2

�
1 �1
1 1

�
: (110)
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Note that
p
not �

p
not = not � diag(1;�1) = not (mod 1). The relative phases

in the output ports showing up in diag(1;�1) can be avoided by de�ning

p
not

0
= T bs21(�

�

4
; 0;

�

4
; 0) = TMZ

21 (� �

2
;
�

2
;� �

2
;� �

2
) =

1

2

�
1 + i 1� i
1� i 1 + i

�
:

(111)

With this de�nition,
p
not

0p
not

0
= not.

It is very important that the elementary quantum interference device realizes
an arbitrary quantum time evolution of a two-dimensional system. The perfor-
mance of the quantum interference device is determined by four parameters,
corresponding to the phases �; �; '; !.

References

1. Albert, D. Z. On quantum-mechanical automata. Physics Letters 94A, 5,6
(1983), 249{252.

2. Anderson, A. R. St. Paul's epistle to Titus. In The Paradox of the Liar, R. L.
Martin, Ed. Yale University Press, New Haven, 1970. The Bible contains a passage
which refers to Epimenides, a Crete living in the capital city of Cnossus: \One
of themselves, a prophet of their own, said, `Cretans are always liars, evil beasts,
lazy gluttons.' ",| St. Paul, Epistle to Titus I (12-13).

3. Ballentine, L. E. Quantum Mechanics. Prentice Hall, Englewood Cli�s, NJ,
1989.

4. Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus,
N., Shor, P., Sleator, T., Smolin, J., and Weinfurter, H. Elementary
gates for quantum computation.
e-print http://xxx.lanl.gov/abs/quant-ph/9503016.

5. Bell, J. S. Speakable and Unspeakable in Quantum Mechanics. Cambridge Uni-
versity Press, Cambridge, 1987.

6. Benioff, P. A. Quantum mechanical hamiltonian models of turing machines.
Journal of Statistical Physics 29, 3 (1982), 515{546.

7. Benioff, P. A. Quantum mechanical hamiltonian models of computers. Annals
of the New York Akademy of Sciences 480 (1986), 475{486.

8. Bennett, C. H. Logical reversibility of computation. IBM Journal of Research
and Development 17 (1973), 525{532. Reprinted in [67, pp. 197-204].

9. Bennett, C. H. The thermodynamics of computation|a review. In Interna-
tional Journal of Theoretical Physics [67], pp. 905{940. Reprinted in [67, pp.
213-248].

10. Bennett, C. H. Night thoughts, dark sight. Nature 371 (1994), 479{480.
11. Bennett, C. H., Bessette, F., Brassard, G., Salvail, L., and Smolin, J.

Experimental quantum cryptography. Journal of Cryptology 5 (1992), 3{28.
12. Bennett, C. H., and Brassard, G. Quantum cryptography: Public key dis-

tribution and coin tossing. In Proceedings of the IEEE International Conference
on Computers, Systems, and Signal Processing, Bangalore, India (1984), IEEE
Computer Society Press, pp. 175{179.

13. Bennett, C. H., Brassard, G., Breidbart, S., and Wiesner, S. Quantum
cryptography, or unforgable subway tokens. In Advances in Cryptography: Pro-
ceedings of Crypto '82 (New York, 1982), Plenum Press, pp. 78{82.

14. Bernstein, E., and Vazirani, U. Quantum complexity theory. In Proceed-
ings of the 25th Annual ACM Symposium on Theory of Computing, San Diego,
California, May 16-18, 1993 (1993), ACM Press, pp. 11{20.

342 Svozil K.: Quantum Information Theory



15. Berthiaume, A., and Brassard, G. The quantum challenge to structural com-
plexity theory. In Proceedings, Structure in Complexity Theory, seventh annual
conference, Boston University, Boston, Massachusetts, June 22-25, 1992 (1992),
IEEE Computer Society Press, pp. 132{137.

16. Bishop, E., and Bridges, D. S. Constructive Analysis. Springer, Berlin, 1985.
17. Bogoliubov, N. N., and Shirkov, D. V. Introduction to the Theory of Quan-

tized Fields. Wiley-Interscience, New York, 1959.
18. Born, M., and Wolf, E. Principles of Optics: Electromagnetic Theory of Prop-

agation, Interference and Di�raction of Light, 6th ed. Pergamon Press, Oxford,
1993.

19. Bridges, D., and Richman, F. Varieties of Constructive Mathematics. Cam-
bridge University Press, Cambridge, 1987.

20. Bridges, D. S. Computability. Springer, New York, 1994.
21. Bridgman, P. W. A physicists second reaction to Mengenlehre. Scripta Mathe-

matica 2 (1934), 101{117, 224{234. Cf. R. Landauer [65].
22. Bridgman, P. W. Re
ections of a Physicist. Philosophical Library, New York,

1950.
23. Calude, C. Information and Randomness|An Algorithmic Perspective.

Springer, Berlin, 1994.
24. Campos, R. A., Saleh, B. E. A., and Teich, M. C. Fourth-order interference

of joint single-photon wave packets in lossless optical systems. Physical Review
A42 (1990), 4127.

25. Cantor, G. Gesammelte Abhandlungen. Springer, Berlin, 1932.
26. Caves, C. M. Quantum limits on noise in linear ampli�ers. Physical Review D26

(1982), 1817{1839.

27. �Cern�y, V. Quantum computers and intractable (NP -complete) computing prob-
lems. Physical Review A48 (1993), 116{119.

28. Chaitin, G. J. Algorithmic Information Theory. Cambridge University Press,
Cambridge, 1987.

29. Chaitin, G. J. Information, Randomness and Incompleteness, second ed. World
Scienti�c, Singapore, 1990. This is a collection of G. Chaitin's publications.

30. Chuang, I., Laflamme, R., Shor, P., and Zurek, W. Quantum computers,
factoring, and decoherence.
e-print http://xxx.lanl.gov/abs/quant-ph/9503007.

31. Davis, M. Computability and Unsolvability. McGraw-Hill, New York, 1958.
32. Davis, M. The Undecidable. Raven Press, New York, 1965.
33. Davydov, A. S. Quantum Mechanics. Addison-Wesley, Reading, MA, 1965.
34. Deutsch, D. Quantum theory, the Church-Turing principle and the universal

quantum computer. Proceedings of the Royal Society London A 400 (1985), 97{
119.

35. Deutsch, D. Quantum computational networks. Proceedings of the Royal Soci-
ety London A 425 (1989), 73{90.

36. Deutsch, D., and Jozsa, R. Rapid solution of problems by quantum compu-
tation. Proceedings of the Royal Society London A 439 (1992), 553{558.

37. Dieks, D. Communication by EPR devices. Physics Letters 92A, 6 (1982), 271{
272.

38. Dirac, P. A. M. The Principles of Quantum Mechanics. Oxford University
Press, Oxford, 1947.

39. Dunford, N., and Schwartz, J. T. Linear Operators I. Interscience Publish-
ers, New York, 1958.

40. Einstein, A. �Uber einen die Erzeugung und Verwandlung des Lichtes betref-
fenden heuristischen Gesichtspunkt. Annalen der Physik 17 (1905), 132{148.

41. Einstein, A., Podolsky, B., and Rosen, N. Can quantum-mechanical de-
scription of physical reality be considered complete? Physical Review 47 (1935),
777{780. Reprinted in [100, pp. 138-141].

343Svozil K.: Quantum Information Theory



42. Feynman, R. P. Simulating physics with computers. International Journal of
Theoretical Physics 21 (1982), 467{488.

43. Feynman, R. P. Quantum mechanical computers. Optics News 11 (February
1985), 11{20.

44. Feynman, R. P., Leighton, R. B., and Sands, M. The Feynman Lectures on
Physics. Quantum Mechanics, vol. III. Addison-Wesley, Reading, MA, 1965.

45. Fredkin, E., and Toffoli, T. Conservative logic. International Journal of
Theoretical Physics 21 (1982), 219{253.

46. Glauber, R. J. Amplifyers, attenuators and the quantum theory of measure-
ment. In Frontiers in Quantum Optics, E. R. Pikes and S. Sarkar, Eds. Adam
Hilger, Bristol, 1986.

47. G�odel, K. �Uber formal unentscheidbare S�atze der Principia Mathematica und
verwandter Systeme. Monatshefte f�ur Mathematik und Physik 38 (1931), 173{
198. English translation in [48], and in [32].

48. G�odel, K. In Collected Works. Publications 1929-1936. Volume I, S. Feferman,
J. W. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay, and J. van Heijenoort,
Eds. Oxford University Press, Oxford, 1986.

49. Greenberger, D. B., Horne, M., and Zeilinger, A. Multiparticle interfer-
ometry and the superposition principle. Physics Today 46 (August 1993), 22{29.

50. Greenberger, D. B., and YaSin, A. \Haunted" measurements in quantum
theory. Foundation of Physics 19, 6 (1989), 679{704.

51. Hamming, R. W. Coding and Information Theory, second ed. Prentice-Hall,
Englewood Cli�s, NJ, 1980.

52. Harris, E. G. A Pedestrian Approach to Quantum Field Theory. Wiley-
Interscience, New York, 1971.

53. Herbert, N. FLASH|a superluminal communicator based upon a new kind of
quantum measurement. Foundation of Physics 12, 12 (1982), 1171{1179.

54. Itzykson, C., and Zuber, J.-B. Quantum Field Theory. MacGraw-Hill, New
York, 1980.

55. Jammer, M. The Philosophy of Quantum Mechanics. John Wiley & Sons, New
York, 1974.

56. Jauch, J. M., and Rohrlich. The Theory of Photons and Electrons. Addison-
Wesley, Cambridge, MA, 1955.

57. Kochen, S., and Specker, E. P. Logical structures arising in quantum theory.
In Symposium on the Theory of Models, Proceedings of the 1963 International
Symposium at Berkeley (Amsterdam, 1965), North Holland, pp. 177{189.

58. Kochen, S., and Specker, E. P. The problem of hidden variables in quantum
mechanics. Journal of Mathematics and Mechanics 17, 1 (1967), 59{87.

59. Landauer, R. Letter, june 1st, 1994.
60. Landauer, R. Fundamental physical limitations of the computational process;

an informal commentary. Cybernetics Machine Group Newsheet (1/1/1987).
61. Landauer, R. Irreversibility and heat generation in the computing process. In

IBM Journal of Research and Development [67], pp. 183{191. Reprinted in [67,
pp. 188-196].

62. Landauer, R. Wanted: a physically possible theory of physics. IEEE Spectrum
4 (1967), 105{109.

63. Landauer, R. Computation, measurement, communication and energy dissi-
pation. In Selected Topics in Signal Processing, S. Haykin, Ed. Prentice Hall,
Englewood Cli�s, NJ, 1989, p. 18.

64. Landauer, R. Information is physical. Physics Today 44 (May 1991), 23{29.
65. Landauer, R. Advertisement for a paper I like. In On Limits, J. L. Casti and

J. F. Traub, Eds. Santa Fe Institute Report 94-10-056, Santa Fe, NM, 1994, p. 39.
66. Landauer, R. Zig-zag path to understanding. In Proceedings of the Workshop

on Physics and Computation PHYSCOMP '94 (Los Alamitos, CA, 1994), IEEE
Computer Society Press, pp. 54{59.

344 Svozil K.: Quantum Information Theory



67. Leff, H. S., and Rex, A. F. Maxwell's Demon. Princeton University Press,
Princeton, 1990.

68. Li, M., and Vit�anyi, P. M. B. Kolmogorov complexity and its applications.
In Handbook of Theoretical Computer Sciences. Elsevier Science Publishers, Am-
sterdam, 1990. [98].

69. Lipkin, H. J. Quantum Mechanics, New Approaches to Selected Topics. North-
Holland, Amsterdam, 1973.

70. Loudon, R., and Knight, P. L. Squeezed light. Journal of Modern Optics 34
(1987), 709{759.

71. Luri�e, D. Particles and Fields. Interscience Publishers, New York, 1968.
72. Mandel, L. Is a photon ampli�er always polarization dependent? Nature 304

(1983), 188.
73. Mermin, N. D. What's wrong with these elements of reality? Physics Today 43,

6 (June 1990), 9{10.
74. Messiah, A. Quantum Mechanics, vol. I. North-Holland, Amsterdam, 1961.
75. Milonni, P. W., and Hardies, M. L. Photons cannot always be replicated.

Physics Letters 92A, 7 (1982), 321{322.
76. Murnaghan, F. D. The Unitary and Rotation Groups. Spartan Books, Wash-

ington, 1962.
77. Odifreddi, P. Classical Recursion Theory. North-Holland, Amsterdam, 1989.
78. Peres, A. Quantum Theory: Concepts and Methods. Kluwer Academic Publish-

ers, Dordrecht, 1993.
79. Planck, M. Ueber eine Verbesserung der Wien'schen Spectralgleichung. Ver-

handlungen der deutschen physikalischen Gesellschaft 2 (1900), 202.
80. Planck, M. Die physikalische Struktur des Phasenraumes. Annalen der Physik

50 (1916), 385{418.
81. Reck, M., and Zeilinger, A. Quantum phase tracing of correlated photons in

optical multiports. In Quantum Interferometry (Singapore, 1994), F. D. Martini,
G. Denardo, and A. Zeilinger, Eds., World Scienti�c.

82. Reck, M., Zeilinger, A., Bernstein, H. J., and Bertani, P. Experimental
realization of any discrete unitary operator. Physical Review Letters 73 (1994),
58{61.

83. Rogers, Jr., H. Theory of Recursive Functions and E�ective Computability.
MacGraw-Hill, New York, 1967.

84. Rosen, R. E�ective processes and natural law. In The Universal Turing Ma-
chine. A Half-Century Survey, R. Herken, Ed. Kammerer & Unverzagt, Hamburg,
1988, p. 523.

85. Schr�odinger, E. Die gegenw�artige Situation in der Quantenmechanik. Natur-
wissenschaften 23 (1935), 807{812, 823{828, 844{849. English translation in [100,
pp. 152-167].

86. Sexl, R. U., and Urbantke, H. K. Relativit�at, Gruppen, Teilchen. Springer,
Vienna, 1976.

87. Shor, P. W. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings of the 35th Annual Symposium of on Foundations of
Computer Science, Santa Fe, NM, Nov. 20-22, 1994 (November 1994), IEEE
Computer Society Press.
e-print http://xxx.lanl.gov/abs/quant-ph/9508027.

88. Solomonoff, R. J. A formal theory of inductive inference. part i. Information
and Control 7 (1964), 1{22.

89. Solovay, R. M. unpublished manuscript.
90. Svozil, K. The consistent use of paradoxes. Foundations of Physics Letters, in

press.
91. Svozil, K. Speedup in quantum computation is associated with attenuation of

processing probability.

345Svozil K.: Quantum Information Theory



e-print http://tph.tuwien.ac.at/~svozil/publ/kraft.ps
e-print http://xxx.lanl.gov/abs/hep-th/9412046.

92. Svozil, K. Randomness & Undecidability in Physics. World Scienti�c, Singa-
pore, 1993.

93. Svozil, K. Halting probability amplitude of quantum computers. Journal of
Universal Computer Science 1, 3 (March 1995).

94. Svozil, K. Quantum computation and complexity theory. part I. Bulletin of the
European Association of Theoretical Computer Sciences 55 (1995), 170{207.
e-print http://tph.tuwien.ac.at/~svozil/publ/qct1.ps.

95. Svozil, K. Quantum computation and complexity theory. part II. Bulletin of
the European Association of Theoretical Computer Sciences 56 (1995), 116{136.
e-print http://tph.tuwien.ac.at/~svozil/publ/qct2.ps.

96. Svozil, K. Set theory and physics. Foundations of Physics 25 (1995), 1541{1560.
97. Turing, A. M. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, Series 2 42 and
43 (1936-7 and 1937), 230{265 and 544{546. reprinted in [32].

98. van Leeuwen, J. Algorithms and Complexity, vol. A. Elsevier and MIT Press,
Amsterdam and Cambridge, MA, 1990.

99. von Neumann, J. Mathematische Grundlagen der Quantenmechanik. Springer,
Berlin, 1932. English translation: Mathematical Foundations of Quantum Me-
chanics, Princeton University Press, Princeton, 1955.

100. Wheeler, J. A., and Zurek, W. H. Quantum Theory and Measurement.
Princeton University Press, Princeton, 1983.

101. Wigner, E. P. The unreasonable e�ectiveness of mathematics in the natural
sciences. Richard Courant Lecture delivered at New York University, May 11,
1959. Communications on Pure and Applied Mathematics 13 (1960), 1.

102. Wooters, W. K., and Zurek, W. H. A single quantum cannot be cloned.
Nature 299 (1982), 802{803.

103. Yurke, B., McCall, S. L., and Klauder, J. R. SU(2) and SU(1,1) interfer-
ometers. Physical Review A33 (1986), 4033{4054.

346 Svozil K.: Quantum Information Theory


